1
|
Janjić GV, Marinović SR, Jadranin MB, Ajduković MJ, Đorđević IS, Petković-Benazzouz MM, Milutinović-Nikolić AD. Degradation of tartrazine by Oxone® in the presence of cobalt based catalyst supported on pillared montmorillonite - Efficient technology even in extreme conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121863. [PMID: 37225074 DOI: 10.1016/j.envpol.2023.121863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
The catalytic degradation of hazardous organic contaminants in industrial wastewater is a promising technology. Reactions of tartrazine, the synthetic yellow azo dye, with Oxone® in the presence of catalyst in strong acidic condition (pH 2), were detected by using UV-Vis spectroscopy. In order to extend the applicability profile of Co-supported Al-pillared montmorillonite catalyst an investigation of Oxone® induced reactions were performed in extreme acidic environment. The products of the reactions were identified by liquid chromatography-mass spectrometry (LC-MS). Along with the catalytic decomposition of tartrazine induced by radical attack (confirmed as unique reaction path under neutral and alkaline conditions), the formation of tartrazine derivatives by reaction of nucleophilic addition was also detected. The presence of derivatives under acidic conditions slowed down the hydrolysis of tartrazine diazo bond in comparison to the reactions in neutral environment. Nevertheless, the reaction in acidic conditions (pH 2) is faster than the one conducted in alkaline conditions (pH 11). Theoretical calculations were used to complete and clarify the mechanisms of tartrazine derivatization and degradation, as well as to predict the UV-Vis spectra of compounds which could serve as predictors of certain reaction phases. ECOSAR program, used to estimate toxicological profile of compounds to aquatic animals, indicated an increase in the harmfulness of the compounds identified by LC-MS as degradation products from the reaction conducted for 240min. It could be concluded that an intensification of the process parameters (higher concentration of Oxone®, higher catalyst loading, increased reaction time, etc.) is needed in order to obtain only biodegradable products.
Collapse
Affiliation(s)
- Goran V Janjić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Sanja R Marinović
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Milka B Jadranin
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Marija J Ajduković
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Ivana S Đorđević
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | | | | |
Collapse
|
2
|
Liu X, Huang D, Lai C, Qin L, Liu S, Zhang M, Fu Y. Single cobalt atom anchored on carbon nitride with cobalt nitrogen/oxygen active sites for efficient Fenton-like catalysis. J Colloid Interface Sci 2023; 629:417-427. [PMID: 36166968 DOI: 10.1016/j.jcis.2022.08.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
As one of the tactics to produce reactive oxygen radicals, the Fenton-like process has been widely developed to solve the increasingly severe problem of environmental pollution. However, establishing advanced mediators with sufficient stability and activity for practical application is still a long-term objective. Herein, we proposed a facile strategy through polymeric carbon nitride (pCN) in-situ growth single cobalt atom for efficient degradation of antibiotics by peroxymonosulfate (PMS) activation. X-ray absorption spectroscopy and high-angle annular dark field-scanning transmission electron microscopy prove the single cobalt atoms are successfully anchored on pCN. Moreover, extended X-ray absorption fine structure analysis shows that the embedded cobalt atoms are constructed by covalently forming the Co-N bond and Co-O bond, which endow the single-atom cobalt catalyst with high stability. Experiment results indicate that the prepared single-atom cobalt catalyst can be used for efficient PMS activation catalytic degradation of tetracycline with a high degradation rate of 98.7 % in 60 min. And the CoN/O sites with single cobalt atoms serve as the active site for generating active radical species (singlet oxygen) from PMS activation. This work may expand the strategy for constructing single-atom catalysts and extend its application for the advanced oxidation process.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, Guangdong, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China.
| | - Lei Qin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| |
Collapse
|
3
|
Marinović S, Mudrinić T, Milovanović B, Jović-Jovičić N, Ajduković M, Banković P, Milutinović-Nikolić A. The influence of cobalt loading in cobalt-supported aluminum pillared montmorillonite on the kinetic of Oxone® activated oxidative degradation of tartrazine. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Hofmann-MOF derived nanoball assembled by FeNi alloy confined in carbon nanotubes as a magnetic catalyst for activating peroxydisulfate to degrade an ionic liquid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Tan J, Xu C, Zhang X, Huang Y. MOFs-derived defect carbon encapsulated magnetic metallic Co nanoparticles capable of efficiently activating PMS to rapidly degrade dyes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhang XQ, Chen FM, Wen Q, Zhou CC, He X, Li Y, Liu HF. Zn-based coordination polymers with tricarboxylic acid ligand: fluorescence sensor toward Fe3 and MnO4−. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Syntheses, crystal structures, and fluorescent properties of three coordination polymers with 5-sulfoisophthalic acid anion and 4-phenylpyridine. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211055089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three coordination polymers—{[Ag2(SIP)(4-pp)]·[Ag(4-pp)2]·H2O}n, [Pb4(SIP)2( μ3-OH)2(H2O)2]n, and {[Zn2(SIP)2(4-pp)4][Zn(4-pp)2(H2O)4]·4H2O}n (SIP = 5-sulfoisophthalic acid anion, 4-pp = 4-phenylpyridine)—are constructed under hydrothermal or solvothermal conditions using sodium m-phthalate 5-sulfonate (NaH2SIP) and 4-phenylpyridine as ligands. The structures of the three complexes are determined by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analyses, Fourier-transform infrared analysis, and photoluminescence. The fluorescent properties of the complexes in the solid state are investigated at room temperature, and the results indicate that they all show photoluminescent properties.
Collapse
|
8
|
Hou J, He X, Zhang S, Yu J, Feng M, Li X. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145311. [PMID: 33736411 DOI: 10.1016/j.scitotenv.2021.145311] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted increasing attention for the degradation of organic contaminants in water. The oxidants of SR-AOPs could be activated to generate different kinds of reactive oxygen species (ROS, e.g., hydroxyl radicals (OH), sulfate radicals (SO4-), singlet oxygen (1O2), and superoxide radicals (O2-)) by various catalysts. As one of the promising catalysts, cobalt-based catalysts have been extensively investigated in catalytic activity and stability during water remediation. This article mainly summarizes recent advances in preparation and applications of cobalt-based catalysts on peroxydisulfate (PDS)/peroxymonosulfate (PMS) activation since 2016. The review covers the development of homogeneous cobalt ions, cobalt oxides, supported cobalt composites, and cobalt-based mixed metal oxides for PDS/PMS activation, especially for the latest nanocomposites such as cobalt-based metal-organic frameworks and single-atom catalysts. This article also discussed the activation mechanisms and the influencing factors of different cobalt-based catalysts for activating PDS/PMS. Finally, the future perspectives on the challenges and applications of cobalt-based catalysts are presented at the end of this paper.
Collapse
Affiliation(s)
- Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiudan He
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shengqi Zhang
- College of Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jialin Yu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingbao Feng
- College of Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Guan ZY, Kwon E, Lee J, Lin YF, Lin KYA. Electrospun cobalt ferrite nanofiber as a magnetic and effective heterogeneous catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Alizadeh-Bavieh M, Nobakht V, Sedaghat T, Carlucci L, Mercandelli P, Taghavi M. Selective cationic dye sorption in water by a two-dimensional zinc-carboxylate coordination polymer and its melamine-formaldehyde foam composite. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Zhang Y, Zhang BT, Teng Y, Zhao J, Kuang L, Sun X. Carbon nanofibers supported Co/Ag bimetallic nanoparticles for heterogeneous activation of peroxymonosulfate and efficient oxidation of amoxicillin. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123290. [PMID: 32947699 DOI: 10.1016/j.jhazmat.2020.123290] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
The carbon nanofibers supported Co/Ag bimetallic nanoparticles (Co@CNFs-Ag) were synthesized for heterogeneous activation of peroxymonosulfate and efficient oxidation of amoxicillin in this work. Co nanoparticles with a diameter of 20-30 nm were encapsulated in the carbon nanofibers to reduce the loss of Co during the preparation and catalysis processes. Ag nanoparticles (5-10 nm) were distributed on the surface of CNFs. Complete removal of amoxicillin could be achieved within 30 min by Co@CNFs-Ag activated peroxymonosulfate system. The high catalytic performance could be attributed to the large aspect ratio (> 10,000) of the carbon nanofibers and the mutual reaction of the Co/Ag bimetallic nanoparticles with peroxymonosulfate. The optimal mass ratio of oxidant and catalyst was 10 and the optimized pH was 7. Co@CNFs-Ag exhibited stable catalytic activity and minimal metal leakage over a period of 5 cycles. The activation energy of the system was 29.51 kJ/mol derived by the Arrhenius equation. Both hydroxyl and sulfate radicals contributed to amoxicillin degradation and the latter were key to the degradation. Finally, the reaction mechanism of bimetallic synergistic catalytic system and possible amoxicillin degradation pathways were elucidated. The results of this study provide novel insights for application of sulfate radical-based advanced oxidation processes in environmental remediation.
Collapse
Affiliation(s)
- Yang Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Juanjuan Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lulu Kuang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | | |
Collapse
|
12
|
Chen M, Wang N, Zhu L. Single-atom dispersed Co-N-C: A novel adsorption-catalysis bifunctional material for rapid removing bisphenol A. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Liu Y, Zhou X, Wang M, Zhang M, Shen R, Zhang Y, Hu J, Wu G. Co 2+ anchored on surface-functionalized PET non-woven fabric and used as high efficiency monoatom-like catalyst for activating Oxone in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134286. [PMID: 31677462 DOI: 10.1016/j.scitotenv.2019.134286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Fenton-like processes have emerged as most promising techniques for generating reactive oxygen-containing radicals to deal with increasing levels of environmental pollution. Developing novel catalysts with simple manufacturing requirements, excellent activity levels, and stability remains a long-term goal in terms of practical application. So herein, a new polyethylene terephthalate (PET) non-woven fabric based composite catalyst has been fabricated, using radiation-induced graft polymerization of a functionalized group to chelate Co2+ ions as heterogeneous catalysts in peroxymonosulfate (Oxone) activation. Several impact factors, including catalyst dosage, Oxone concentration, reaction temperature, pH value, Co2+ precipitation ratio (of Co@PET at different pH values), and highly concentrated NaCl have been investigated here. Notably, Co@PET has shown the lowest activation energy of any reported catalyst, for degrading RhB by activating Oxone. Interestingly, as experimental RhB and Oxone solutions were passed through single Co@PET sheets, the RhB was decomposed into a colorless solution in the penetration process. Based on radical trapping and quenching experiments, a channel was determined to dominate RhB degradation, and furthermore, Co@PET could be re-used for RhB degradation by activating Oxone. These results showed that Co@PET effectively provided improved Fenton-like catalytic performance and stability, and was suitable for practical applications.
Collapse
Affiliation(s)
- Yinjie Liu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiying Zhou
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Minglei Wang
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maojiang Zhang
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; School of Physical science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Rongfang Shen
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China
| | - Yumei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Jiangtao Hu
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China.
| | - Guozhong Wu
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; School of Physical science and Technology, ShanghaiTech University, Shanghai 200031, China.
| |
Collapse
|
14
|
Long Y, Bu S, Huang Y, Shao Y, Xiao L, Shi X. N-doped hierarchically porous carbon for highly efficient metal-free catalytic activation of peroxymonosulfate in water: A non-radical mechanism. CHEMOSPHERE 2019; 216:545-555. [PMID: 30388690 DOI: 10.1016/j.chemosphere.2018.10.175] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/29/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Metal-free carbo-catalyst has recently emerged as a promising candidate as a substituent for tradition-metal based heterogeneous catalyst for catalytic activation of peroxymonosulfate (PMS). However, most reported carbo-catalysts suffer from low catalytic efficiency and poor stability, thus a high-performance catalyst is urgently desired. In this study, a novel carbo-catalyst (NHPC-800), prepared by using tannic acid and dicyandiamide as renewable carbon/nitrogen feedstocks via a simple pyrolysis route, is reported as an activator of PMS with highly efficient catalytic ability and stability. The as-prepared NHPC-800 possesses as high as 22.4 atom% of nitrogen dopants and a hierarchically porous structure with abundant meso/macropores, accompanied by the abundant edges and wrinkles, which supply sufficient exposed catalytically active centers and fast electrons/mass transportations. Using rhodamine B as a model pollutant, the NHPC-800 shows a highly efficient catalytic ability which is superior to most reported carbo-catalysts and even some state-of-the-art metal catalysts. Based on competitive quenching experiments and electron paramagnetic resonance (EPR) results, a non-radical pathway involving the generation of 1O2 is responsible for the degradation of pollutants. Given that the NHPC-800 shows good recycling performance and strong resistance to adventitious interference such as anions and natural organic matters, we believe NHPC-800 can be a promising candidate for practical applications, and this study can provide inspirations for the further development of highly efficient carbo-catalysts.
Collapse
Affiliation(s)
- Yangke Long
- Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, PR China
| | - Sifan Bu
- Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, PR China
| | - Yixuan Huang
- Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, PR China
| | - Yueqi Shao
- Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, PR China
| | - Ling Xiao
- Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, PR China.
| | - Xiaowen Shi
- Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
15
|
Darvishi Cheshmeh Soltani R, Mashayekhi M, Jorfi S, Khataee A, Ghanadzadeh MJ, Sillanpää M. Implementation of martite nanoparticles prepared through planetary ball milling as a heterogeneous activator of oxone for degradation of tetracycline antibiotic: Ultrasound and peroxy-enhancement. CHEMOSPHERE 2018; 210:699-708. [PMID: 30032000 DOI: 10.1016/j.chemosphere.2018.07.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/07/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to employ martite nanoparticles synthesized through planetary ball milling instead of conventional sources of iron for the activation of Oxone in order to decompose tetracycline (TC) antibiotic in the aquatic phase. Accordingly, martite nanoparticles-activated Oxone exhibited a remarkable improvement in degrading TC molecules up to 87%. The results indicated an increased decomposition rate of TC with increasing Oxone concentration, martite nanoparticles dosage, and initial pH. In the absence of ultrasound, the decomposition rate of TC was 0.0481 min-1 within 30 min, while the implementation of ultrasound at 320 W and addition of hydrogen peroxide at 40 mM led to increase in the decomposition rate up to 0.0770 and 0.0907 min-1, respectively. The presence of carbonate and even persulfate ions suppressed the decomposition rate. Inversely, the addition of chloride and carbon tetrachloride enhanced the reactor performance in terms of TC degradation. Within four consecutive experimental runs, only 10.8% was dropped in the decomposition rate, indicating the appropriate reusability potential of martite nanoparticles. The results confirmed the appropriate ability of the treatment process in degrading and mineralizing the target pollutant but a longer exposure time is required for an efficient mineralization.
Collapse
Affiliation(s)
| | - Masumeh Mashayekhi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, Mersin 10, 99138, Nicosia, North Cyprus, Turkey.
| | - Mohammad-Javad Ghanadzadeh
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mika Sillanpää
- Lappeenranta University of Technology, School of Engineering Science, Laboratory of Green Chemistry, Sammonkatu 12, FI-50130 Mikkeli, Finland; Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
16
|
Marković M, Marinović S, Mudrinić T, Mojović Z, Ajduković M, Milutinović-Nikolić A, Banković P. Cobalt impregnated pillared montmorillonite in the peroxymonosulfate induced catalytic oxidation of tartrazine. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1466-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Tamboli AH, Gosavi SW, Terashima C, Fujishima A, Pawar AA, Kim H. Synthesis of cerium and nickel doped titanium nanofibers for hydrolysis of sodium borohydride. CHEMOSPHERE 2018; 202:669-676. [PMID: 29602099 DOI: 10.1016/j.chemosphere.2018.03.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
A recyclable titanium nanofibers, doped with cerium and nickel doped was successfully synthesized by using sol-gel and electrospinning method for hydrogen generation from alkali free hydrolysis of NaBH4. The resultant nanocomposite was characterized to find out the structural and physical-chemical properties by a series of analytical techniques such as FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscope), EDX (energy-dispersive X-ray spectroscopy),N2 adsorption-desorption and BET (Brunauer-Emmett-Teller), etc. The results revealed that cerium and nickel nanoparticles were homogeneously distributed on the surface of the TiO2 nanofibers due to having similar oxidation state and atomic radium of TiO2nanofibers with CeO2 and NiO for the effective immobilization of metal ions. The NiO doped catalyst showed superior catalytic performance towards the hydrolysis reaction of NaBH4 at room temperature. These catalysts have ability to produce 305 mL of H2 within the time of 160 min at room temperature. Additionally, reusability test revealed that the catalyst is active even after five runs of hydrolytic reaction, implying the as-prepared NiO doped TiO2 nanofibers could be considered as a potential candidate catalyst for portable hydrogen fuel system such as PEMFC (proton exchange membrane fuel cells).
Collapse
Affiliation(s)
- Ashif H Tamboli
- Department of Energy Science and Technology, Smart Living Innovation Technology Center / CCS Innovation Technology Center, Myongji University, 116 Myongji-ro Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea; Department of Physics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411 007, India
| | - S W Gosavi
- Department of Physics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411 007, India
| | - Chiaki Terashima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Atul A Pawar
- Department of Energy Science and Technology, Smart Living Innovation Technology Center / CCS Innovation Technology Center, Myongji University, 116 Myongji-ro Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Smart Living Innovation Technology Center / CCS Innovation Technology Center, Myongji University, 116 Myongji-ro Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|