1
|
Trevizani TH, Domit C, Santos MCDO, Figueira RCL. Bioaccumulation of heavy metals in estuaries in the southwest Atlantic Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26703-26717. [PMID: 36370314 DOI: 10.1007/s11356-022-23974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The southwestern Atlantic Ocean is home to highly productive regions, composed of a mosaic of both protected and anthropogenically impacted areas, including the estuaries of Paranaguá, Cananéia, and Santos. In this study, concentrations of metals were measured in sediments and in marine organisms, collected from these three Brazilian estuaries. The higher concentrations of metals in the sediments from the Santos estuary are due to having the greatest intensity of anthropogenic activities. There is bioaccumulation of As, Cu, Ni, and Pb in benthic invertebrates, As in fish, and Se and Zn in all studied trophic groups. Comparing the biota among estuaries, levels were highest for Cr, Cu, Pb, Se, and Zn in Paranaguá, As in Cananéia, and Ni in Santos; results justified due to anthropogenic activities, natural sources, and geochemical and hydrodynamics characteristics of each region that affect the bioavailability of metals. The results showed that these regions of the Atlantic present higher levels of metals in the biota than several coastal regions worldwide, and signal that food security may be compromised. Highlighting the need for better impact assessment, monitoring, and managing is deemed necessary as these regions are globally recognized as hotspots of biodiversity and are considered priority areas for conservation.
Collapse
Affiliation(s)
| | - Camila Domit
- Laboratório de Ecologia e Conservação - Centro de Estudos Do Mar, Universidade Federal Do Paraná, Pontal Do Paraná, Paraná, Brazil
| | | | | |
Collapse
|
2
|
Miao X, Liang J, Hao Y, Zhang W, Xie Y, Zhang H. The Influence of the Reduction in Clay Sediments in the Level of Metals Bioavailability-An Investigation in Liujiang River Basin after Wet Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14988. [PMID: 36429705 PMCID: PMC9690423 DOI: 10.3390/ijerph192214988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The seasonal elevation of metals' bioavailability can aggravate the threat of metal contamination in the aquatic environment. Nevertheless, their regulations have rarely been studied, particularly the connections between metals' transformation and environmental variations. Therefore, the catchment area of Liujiang River was taken as an example in this study, their seasonal variations in metals' bioavailability in sediments, especially during the wet season, was investigated to recover the processes associated with metals' speciations and multiple environmental factors. The results revealed that the concentration of metals in sediments were high overall in the wet season, but low in the dry season. The significantly reduced ratio of metals in non-residual forms was largely related to the overall reduction in metals in oxidizable and reducible forms after the wet season. However, the elevated BI indexes of most metals suggested their increased bioavailability in the dry season, which should be closely related to their corresponding elevations in carbonate-bound and exchangeable forms after the wet season. The variations in metals' bioavailability were primarily related to their predominance of exchangeable and carbonate-bound form. The higher correlation coefficients suggested the destabilization of the oxidizable form should be treated as a critical approach to the impact of metals' bioavailability after the wet season. In view of that, sediments' coarsening would pose the impacts on the destabilization of exogenous metals in sediments, the reduction in clay sediments should be responsible for the elevation of metals bioavailability after the wet season. Therefore, the monitoring of metals' bioavailability in sediments should be indispensable to prevent metal contamination from enlarging the scope of their threat to the aquatic environment of the river, especially after the wet season.
Collapse
Affiliation(s)
- Xiongyi Miao
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550001, China
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
| | - Jianping Liang
- Guilin Meteorological Bureau of Guangxi, Guilin 541000, China
| | - Yupei Hao
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Wanjun Zhang
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
| | - Yincai Xie
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
3
|
Yu Z, Liu E, Lin Q, Zhang Q, Yuan H, Zhang E, Shen J. Integrating indices based on different chemical extractions and bioaccumulation in Bellamya aeruginosa to assess metal pollution and ecological risk in sediment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113853. [PMID: 35809396 DOI: 10.1016/j.ecoenv.2022.113853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/17/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Various indices based on metal chemical data are used to evaluate pollution and ecological risk, but the consistency of the assessment results is usually unsatisfactory, and it is unclear if the ecological risk from sediment metals is accurately represented in in situ zoobenthos. Herein, the pollution and ecological risk associated with As, Cd, Cr, Cu, Ni, Pb and Zn in the sediments of two adjacent lakes (Datun (DT) and Changqiao (CQ)) were comprehensively evaluated by integrating metal concentrations, chemical forms and bioaccumulation in Bellamya aeruginosa (B. aeruginosa). The metal concentrations and chemical compositions varied widely in the sediments. Over 50% of the Cd, Pb and Zn in the sediments was present in bioavailable forms, followed by 28% of Cu and less than 25% of As, Cr and Ni. According to the enrichment factor (EF) and concentration enrichment ratio (CER) assessments, Cr and Ni were natural in origin, while the other metals were at minor to extremely high pollution levels, with average EFs of 1.5-77.6 and CERs of 1.1-113.4. The pollution levels for Cd, Cu and Pb from the EF and CER assessments were similar, while those for As and Zn were higher according to CER than EF (p = 0.05), likely due to the baseline underestimation associated with the potential diagenetic remobilization of bioavailable metals. The ecological risk index (Er), sediment quality guidelines (SQGs) and risk assessment code (RAC) showed a high eco-risk for Cd, while no similar risk was found for the other metals. By integrating risk indices with the chemical forms and pollution levels of metals, we deduced high eco-risks for As and Pb and moderate eco-risks for Cu and Zn in DT Lake and moderate eco-risks for As, Pb and Zn in CQ Lake. The other metals in the sediments of the two lakes presented low eco-risks. No significant positive correlations (p = 0.05) between metal accumulation in B. aeruginosa and the indices of pollution and eco-risk were observed except for the case of As, implying that measuring the metal concentrations in B. aeruginosa would not accurately characterize the metal pollution and ecological risk of sediments.
Collapse
Affiliation(s)
- Zhenzhen Yu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China.
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinghui Zhang
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China
| | - Hezhong Yuan
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ji Shen
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
4
|
Cai Y, Liang J, Zhang P, Wang Q, Wu Y, Ding Y, Wang H, Fu C, Sun J. Review on strategies of close-to-natural wetland restoration and a brief case plan for a typical wetland in northern China. CHEMOSPHERE 2021; 285:131534. [PMID: 34329151 DOI: 10.1016/j.chemosphere.2021.131534] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Wetlands play an important role in sustaining ecosystems on the earth, which regulate water resources, adjust local climate and produce food for human beings, etc. However, wetlands are facing huge challenges due to human activities and other natural evolution, such as area shrinkage, function weakening and biodiversity decrease, and so on, therefore, some wetlands need to be urgently restored. In this study, the main technology components of close-to-natural restoration of wetlands were summarized. The ecological water requirement and water resource allocation can be optimized for the water balance between social, economy and ecology, which is a key prerequisite for maintaining wetland ecosystem. The pollution of wetland sediments and soils can be assessed by various indicators to provide the scientific basis for natural restoration of wetland base, and suitable strategies should be taken according to the actual conditions of wetland bases. The hydrological connectivity in wetlands and with related water system can be numerically simulated to make the optimal plan for improvement of hydrological connectivity. The ecological restoration of wetlands with the synergetic function of plants, animals and microorganisms was summarized, to improve the quality of wetland water environment and maintain the ecosystem stability. Based on the wetland close-to-natural restoration strategies, a brief ecological restoration plan for a typical wetland, Zaozhadian Wetland, near Xiong'an New Area in the north China was proposed from water resource guarantee, base pollution management, hydrological connectivity improvement and biological restoration. The close-to-natural restoration shows more effective, sustainable and long-lasting and thus a practical prospect.
Collapse
Affiliation(s)
- Yajing Cai
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jinsong Liang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; School of Environmental Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404632, China.
| | - Qingyan Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Wu
- School of Environmental Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404632, China
| | - Yiran Ding
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjie Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Chuan Fu
- School of Environmental Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404632, China
| | - Jiajun Sun
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Díaz-de-Alba M, Granado-Castro MD, Galindo-Riaño MD, Casanueva-Marenco MJ. Comprehensive Assessment and Potential Ecological Risk of Trace Element Pollution (As, Ni, Co and Cr) in Aquatic Environmental Samples from an Industrialized Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7348. [PMID: 34299800 PMCID: PMC8304580 DOI: 10.3390/ijerph18147348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
A global assessment of arsenic (As), nickel (Ni), cobalt (Co) and chromium (Cr) was performed in environmental samples from an important industrial bay. Different fractions of water, sediments and tissues from four species of fish were analysed. Samples were collected from selected sampling sites during four consecutive samplings in spring and autumn seasons, in order to evaluate concentrations and their possible correlations among the aquatic compartments. While a higher availability of Cr and Ni was found in water, Co and As were the most available elements in sediments. In fish, the liver was the tissue with the highest proportion of As and Co, and gills showed the highest concentrations of Ni and Cr. Significance differences were observed among sites showing the pollution sources. In sediments, high correlations were found between total Co content and the most available fractions. Total Ni content highly correlated with the oxidisable fraction, while Cr total content tightly correlated with the least available fractions. Quality guideline values for sediments were frequently exceeded. In sediments and biota, concentrations were slightly higher than in other ecosystems, indicating that maritime, industrial and urban activities are affecting this type of ecosystem with great anthropogenic influence.
Collapse
Affiliation(s)
| | - M. D. Granado-Castro
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, Campus Río San Pedro, University of Cádiz, ES-11510 Puerto Real, Spain; (M.D.-d.-A.); (M.D.G.-R.); (M.J.C.-M.)
| | | | | |
Collapse
|
6
|
Cao Z, Wang L, Yang L, Yu J, Lv J, Meng M, Li G. Heavy metal pollution and the risk from tidal flat reclamation in coastal areas of Jiangsu, China. MARINE POLLUTION BULLETIN 2020; 158:111427. [PMID: 32753211 DOI: 10.1016/j.marpolbul.2020.111427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Tidal flat is an important supplementary land resource. However, increasing tidal flat reclamation in China has resulted in severe environmental issues. Using single-metal pollution index and multi-metal Nemerow pollution index, this study aimed to evaluate the risks of heavy metal pollution among different tidal flat use types, including fish farm, farmland, pastoral land, industrial land, forest and unutilized land. The results indicated that, concentrations of all elements were higher than geochemical values; Cd posed the highest risk, followed by As and Ni. Fish farm created the highest risk, followed by farmland. Every one year increase in fish farming led to increases in sediment concentrations of Cu, Cr, Ni, Pb, Zn and As by 0.73, 1.25, 0.68, 0.41, 1.22 and 0.20 mg.kg-1, respectively. Tidal flat reclamation in Jiangsu Province creates the risk of heavy metal pollution, and specific attention should be paid to the fodders and additives used in fish farming.
Collapse
Affiliation(s)
- Zhiqiang Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia Lv
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Institute of Environmental Health, Chinese Center for Diseases Control and Prevention, Beijing 100021, China
| | - Min Meng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guosheng Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Multiannual Trend of Micro-Pollutants in Sediments and Benthic Community Response in a Mediterranean Lagoon (Sacca di Goro, Italy). WATER 2020. [DOI: 10.3390/w12041074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long-term variations of ecological status in a Mediterranean coastal lagoon (Sacca di Goro, Northern Adriatic) were investigated, combining data on the concentration of surface sediment contaminants and on the structure of the macrobenthic community. The aim was to assess any amount of chemical contamination and check the response of the macrobenthic community to sediment contamination. Over the studied period, the sediments of the lagoon showed contamination by trace metals and organochlorine pesticides, with most of them exceeding the thresholds indicated by the Italian legislation in many samples. Contamination by polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) instead never exceeded the threshold. The ecological status based on the macrobenthic community, evaluated through biotic indices (AMBI and M-AMBI), fell below the Good/Moderate threshold in most samples. The results indicate a possible influence of toxic compounds in sediment on benthic organisms, but most of the variability shown by the macrobenthic community is probably due to other factors. The difficulty in establishing a cause/effect relationship was due to the co-occurrence and variability of various stressors (both natural and anthropogenic) and their interactions. The methods currently used for monitoring transitional waters thus seem insufficient to disentangle the effect of pollutants and other environmental variables on the benthos. Integrated approaches (e.g., bioaccumulation and toxicity tests) are thus needed for a more precise identification of the risk posed by a high concentration of pollutants in such environments.
Collapse
|
8
|
Dehghani Darmian M, Hashemi Monfared SA, Azizyan G, Snyder SA, Giesy JP. Assessment of tools for protection of quality of water: Uncontrollable discharges of pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:190-197. [PMID: 29885614 DOI: 10.1016/j.ecoenv.2018.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Selecting an appropriate crisis management plans during uncontrollable loading of pollution to water systems is crucial. In this research the quality of water resources against uncontrollable pollution is protected by use of suitable tools. Case study which was chosen in this investigation was a river-reservoir system. Analytical and numerical solutions of pollutant transport equation were considered as the simulation strategy to calculate the efficient tools to protect water quality. These practical instruments are dilution flow and a new tool called detention time which is proposed and simulated for the first time in this study. For uncontrollable pollution discharge which was approximately 130% of the river's assimilation capacity, as long as the duration of contact (Tc) was considered as a constraint, by releasing 30% of the base flow of the river from the upstream dilution reservoir, the unallowable pollution could be treated. Moreover, when the affected distance (Xc) was selected as a constraint, the required detention time that the rubber dam should detained the water to be treated was equal to 187% of the initial duration of contact.
Collapse
Affiliation(s)
| | | | - Gholamreza Azizyan
- Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Shane A Snyder
- Dept. of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, USA; National University of Singapore, NUS Environmental Research Institute (NERI), 5 A Engineering Drive 1, T-Lab Building, #02-01, Singapore 117411, Singapore.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicological Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|