1
|
Xiao Y, Zhang Q, Yang Y, Li K, Xiao Y, Zhang S, Guo F, Jiang X, Liu S, Sanganyado E, Xia X. Unraveling the Pollution and Discharge of Aminophenyl Sulfone Compounds, Sulfonamide Antibiotics, and Their Acetylation Products in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11695-11706. [PMID: 38877970 DOI: 10.1021/acs.est.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Aminophenyl sulfone compounds (ASCs) are widely used in various fields, such as the pharmaceutical and textile industries. ASCs and their primary acetylation products are inevitably discharged into the environment. However, the high toxicity of ASCs could be released from the deacetylation of acetylation products. Still, the occurrence and ecological risks of ASCs and their acetylation products remain largely unknown. Here, we integrated all of the existing ASCs based on the core structure, together with their potential acetylation products, to establish a database covering 1105 compounds. By combining the database with R programming, 45 ASCs, sulfonamides, and their acetylation products were identified in the influent and effluent of 19 municipal wastewater treatment plants in 4 cities of China. 13 of them were detected for the first time in the aquatic environment, and 12 acetylation products were newly identified. The cumulative concentrations of 45 compounds in the influent and effluent were in the range of 231-9.96 × 103 and 26-2.70 × 103 ng/L, respectively. The proportion of the unrecognized compounds accounted for 60.6% of the influent and 62.8% of the effluent. Furthermore, nearly half of the ASCs (46.7%), other sulfonamides (49.9%), and their acetylation products (46.2%) were discharged from the effluent, posing a low-to-medium risk to aquatic organisms. The results provide a guideline for future monitoring programs, particularly for sulfadiazine and dronedarone, and emphasize that the ecological risk of ASCs, sulfonamides, and their acetylation products needs to be considered in the aquatic environment.
Collapse
Affiliation(s)
- Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kaixuan Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Feng Guo
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Spilsbury F, Kisielius V, Bester K, Backhaus T. Ecotoxicological mixture risk assessment of 35 pharmaceuticals in wastewater effluents following post-treatment with ozone and/or granulated activated carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167440. [PMID: 37774874 DOI: 10.1016/j.scitotenv.2023.167440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Reducing the risk posed by mixtures of pharmaceuticals is a goal of current initiatives such as the European Green Deal to reduce anthropological environmental impacts. Wastewater effluent typically contains large numbers of active pharmaceutical ingredients (APIs). For some APIs, existing technology such as conventional activated sludge (CAS) wastewater treatment plants (WWTPs) have removal rates below 20 %, thus the WWTP discharges are adding to the toxic burden of receiving waters. We present an environmental risk assessment of mixtures of 35 APIs in effluent samples from 82 Northern European WWTPs using the concentration addition model, and identify the respective risk-driving APIs. This is then compared to a corresponding mixture risk assessment of effluent samples from the Danish Hillerød WWTP subjected to post-treatment with varying specific ozone doses (0.15-1.05 mgO3/mgDOC) and/or granulated activated carbon (GAC). All 82 WWTP effluent samples exceeded risk thresholds by at least a factor of 30, with a median RQSUM of 92.9, highlighting the need for effluent post-treatment and/or a substantial dilution in the recipient waters. Antibiotics, analgesics and anti-depressants were among the top risk drivers with 99 % of the average mixture risk attributable to azithromycin, diclofenac, venlafaxine, clarithromycin and mycophenolic acid. Effluent mixture risk was reduced by ozonation in a concentration-dependent manner, decreasing below threshold levels to a median RQSUM of 0.83 following treatment with 0.65 mgO3/mg DOC. Fresh GAC was also effective at reducing the mixture risk both alone and with ozone treatment, with median RQSUM of 0.04 and 0.07 respectively. To our knowledge, this is the first study to present a risk assessment of pharmaceutical mixtures in effluent comparing "conventional" WWTP processes with additional post-treatment with ozone and/or GAC for reducing the joint risks of pharmaceutical mixtures for recipient waters. We demonstrate the need for additional WWTP treatment technologies, and the efficacy of GAC and ozonation in decreasing the risk to the aquatic environment from pharmaceutical mixtures to below acceptable threshold limits.
Collapse
Affiliation(s)
- Francis Spilsbury
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden.
| | - Vaidotas Kisielius
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden; Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Kondor AC, Molnár É, Jakab G, Vancsik A, Filep T, Szeberényi J, Szabó L, Maász G, Pirger Z, Weiperth A, Ferincz Á, Staszny Á, Dobosy P, Horváthné Kiss K, Hatvani IG, Szalai Z. Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: Concentrations, interactions, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152160. [PMID: 34864023 DOI: 10.1016/j.scitotenv.2021.152160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Small streams are crucial but vulnerable elements of ecological networks. To better understand the occurrence of pharmaceutically active compounds (PhACs) in streams, this study focused on the occurrence, distribution, and environmental risk of 111 PhACs and 7 trace elements based on a total of 141 water and sediment samples from small streams located in the urbanizing region of Budapest, Hungary. Eighty-one PhACs were detected in the aqueous phase, whereas sixty-two compounds were detected in the sediment. Carbamazepine (CBZ) was the most frequently identified PhAC in water, and was found in 91.5% of all samples. However, the highest concentrations were measured for lamotrigine (344.8 μg·L-1) and caffeine (221.4 μg·L-1). Lidocaine was the most frequently occurring PhAC in sediment (73.8%), but the maximum concentrations were detected for CBZ (395.9 ng·g-1) and tiapride (187.7 ng·g-1). In both water and sediment, more PhACs were found downstream of the wastewater treatment plants (WWTPs) than in the samples not affected by treated wastewater, even though no relationship was observed between the total amount of treated wastewater and the number of detected PhACs. The PhAC concentrations were also independent of the distance from the WWTP effluents. PhAC-polluted samples were detected upstream of the WWTPs, thereby suggesting the relevance of diffuse emissions in addition to WWTP outlets. The most frequently detected PhACs in the sediment were usually also present in the water samples collected at the same place and time. The varying concentrations of PhACs and the fluctuating water-sediment properties resulted in a lack of correlation between the general chemical properties and the concentrations of PhACs, which makes it difficult to predict PhAC contamination and risks in urbanized small streams. The environmental risk assessment indicated that diclofenac had the highest risk in the sampling area.
Collapse
Affiliation(s)
- Attila Csaba Kondor
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Éva Molnár
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary
| | - Gergely Jakab
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; Institute of Geography and Geoinformatics, University of Miskolc, Egyetemváros, Miskolc H-3515, Hungary.
| | - Anna Vancsik
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Tibor Filep
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - József Szeberényi
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Lili Szabó
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Gábor Maász
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary; Soós Ernő Research and Development Center, University of Pannonia, Zrínyi Miklós Str. 18, Nagykanizsa H-8800, Hungary
| | - Zsolt Pirger
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary
| | - András Weiperth
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Ádám Staszny
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest H-1113, Hungary
| | | | - István Gábor Hatvani
- Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Zoltán Szalai
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| |
Collapse
|
4
|
Gosset A, Wiest L, Fildier A, Libert C, Giroud B, Hammada M, Hervé M, Sibeud E, Vulliet E, Polomé P, Perrodin Y. Ecotoxicological risk assessment of contaminants of emerging concern identified by "suspect screening" from urban wastewater treatment plant effluents at a territorial scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146275. [PMID: 33714835 DOI: 10.1016/j.scitotenv.2021.146275] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Urban wastewater treatment plants (WWTP) are a major vector of highly ecotoxic contaminants of emerging concern (CECs) for urban and sub-urban streams. Ecotoxicological risk assessments (ERAs) provide essential information to public environmental authorities. Nevertheless, ERAs are mainly performed at very local scale (one or few WWTPs) and on pre-selected list of CECs. To cope with these limits, the present study aims to develop a territorial-scale ERA on CECs previously identified by a "suspect screening" analytical approach (LC-QToF-MS) and quantified in the effluents of 10 WWTPs of a highly urbanized territory during three periods of the year. Among CECs, this work focused on pharmaceutical residue and pesticides. ERA was conducted following two complementary methods: (1) a single substance approach, based on the calculation for each CEC of risk quotients (RQs) by the ratio of Predicted Environmental Concentration (PEC) and Predicted No Effect Concentration (PNEC), and (2) mixture risk assessment ("cocktail effect") based on a concentration addition model (CA), summing individual RQs. Chemical results led to an ERA for 41 CEC (37 pharmaceuticals and 4 pesticides) detected in treated effluents. Single substance ERA identified 19 CECs implicated in at least one significant risk for streams, with significant risks for DEET, diclofenac, lidocaine, atenolol, terbutryn, atorvastatin, methocarbamol, and venlafaxine (RQs reaching 39.84, 62.10, 125.58, 179.11, 348.24, 509.27, 1509.71 and 3097.37, respectively). Mixture ERA allowed the identification of a risk (RQmix > 1) for 9 of the 10 WWTPs studied. It was also remarked that CECs leading individually to a negligible risk could imply a significant risk in a mixture. Finally, the territorial ERA showed a diversity of risk situations, with the highest concerns for 3 WWTPs: the 2 biggest of the territory discharging into a large French river, the Rhône, and for the smallest WWTP that releases into a small intermittent stream.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France; Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France; Ecole Urbaine de Lyon, Institut Convergences, Commissariat général aux investissements d'avenir, Bât. Atrium, 43 Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christine Libert
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Myriam Hammada
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Matthieu Hervé
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Elisabeth Sibeud
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Philippe Polomé
- Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France
| | - Yves Perrodin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| |
Collapse
|
5
|
Aemig Q, Hélias A, Patureau D. Impact assessment of a large panel of organic and inorganic micropollutants released by wastewater treatment plants at the scale of France. WATER RESEARCH 2021; 188:116524. [PMID: 33099267 DOI: 10.1016/j.watres.2020.116524] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Micropollutants emitted by Human activities represent a potential threat to our health and aquatic environment. Thousands of active substances are used and go to WWTP through wastewaters. During water treatment, incomplete elimination occurs. Effluents released to the environment still contain part of the micropollutants present in the influents. Here, we studied the potential impacts on Human health and aquatic environment of the release of 261 organic micropollutants and 25 inorganic micropollutants at the scale of France. Data were gathered from national surveys, reports, papers and PhD works. The USEtox ® model was used to assess potential impacts. The impacts on Human health were estimated for 94 organic and 15 inorganic micropollutants and on aquatic environment for 88 organic and 19 inorganic micropollutants highlighting lack of concentration and toxicological data in literature. Some Polycyclic Aromatic Hydrocarbons and pesticides as well as As and Zn showed highest potential impacts on Human health. Some pesticides, PCB 101, βE2, Al, Fe and Cu showed highest potential impacts on aquatic environment.
Collapse
Affiliation(s)
- Quentin Aemig
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France.
| | - Arnaud Hélias
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; ELSA, Research group for environmental life cycle sustainability assessment and ELSA-Pact industrial chair, Montpellier, France
| | - Dominique Patureau
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| |
Collapse
|
6
|
Gosset A, Polomé P, Perrodin Y. Ecotoxicological risk assessment of micropollutants from treated urban wastewater effluents for watercourses at a territorial scale: Application and comparison of two approaches. Int J Hyg Environ Health 2020; 224:113437. [DOI: 10.1016/j.ijheh.2019.113437] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022]
|
7
|
Application and Evaluation of Energy Conservation Technologies in Wastewater Treatment Plants. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High energy consumption is an important issue affecting the operation and development of wastewater treatment plants (WWTPs). This paper seeks energy-saving opportunities from three aspects: energy application, process optimization, and performance evaluation. Moreover, effective energy-saving can be achieved from the perspective of energy supply and recovery by using green energy technologies, including wastewater and sludge energy recovery technologies. System optimization and control is used to reduce unnecessary energy consumption in operation. Reasonable indexes and methods can help researchers evaluate the application value of energy-saving technology. Some demonstration WWTPs even can achieve energy self-sufficiency by using these energy conservation technologies. Besides, this paper introduces the challenges faced by the wastewater treatment industry and some emerging energy-saving technologies. The work can give engineers some suggestions about reducing energy consumption from comprehensive perspectives.
Collapse
|