1
|
Zhang C, Wang Y, Huang F, Zhang Y, Huang M, Liu H, Liu Y, Wang Q, Liu C, Angwa L, Gao Y, Sun D, Jiang Y. Novel mechanism of fluoride induced cardiovascular system injury by regulating p53/miR200c-3p during endothelial dysfunction. ENVIRONMENTAL RESEARCH 2025; 271:121102. [PMID: 39952459 DOI: 10.1016/j.envres.2025.121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND The impairment of the cardiovascular system by fluoride has attracted public health concern, and its toxic effects on ECs have garnered extensive research attention. However, epidemiological clues of fluoride induced cardiovascular injury are limited. The function of ECs is crucial for the early diagnosis of CVD, yet mechanisms through which fluoride disrupts endothelial function are still unclear. PURPOSE To investigate the relationship between fluoride exposure and hypertension in population by epidemiological investigation. To explore the potential mechanism of functional injury of ECs induced by fluoride. RESULT Epidemiological studies have shown that the risk of hypertension in study population increased with the increased of urinary fluoride concentration [OR = 1.565, 95%CI (1.143, 2.142)]. In rat model with fluorosis alongside a model of fluoride induced ECs injury, NaF led to anti-adhesion of ECs and barrier dysfunction. Notably, the expression levels of eNOS and NO were found to be decreased, while the expression levels of ACE, vWF, ICAM-1, VCAM-1 and ET-1 were elevated. Our findings also indicated that NaF induced oxidative stress in ECs, evidenced by significant increased in ROS and MDA levels and decreased protein expression of GPx4 and SOD activity. It was further found that NaF activated the p53/miR-200c-3p signaling axis via ROS, leading to endothelial dysfunction. CONCLUSION This study found that fluoride exposure was a risk factor for hypertension. In addition, fluoride could cause ECs dysfunction by inducing oxidative stress and activating p53/miR-200c-3p. These findings were helpful to further understand the mechanism of fluoride induced cardiovascular system injury and provide a theoretical basis for fluoride induced cardiovascular system injury.
Collapse
Affiliation(s)
- Chao Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Yue Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Fengya Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Yaoyuan Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Mingyue Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Hui Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Yunzhu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Qiaoyu Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Chang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Linet Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; United State University-Africa, Department of Phamaceutics, Pharmacy Practice, and Public Health, People's Republic of China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China.
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
2
|
Zhang L, Tian J, Li N, Wang Y, Jin Y, Bian H, Xiong M, Zhang Z, Meng J, Han Z, Duan S. Exosomal miRNA reprogramming in pyroptotic macrophage drives silica-induced fibroblast-to-myofibroblast transition and pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136629. [PMID: 39603130 DOI: 10.1016/j.jhazmat.2024.136629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Silicosis is an occupational lung disease characterized by progressive pulmonary fibrosis, threatening millions of occupational workers worldwide due to a lack of effective treatments. To unveil mechanisms underlying silica-induced pulmonary fibrosis, we established in vitro and in vivo silicosis models, then employed scRNA-sequencing to profile the cellular landscape of lung tissues followed by characterization of macrophage pyroptosis and exosome therefrom in driving fibroblast-to-myofibroblast-transdifferentiation. Using hyperspectral imaging and artificial intelligence-powered pathological recognition, we found that silica nanoparticle (SiNP) triggered progressive lung fibrosis in vivo, and scRNA-seq implicated interstitial macrophage as pivotal regulators for fibroblast transdifferentiation. Mechanistically, SiNPs were demonstrated to induce macrophage pyroptosis and liberate exosomes, which upregulated pro-fibrotic markers and promoted myofibroblast transition. Subsequent high-throughput miR-sequencing revealed distinct exosomal miRNA signatures that modulated TGF-β signaling and induced fibroblast transdifferentiation. Lastly, we administered these exosomes into silicotic mice and found exacerbated inflammatory infiltration and pulmonary fibrosis. In conclusion, SiNPs exposure caused the remodeling of exosomal miRNAs by inducing interstitial macrophage pyroptosis, and exosomes derived from pyroptotic macrophage fuel fibroblast transdifferentiation by creating a pro-fibrotic microenvironment and promoting silicotic fibrosis. These findings provide critical insights into the pathogenesis of silicosis and the formulation of emerging therapeutic strategies.
Collapse
Affiliation(s)
- Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China
| | - Yongheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hongying Bian
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Zitong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China; School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiahua Meng
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Zhengpu Han
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China.
| |
Collapse
|
3
|
Li A, Wang J, Meng X, Ma X, Liu Y, Li H, Mo Z, Zhang R, Wu L, Yan S, Campoverde PFC, Zafar G, Ma Y, Que W, Li Z, Wang T, Tarnue KF, Pei J. The potential of urinary miR-200c-3p as a biomarker of fluorosis in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117644. [PMID: 39755087 DOI: 10.1016/j.ecoenv.2024.117644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Fluorine is a strong oxidizing element and excessive intake can have harmful effects, particularly on the body's calcified tissues. Recent studies have demonstrated a link between miRNA and fluorosis. This study aimed to evaluate the time-dose-effect relationship of miR-200c-3p in plasma, urine and cartilage of rats with drinking water fluorosis, and to explore its potential as a biomarker. Analyses were conducted using Generalised linear models, Restricted cubic spline, Spearman correlation analysis, and Receiver operating characteristic curve (ROC). Results indicated that both fluoride exposure time and dose had significantly affected on urinary and cartilage miR-200c-3p expression in rats, while plasma miR-200c-3p expression was only influenced by fluoride exposure time. Restricted cubic spline plots revealed that urinary miR-200c-3p was non-linearly and positively correlated with serum fluoride, urinary fluoride, dental fluorosis, and Mankin score groups, and also linearly and positively correlated with cartilage fluoride. Regression analysis showed that for each unit increase in urinary miR-200c-3p, the likelihood of dental fluorosis increased by 1.300 times, and in the Mankin score groups, the likelihood increased by 1.251 times. The ROC curves demonstrated that urinary miR-200c-3p had high sensitivity and specificity in diagnosing dental and skeletal fluorosis. Blood and cartilage miR-200c-3p showed weaker diagnostic efficacy. In summary, fluoride has different effects on the expression levels of miRNA-200c in various biological samples of rats, and miRNAs in urine demonstrate potential as biomarkers for fluorosis.
Collapse
Affiliation(s)
- Ailin Li
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Jian Wang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Xinyue Meng
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Xu Ma
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Ying Liu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Hanying Li
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Zhe Mo
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Rui Zhang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Lei Wu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Shirui Yan
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Paula Fiorella Chacon Campoverde
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Gazala Zafar
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Yongzheng Ma
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Wenjun Que
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Zhe Li
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Tuo Wang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Korto Fatti Tarnue
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Junrui Pei
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|
4
|
Manoharan S, Ashfaq SS, Perumal E. MicroRNAs in fluorosis pathogenesis: impact on dental, skeletal, and soft tissues. Arch Toxicol 2024; 98:3913-3932. [PMID: 39269498 DOI: 10.1007/s00204-024-03853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Fluoride-induced toxicity (fluorosis) poses a significant health concern globally, affecting millions of individuals. Understanding the molecular mechanisms underlying fluorosis, particularly the role of microRNAs (miRNAs), is crucial for developing effective preventive and therapeutic strategies. This review explores the pivotal role of miRNAs in the pathogenesis of fluorosis, particularly examining its impact on both hard (skeletal and dental) and soft (brain, liver, kidney, heart, and reproductive organs) tissues. Skeletal fluorosis manifests as abnormal bone mineralization and structure, while dental fluorosis affects enamel formation. In vitro and in vivo studies suggest a significant involvement of miRNAs in the progression of these conditions. For skeletal fluorosis, miR-124, miR-155, and miR-200c-3p have been identified as key regulators, while miR-296-5p and miR-214-3p are implicated in dental fluorosis. Moreover, soft tissue fluorosis encompasses a spectrum of adverse effects on various organs, including the brain, liver, kidneys, heart, and reproductive system. In soft tissues, miRNAs, such as miR-124, miR-200c-3p, miR-132, and miR-34b-5p, have been linked to cellular damage and dysfunction. Notably, miRNAs exert their effects through the modulation of critical pathways involved in fluorosis pathology, including Wnt signaling, apoptosis, cell cycle, and autophagy. Understanding the regulatory roles of miRNAs in fluorosis pathogenesis holds promise for identifying biomarkers and therapeutic targets. However, further research is needed to elucidate the molecular mechanisms underlying miRNA-mediated responses to fluoride exposure. Integration of miRNA research into fluorosis studies could facilitate the development of diagnostic tools and therapeutic interventions, thus mitigating the detrimental effects of fluorosis on both hard and soft tissues.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Syed Saadullah Ashfaq
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
5
|
Yang L, Li Q, Wang S, Ji Y, Ma X, Qin M, Gao Y, Yang Y. Sirtuin 3-activated superoxide dismutase 2 mediates fluoride-induced osteoblastic differentiation in vitro and in vivo by down-regulating reactive oxygen species. Arch Toxicol 2024; 98:3351-3363. [PMID: 39012504 DOI: 10.1007/s00204-024-03819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Skeletal fluorosis is a chronic metabolic bone disease caused by long-term excessive fluoride intake. Abnormal differentiation of osteoblasts plays an important role in disease progression. Research on the mechanism of fluoride-mediated bone differentiation is necessary for the prevention and treatment of skeletal fluorosis. In the present study, a rat model of fluorosis was established by exposing it to drinking water containing 50 mg/L F-. We found that fluoride promoted Runt-related transcription factor 2 (RUNX2) as well as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) expression in osteoblasts of rat bone tissue. In vitro, we also found that 4 mg/L sodium fluoride promoted osteogenesis-related indicators as well as SOD2 and SIRT3 expression in MG-63 and Saos-2 cells. In addition, we unexpectedly discovered that fluoride suppressed the levels of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS) in osteoblasts. When SOD2 or SIRT3 was inhibited in MG-63 cells, fluoride-decreased ROS and mtROS were alleviated, which in turn inhibited fluoride-promoted osteogenic differentiation. In conclusion, our results suggest that SIRT3/SOD2 mediates fluoride-promoted osteoblastic differentiation by down-regulating reactive oxygen species.
Collapse
Affiliation(s)
- Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Qiao Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Sa Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yi Ji
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xinbo Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ming Qin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
6
|
Chen T, Gu Y, Bai GH, Liu X, Chen B, Fan Q, Liu JG, Tian Y. MiR-1a-3p Inhibits Apoptosis in Fluoride-exposed LS8 Cells by Targeting Map3k1. Biol Trace Elem Res 2024; 202:2720-2729. [PMID: 37782397 PMCID: PMC11052812 DOI: 10.1007/s12011-023-03869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Dental fluorosis is a common chemical disease. It is currently unclear how fluorosis occurs at the molecular level. We used miRNA-seq to look at the differences between miRNAs in the cell line of ameloblasts LS8 that had been treated with 3.2 mmol/L NaF. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. miR-1a-3p levels were significantly lower in mouse LS8 cells treated with 3.2 mmol/L NaF, and miR-1a-3p-targeted genes were significantly enriched in the MAPK pathway. LS8 cells were divided into four groups: control, NaF, NaF+miR-1a-3p mimics, and NaF+miR-1a-3p mimics normal control groups. Cellular morphology was observed by an inverted microscope, and the proliferation activity of LS8 cells was assessed by Cell Counting Kit-8 (CCK-8). Using the real-time quantitative polymerase chain reaction (RT-qPCR), transcription levels of miR-1a-3p and Map3k1 were detected. The expressions of Bax, Bcl-2, Map3k1, p38MAPK, ERK1/2, p-p38MAPK, and p-ERK1/2 were measured by Western blot. After bioinformatics analysis, we used a luciferase reporter assay (LRA) to validate the target of miR-1a-3p, showing that miR-1a-3p could inhibit apoptosis while increasing proliferation in fluoride-exposed LS8 cells. Generally, miR-1a-3p might directly inhibit Map3k1, reduce MAPK signal pathway activation, and promote phosphorylation. Thus, our findings revealed that the interaction of miR-1a-3p with its target gene Map3k1 and MAPK signal pathway might decrease the apoptosis of LS8 cells treated with 3.2 mmol/L NaF.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
- Loudi Central Hospital, Loudi, China
| | - Yu Gu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Guo-Hui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xia Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Bin Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Qin Fan
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Jian-Guo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Yuan Tian
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
7
|
Li Y, Zhao Q, Yao J, Lv C, Gao Y, Sun D, Yang Y. MiR-96-5p Suppresses Progression of Arsenite-Induced Human Keratinocyte Proliferation and Malignant Transformation by Targeting Denticleless E3 Ubiquitin Protein Ligase Homolog. TOXICS 2023; 11:978. [PMID: 38133379 PMCID: PMC10747408 DOI: 10.3390/toxics11120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 μmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 μmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 μmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Yan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Qiaoshi Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
- Institution of Environmentally Related Diseases, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
8
|
Qin M, Gao Y, Zhang M, Wu J, Liu Y, Jiang Y, Zhang X, Wang X, Yang Y, Gao Y. Association between ADAMTS14_rs4747096 gene polymorphism and bone mineral density of Chinese Han population residing in fluorine exposed areas in ShanXi Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106059-106067. [PMID: 37725302 DOI: 10.1007/s11356-023-29698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
This study aimed to investigate the effects of fluorine and ADAMTS14_rs4747096 on bone mineral density (BMD). The survey was explored in a cross-sectional case-control study conducted in Shanxi, China. The BMD was measured by an ultrasonic bone mineral density instrument. The urine fluoride concentration was detected using the fluoride ion electrode. ADAMTS14_rs4747096 polymorphism was examined by multiplex polymerase chain reaction (PCR) and sequencing. The multinomial logistic regressions found that the urine fluoride was a risk factor for osteopenia (OR = 1.379, 95% CI: 1.127-1.687, P = 0.0018), osteoporosis (OR = 1.480, 95% CI: 1.1138-1.926, P = 0.0035), and rs4747096 AG + GG genotype increased the risk of osteoporosis (OR = 2.017, 95% CI: 1.208-3.369, P = 0.0073). In addition, the interaction between urine fluoride and rs4747096 polymorphism on the risk of decreased BMD also was observed. The study suggests that fluoride exposure and mutation G allele in ADAMTS14_rs4747096 may be risk factors for the decrease of BMD. And there is an interaction between the two influencing factors.
Collapse
Affiliation(s)
- Ming Qin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yue Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Junhua Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Xiaodi Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Xin Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China.
| |
Collapse
|
9
|
Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023; 13:1006. [PMID: 37371586 DOI: 10.3390/biom13061006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ekaterina V Silina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor A Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg N Zaitsev
- Department of Physical Education, Yaroslavl State Technical University, 150023 Yaroslavl, Russia
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
10
|
Carvalho AL, Brooks DJ, Barlow D, Langlais AL, Morrill B, Houseknecht KL, Bouxsein ML, Lian JB, King T, Farina NH, Motyl KJ. Sustained Morphine Delivery Suppresses Bone Formation and Alters Metabolic and Circulating miRNA Profiles in Male C57BL/6J Mice. J Bone Miner Res 2022; 37:2226-2243. [PMID: 36054037 PMCID: PMC9712245 DOI: 10.1002/jbmr.4690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/30/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022]
Abstract
Opioid use is detrimental to bone health, causing both indirect and direct effects on bone turnover. Although the mechanisms of these effects are not entirely clear, recent studies have linked chronic opioid use to alterations in circulating miRNAs. Here, we developed a model of opioid-induced bone loss to understand bone turnover and identify candidate miRNA-mediated regulatory mechanisms. We evaluated the effects of sustained morphine treatment on male and female C57BL/6J mice by treating with vehicle (0.9% saline) or morphine (17 mg/kg) using subcutaneous osmotic minipumps for 25 days. Morphine-treated mice had higher energy expenditure and respiratory quotient, indicating a shift toward carbohydrate metabolism. Micro-computed tomography (μCT) analysis indicated a sex difference in the bone outcome, where male mice treated with morphine had reduced trabecular bone volume fraction (Tb.BV/TV) (15%) and trabecular bone mineral density (BMD) (14%) in the distal femur compared with vehicle. Conversely, bone microarchitecture was not changed in females after morphine treatment. Histomorphometric analysis demonstrated that in males, morphine reduced bone formation rate compared with vehicle, but osteoclast parameters were not different. Furthermore, morphine reduced bone formation marker gene expression in the tibia of males (Bglap and Dmp1). Circulating miRNA profile changes were evident in males, with 14 differentially expressed miRNAs associated with morphine treatment compared with two differentially expressed miRNAs in females. In males, target analysis indicated hypoxia-inducible factor (HIF) signaling pathway was targeted by miR-223-3p and fatty acid metabolism by miR-484, -223-3p, and -328-3p. Consequently, expression of miR-223-3p targets, including Igf1r and Stat3, was lower in morphine-treated bone. In summary, we have established a model where morphine leads to a lower trabecular bone formation in males and identified potential mediating miRNAs. Understanding the sex-specific mechanisms of bone loss from opioids will be important for improving management of the adverse effects of opioids on the skeleton. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Adriana Lelis Carvalho
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Daniel J Brooks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deborah Barlow
- Department of Pharmacology, University of New England, Biddeford, ME, USA
| | - Audrie L. Langlais
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Breanna Morrill
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Karen L. Houseknecht
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA
- Larner College of Medicine, University of Vermont Cancer Center, Burlington, VT, USA
- Northern New England Clinical and Translational Research Network, MaineHealth, Portland, ME
| | - Tamara King
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Nicholas H Farina
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA
- Larner College of Medicine, University of Vermont Cancer Center, Burlington, VT, USA
- Northern New England Clinical and Translational Research Network, MaineHealth, Portland, ME
| | - Katherine J Motyl
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Northern New England Clinical and Translational Research Network, MaineHealth, Portland, ME
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Tufts University School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
11
|
Balasubramanian S, Perumal E. A systematic review on fluoride-induced epigenetic toxicity in mammals. Crit Rev Toxicol 2022; 52:449-468. [PMID: 36422650 DOI: 10.1080/10408444.2022.2122771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluoride, one of the global groundwater contaminants, is ubiquitous in our day-to-day life from various natural and anthropogenic sources. Numerous in vitro, in vivo, and epidemiological studies are conducted to understand the effect of fluoride on biological systems. A low concentration of fluoride is reported to increase oral health, whereas chronic exposure to higher concentrations causes fluoride toxicity (fluorosis). It includes dental fluorosis, skeletal fluorosis, and fluoride toxicity in soft tissues. The mechanism of fluoride toxicity has been reviewed extensively. However, epigenetic regulation in fluoride toxicity has not been reviewed. This systematic review summarizes the current knowledge regarding fluoride-induced epigenetic toxicity in the in vitro, in vivo, and epidemiological studies in mammalian systems. We examined four databases for the association between epigenetics and fluoride exposure. Out of 932 articles (as of 31 March 2022), 39 met our inclusion criteria. Most of the studies focused on different genes, and overall, preliminary evidence for epigenetic regulation of fluoride toxicity was identified. We further highlight the need for epigenome studies rather than candidate genes and provide recommendations for future research. Our results indicate a correlation between fluoride exposure and epigenetic processes. Further studies are warranted to elucidate and confirm the mechanism of epigenetic alterations mediated fluoride toxicity.
Collapse
Affiliation(s)
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
12
|
Chiba N, Noguchi Y, Hwan Seong C, Ohnishi T, Matsuguchi T. EGR1 Plays an Important Role in BMP9-Mediated Osteoblast Differentiation by Promoting SMAD1/5 Phosphorylation. FEBS Lett 2022; 596:1720-1732. [PMID: 35594155 DOI: 10.1002/1873-3468.14407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic proteins (BMPs) are essential regulators of skeletal homeostasis, and BMP9 is the most potently osteogenic among them. Here, we found that BMP9 and BMP2 rapidly induced early growth response 1 (EGR1) protein expression in osteoblasts through MEK/ERK pathway-dependent transcriptional activation. Knockdown of EGR1 using siRNA significantly inhibited BMP9-induced matrix mineralization and osteogenic marker gene expression in osteoblasts. Knockdown of EGR1 significantly reduced SMAD1/5 phosphorylation and inhibited the expression of their transcriptional targets in osteoblasts stimulated by BMP9. In contrast, forced EGR1 overexpression in osteoblasts enhanced BMP9-mediated osteoblast differentiation and SMAD1/5 phosphorylation. An intracellular association between EGR1 and SMAD1/5 was identified using immunoprecipitation assays. These results indicated that EGR1 plays an important role in BMP9-stimulated osteoblast differentiation by enhancing SMAD1/5 phosphorylation.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Yukie Noguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Chang Hwan Seong
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan.,Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| |
Collapse
|
13
|
Wang X, Tewari N, Sato F, Tanimoto K, Thangavelu L, Makishima M, Bhawal UK. Biphasic Functions of Sodium Fluoride (NaF) in Soft and in Hard Periodontal Tissues. Int J Mol Sci 2022; 23:ijms23020962. [PMID: 35055148 PMCID: PMC8780524 DOI: 10.3390/ijms23020962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts, osteoclasts, and periodontal cells have suggested the significant roles of fluoride treatment. In this review, we summarize recent studies on the biphasic functions of NaF that are related to both soft and hard periodontal tissues, multiple diseases, and clinical dentistry.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Nitesh Tewari
- Centre for Dental Education and Research, Division of Pedodontics and Preventive Dentistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Fuyuki Sato
- Shizuoka Cancer Center, Pathology Division, Shizuoka 411-8777, Japan;
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
- Correspondence: (M.M.); (U.K.B.)
| | - Ujjal K. Bhawal
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
- Correspondence: (M.M.); (U.K.B.)
| |
Collapse
|
14
|
Guo N, Yu Y, Gao Y. miR-21-5p and canonical Wnt signaling pathway promote osteoblast function through a feed-forward loop induced by fluoride. Toxicology 2021; 466:153079. [PMID: 34942272 DOI: 10.1016/j.tox.2021.153079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/23/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
Abstract
Long-term excessive exposure to fluoride from environmental sources can cause serious public health problems such as dental fluorosis and skeletal fluorosis. The aberrant activation of osteoblasts in the early stage is one of the critical steps during the pathogenesis of skeletal fluorosis and canonical Wnt signaling pathway participate in the progress. However, the specific mechanism that how canonical Wnt signaling pathway was mediated is not yet clear. In this study, we found that miR-21-5p induced the activation of canonical Wnt signaling pathway via targeting PTEN and DKK2 during fluoride induced osteoblasts activation and firstly demonstrated the forward loop between canonical Wnt signaling and miR-21-5p in the process. These findings suggested an important regulatory role of miR-21-5p on canonical Wnt signaling pathway during skeletal fluorosis and miR-21-5p might be a potential therapeutic target for skeletal fluorosis.
Collapse
Affiliation(s)
- Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| | - Yanling Yu
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
15
|
Qiao L, Liu X, He Y, Zhang J, Huang H, Bian W, Chilufya MM, Zhao Y, Han J. Progress of Signaling Pathways, Stress Pathways and Epigenetics in the Pathogenesis of Skeletal Fluorosis. Int J Mol Sci 2021; 22:ijms222111932. [PMID: 34769367 PMCID: PMC8584317 DOI: 10.3390/ijms222111932] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Fluorine is widely dispersed in nature and has multiple physiological functions. Although it is usually regarded as an essential trace element for humans, this view is not held universally. Moreover, chronic fluorosis, mainly characterized by skeletal fluorosis, can be induced by long-term excessive fluoride consumption. High concentrations of fluoride in the environment and drinking water are major causes, and patients with skeletal fluorosis mainly present with symptoms of osteosclerosis, osteochondrosis, osteoporosis, and degenerative changes in joint cartilage. Etiologies for skeletal fluorosis have been established, but the specific pathogenesis is inconclusive. Currently, active osteogenesis and accelerated bone turnover are considered critical processes in the progression of skeletal fluorosis. In recent years, researchers have conducted extensive studies in fields of signaling pathways (Wnt/β-catenin, Notch, PI3K/Akt/mTOR, Hedgehog, parathyroid hormone, and insulin signaling pathways), stress pathways (oxidative stress and endoplasmic reticulum stress pathways), epigenetics (DNA methylation and non-coding RNAs), and their inter-regulation involved in the pathogenesis of skeletal fluorosis. In this review, we summarised and analyzed relevant findings to provide a basis for comprehensive understandings of the pathogenesis of skeletal fluorosis and hopefully propose more effective prevention and therapeutic strategies.
Collapse
|
16
|
Hu H, Wang S, He Y, Shen S, Yao B, Xu D, Liu X, Zhang Y. The role of bone morphogenetic protein 4 in corneal injury repair. Exp Eye Res 2021; 212:108769. [PMID: 34537186 DOI: 10.1016/j.exer.2021.108769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Corneal injury may cause neovascularization and lymphangiogenesis in cornea which have a detrimental effect to vision and even lead to blindness. Bone morphogenetic protein 4 (BMP4) regulates a variety of biological processes, which is closely relevant to the regulation of corneal epithelium and angiogenesis. Herein, we aimed to evaluate the effect of BMP4 on corneal neovascularization (CNV), corneal lymphangiogenesis (CL), corneal epithelial repair, and the role of BMP4/Smad pathway in these processes. METHODS We used MTT assay to determine the optimal concentration of BMP4. The suture method was performed to induce rat CNV and CL. We used ink perfusion and HE staining to visualize the morphological change of CNV, and utilized RT-qPCR and ELISA to investigate the expression of angiogenic factors and lymphangiogenic factors. The effects of BMP4 and anti-VEGF antibody on migration, proliferation and adhesion of corneal epithelium were determined by scratch test, MTT assay and cell adhesion test. RESULTS BMP4 significantly inhibited CNV and possibly CL. Topical BMP4 resulted in increased expression of endogenous BMP4, and decreased expression of angiogenic factors and lymphangiogenic factors. Compared with anti-VEGF antibody, BMP4 enhanced corneal epithelium migration, proliferation and adhesion, which facilitated corneal epithelial injury repair. Simultaneously, these processes could be regulated by BMP4/Smad pathway. CONCLUSIONS Our results demonstrated unreported effects of BMP4 on CNV, CL, and corneal epithelial repair, suggesting that BMP4 may represent a potential therapeutic target in corneal injury repair.
Collapse
Affiliation(s)
- Huicong Hu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Shurong Wang
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yuxi He
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Sitong Shen
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Boyuan Yao
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Duo Xu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yan Zhang
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
17
|
Ouyang T, Qin Y, Luo K, Han X, Yu C, Zhang A, Pan X. miR-486-3p regulates CyclinD1 and promotes fluoride-induced osteoblast proliferation and activation. ENVIRONMENTAL TOXICOLOGY 2021; 36:1817-1828. [PMID: 34080770 DOI: 10.1002/tox.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Fluoride is a persistent environmental pollutant, and its excessive intake contributes to skeletal and dental fluorosis. The mechanisms underlying fluoride-induced abnormal osteoblast proliferation and activation, which are related to skeletal fluorosis, have not yet been fully clarified. As important epigenetic regulators, microRNAs (miRNAs) participate in bone metabolism. On the basis of our previous miRNA-seq results and bioinformatics analysis, this study investigated the role and specific molecular mechanism of miR-486-3p in fluoride-induced osteoblast proliferation and activation via CyclinD1. Herein, in the fluoride-challenged population, we observed that miR-486-3p expression decreased while CyclinD1 and transforming growth factor (TGF)-β1 increased, and miR-486-3p level correlated negatively with the expression of CyclinD1 and TGF-β1 genes. Further, we verified that sodium fluoride (NaF) decreases miR-486-3p expression in human osteoblasts and overexpression of miR-486-3p reduces fluoride-induced osteoblast proliferation and activation. Meanwhile, we demonstrated that miR-486-3p regulates NaF-induced upregulation of CyclinD1 by directly targeting its 3'-untranslated region (3'-UTR). In addition, we observed that NaF activates the TGF-β1/Smad2/3/CyclinD1 axis and miR-486-3p mediates transcriptional regulation of CyclinD1 by TGF-β1/Smad2/3 signaling pathway via targeting TGF-β1 3'-UTR in vitro. This study, thus, contributes significantly in revealing the mechanism of miR-486-3p-mediated CyclinD1 upregulation in skeletal fluorosis and sheds new light on endemic fluorosis treatment.
Collapse
Affiliation(s)
- Ting Ouyang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yu Qin
- Department of Orthopedics, Guizhou Province Orthopedics Hospital, Guiyang, China
| | - Keke Luo
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xue Han
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Chun Yu
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xueli Pan
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Deng Q, Yang J, Zhouyang J, Sheng W, Gao S, Zhang Y, Haopeng L, Bingxin B, Mengting W. Preliminary screening of fluorine-stained osteoblastic apoptosis-related microRNA. Anat Rec (Hoboken) 2021; 305:359-372. [PMID: 34236144 DOI: 10.1002/ar.24709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Endemic fluorosis is a chronic systemic disease that seriously endangers human health. In high fluoride areas, people consume excessive fluoride for a long time through drinking water or food, which leads to chronic cumulative fluorosis in the body. Fluorosis can cause changes in the expression of some miRNA in cells, and the miRNA can participate in fluoride-induced osteoblast activation through various signal pathways. To observe the differential expression of apoptosis-related microRNA (miRNA) in mouse osteoblasts under the action of excessive fluoride. Primary cultured mouse osteoblasts, identified by osteocalcin (OC) and alkaline phosphatase (ALP) staining, were treated with 20 mg/L sodium fluoride and 40 mg/L sodium fluoride for 12/24 hr, respectively, to establish the fluoride staining model for comparing and analyzing the sequence of miRNA among groups by bioinformatics methods; four miRNA chains were verified by fluorescence quantitative PCR. After treatment with 20 mg/L sodium fluoride for 12 hr and 24 hr, 128 miRNA expressions were up-regulated while 36 miRNA expressions were down-regulated. In Group 40 mg/L, 130 miRNA expressions were up-regulated while 29 miRNA expressions were down-regulated after 12 hr and 24 hr; 72 miRNA were up-regulated and 2 miRNA were down-regulated at the two time points. 10 up-regulated miRNA and 2 down-regulated miRNA with higher scores in Bioinformatics software were analyzed the target genes. Fluorescence quantitative PCR verified that the expressions of four miRNA were up-regulated. Target gene analysis of the 10 selected mouse osteoblastic apoptosis-related miRNA reveals their involvement of the functions of inhibiting or promoting apoptosis, which has certain theoretical significance for early identification of skeletal fluorosis. The involved signaling pathways include the Wnt signaling pathway, ubiquitin-regulated proteolysis, Toll signaling pathway, TNF signaling pathway, pluripotent stem cell signaling pathway, MAPK signaling pathway, phosphatidylinositide metabolism, FoxO signaling pathway, ErbB signaling pathway, autophagy, and so forth.
Collapse
Affiliation(s)
- Qiang Deng
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Jitao Yang
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Junjie Zhouyang
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Weibin Sheng
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Shutao Gao
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Yalou Zhang
- Department of Histology & Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Luan Haopeng
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Bai Bingxin
- The Fifth Teaching Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Wu Mengting
- The Fifth Teaching Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| |
Collapse
|
19
|
Li C, Qin Y, Ouyang T, Yao M, Zhang A, Luo P, Pan X. miR-122-5p Mediates Fluoride-Induced Osteoblast Activation by Targeting CDK4. Biol Trace Elem Res 2021; 199:1215-1227. [PMID: 32572801 DOI: 10.1007/s12011-020-02239-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Chronic intake of fluoride, existing in the environment, may cause endemic fluorosis, which is characterized by the occurrence of skeletal and dental fluorosis. However, the pathogenesis of fluorosis has not yet been elucidated. Abnormal osteoblast proliferation and activation have a pivotal role in bone turnover disorders which are linked to skeletal fluorosis. MicroRNAs are involved in fundamental cellular processes, including cell proliferation. Based on our previous study, population study and in vitro experiments were designed to understand the effect of miR-122-5p on osteoblast activation in skeletal fluorosis through targeting cyclin-dependent kinase 4 (CDK4). In human populations with coal-burning type fluoride exposure, the results showed that miR-122-5p was downregulated but CDK4 expression was upregulated and miR-122-5p was negatively correlated with CDK4 expression. Furthermore, in human osteoblasts treated with sodium fluoride, we demonstrated that miR-122-5p mediated osteoblast activation of skeletal fluorosis via upregulation of the CDK4 protein. In support of this, dual-luciferase reporter assay showed that miR-122-5p modulated CDK4 protein levels by targeting its 3'-untranslated region. These findings show, for the first time, that miR-122-5p may be involved in the cause and development of skeletal fluorosis by targeting CDK4.
Collapse
Affiliation(s)
- Chen Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Qin
- Guizhou Orthopedics Hospital, Guiyang, 550007, China
| | - Ting Ouyang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Maolin Yao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xueli Pan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
20
|
Weng Q, Yi F, Yu Y, Ge S, Liu S, Zhang Y. Altered miRNA expression profiling in enamel organ of fluoride affected rat embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111876. [PMID: 33418158 DOI: 10.1016/j.ecoenv.2020.111876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Evidence has shown that miRNAs could play a role in dental fluorosis, but there is no study has investigated the global expression miRNA profiles of fluoride-exposed enamel organ. In this study, we analysed the differentially expressed (DE) miRNAs between fluoride-treated and control enamel organ for the first time and found several candidate miRNAs and signaling pathways worthy of further research. Thirty Wistar rats were randomly distributed into three groups and exposed to drinking water with different fluoride contents for 10 weeks and during the gestation. The three groups were a control group (distilled water), medium fluoride group (75 mg/L NaF), and high fluoride group (150 mg/L NaF). On the embryonic day 19.5, the mandible was dissected for histological analysis, and the enamel organ of the mandibular first molar tooth germ was collected for miRNA sequencing (miRNA-seq) and quantitative real-time PCR analysis (qRT-PCR). Typical dental fluorosis was observed in the incisors of the prepregnant rats. In addition to the disorganized structure of enamel organ cells, 39 DE miRNAs were identified in the fluoride groups compared with the control group, and good agreement between the miRNA-seq data and qRT-PCR data was found. The functional annotation of the target genes of 39 DE miRNAs showed significant enrichment in metabolic process, cell differentiation, calcium signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway terms. This study provides a theoretical reference for an extensive understanding of the mechanism of fluorosis and potential valuable miRNAs as therapeutic targets in fluorosis.
Collapse
Affiliation(s)
- Qingqing Weng
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Fangyu Yi
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Suyu Ge
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Shangfeng Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Gao J, Qin Y, Luo K, Wang X, Yu C, Zhang A, Pan X. Downregulation of miR-4755-5p promotes fluoride-induced osteoblast activation via tageting Cyclin D1. J Trace Elem Med Biol 2020; 62:126626. [PMID: 32731110 DOI: 10.1016/j.jtemb.2020.126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endemic fluorosis remains a major public health issue in many countries. Fluoride can cause abnormalities in osteoblast proliferation and activation, leading to skeletal fluorosis. However, its detailed molecular mechanism remains unclear. Based on a previous study, the aim of this study is to explore the role of miRNA in osteoblast activation of skeletal fluorosis via targeting of Cyclin D1. METHODS A population study of coal-burning fluorosis and in vitro experiments were performed in this study. Urine fluoride (UF) concentrations of the participants were determined using a national standardized ion selective electrode approach. Based on our previous miRNA sequence results, bioinformatic analysis was used to predict miR-4755-5p targeting Cyclin D1. Quantitative real-time PCR (qRT-PCR) was used to verify the expression of miR-4755-5p. The expression of Cyclin D1 mRNA was detected by qRT-PCR. The expression of Cyclin D1 protein was detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. Cell viability was detected by CCK-8 method. The distribution of the cell cycle was analyzed by flow cytometry. The alkaline phosphatase (ALP) activity and bone Gla protein (BGP) content were detected by micronutrient enzymes standard method and ELISA. The target binding between miR-4755-5p and Cyclin D1 was verified using dual-luciferase reporter assay. RESULTS In the fluoride-exposed population, the results showed that with the increase in UF content, the expression of miR-4755-5p decreased gradually, while the mRNA transcription and protein expression of Cyclin D1 increased gradually. The relative miR-4755-5p expression showed a negative correlation with Cyclin D1 expression. Subsequently, in human osteoblasts treated with sodium fluoride (NaF), the results also showed that NaF caused low expression of miR-4755-5p and increased expression of Cyclin D1. Further, the results of miR-4755-5p mimic transfection confirmed that under the action of NaF, miR-4755-5p overexpression reduced Cyclin D1 protein expression within osteoblasts and further inhibited cell proliferation and activation. Simultaneously, luciferase reporter assays verified that Cyclin D1 was the miR-4755-5p direct target. CONCLUSION The results demonstrate that fluoride exposure induced the downregulation of miR-4755-5p and downregulated miR-4755-5p promoted fluoride-induced osteoblast activation by increasing Cyclin D1 protein expression. This study sheds new light on biomarkers and potential treatment for endemic fluorosis.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Qin
- Guizhou Orthopedics Hospital, Guiyang, 550007, China
| | - Keke Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xilan Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chun Yu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xueli Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
22
|
Jiang Y, Yang Y, Zhang C, Huang W, Wu L, Wang J, Su M, Sun D, Gao Y. Upregulation of miR-200c-3p induced by NaF promotes endothelial apoptosis by activating Fas pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115089. [PMID: 32629210 DOI: 10.1016/j.envpol.2020.115089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Fluoride has been considered as a risk factor of cardiovascular disease due to its endothelial toxicology. However, the mechanism underlying the endothelial toxicity of fluoride has not been clearly illustrated. MiR-200c-3p was strongly linked with endothelial function and its level is increased in serum of fluorosis patients, but it is unclear the role of miR-200c-3p in the fluoride induced endothelial dysfunction. In this study, we confirmed that fluoride exposure induced the apoptosis of endothelial cells both in established rats model and cultured human umbilical vein endothelial cells (HUVECs). And miR-200c-3p was found to be upregulated in NaF treated HUVECs. Fluoride stimulation increased caspase-dependent apoptosis through miR-200c-3p upregulation, with repressing expression of its target gene Fas-associated phosphatase 1 (Fap-1), which functioned as Fas inhibitor. This resulted in activation of Fas-associated extrinsic apoptosis via interaction with increased Fas, Fadd, Cleaved Caspase-8 and Cleaved Caspase-3. The activation of Fas-associated extrinsic apoptosis was abrogated by miR-200c-3p inhibitor. Furthermore, the antiapoptotic effect of downregulated miR-200c-3p was restored by Fap-1 siRNA. These results suggested a determinant role of the miR-200c-3p/Fap-1 axis in fluoride induced endothelial apoptosis.
Collapse
Affiliation(s)
- Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Chengzhi Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Liaowei Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Jian Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Mengyao Su
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Institution of Environmentally Related Diseases, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
23
|
Li J, Guan C, Hu Z, Liu L, Su Z, Kang P, Jiang X, Cui Y. Yin Yang 1-induced LINC00667 up-regulates pyruvate dehydrogenase kinase 1 to promote proliferation, migration and invasion of cholangiocarcinoma cells by sponging miR-200c-3p. Hum Cell 2020; 34:187-200. [PMID: 33040228 DOI: 10.1007/s13577-020-00448-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is one of the most aggressive and lethal malignancies. Long noncoding RNAs (lncRNAs) are being found to play crucial roles in CCA progression. This work aims to investigate the roles of long intergenic non-protein coding RNA 667 (LINC00667) in progression of CCA. RT-qPCR and western blot were applied to detect gene expression. Clinical correlation and survival were analyzed by statistical methods. Overexpression and RNA interference approaches were used to investigate the effects of LINC00667 on CCA cells. Tumor xenograft assay was performed to detect the function of LINC00667 in vivo. Transcriptional regulation and competing endogenous RNA (ceRNA) mechanism were predicted via bioinformatics analysis. ChIP, luciferase reporter, and Ago2 RIP assays further confirmed the predicted results. Our data indicated that LINC00667 was highly expressed in CCA tissues and cells, and transcription factor Yin Yang 1 (YY1) induced LINC00667 expression in CCA cells. Up-regulated LINC00667 was significantly associated with lymph node metastasis, advanced TNM stage, and poor prognosis. Knockdown of LINC00667 suppressed the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of CCA cells, while overexpression of LINC00667 acquired opposite effects. Moreover, knockdown of LINC00667 inhibited tumor growth in vivo. In addition, LINC00667 was demonstrated to function as a ceRNA for miR-200c-3p, and then LINC00667 up-regulated pyruvate dehydrogenase kinase 1 (PDK1) to promote CCA development by inhibiting miR-200c-3p. These findings identified a pivotal role of LINC00667 in tumorigenesis and development of CCA. Targeting the YY1/LINC00667/miR-200c-3p/PDK1 axis may provide a new therapeutic strategy for CCA treatment.
Collapse
Affiliation(s)
- Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Canghai Guan
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Zengtao Hu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Lang Liu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Zhilei Su
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Pengcheng Kang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China.
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
24
|
Chu Y, Gao Y, Yang Y, Liu Y, Guo N, Wang L, Huang W, Wu L, Sun D, Gu W. β-catenin mediates fluoride-induced aberrant osteoblasts activity and osteogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114734. [PMID: 32806408 DOI: 10.1016/j.envpol.2020.114734] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/07/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Excess fluoride in drinking water is an environmental issue of increasing worldwide concern, because of its adverse effect on human health. Skeletal fluorosis caused by chronic exposure to excessive fluoride is a metabolic bone disease characterized by accelerated bone turnover accompanied by aberrant activation of osteoblasts. It is not clear whether Wnt/β-catenin signaling, an important signaling pathway regulating the function of osteoblasts, mediates the pathogenesis of skeletal fluorosis. A cross-sectional case-control study was conducted in Tongyu County, Jilin Province, China showed that fluoride stimulated the levels of OCN and OPG, resulting in accelerated bone turnover in patients with skeletal fluorosis. To investigate the influence of fluoride on Wnt/β-catenin signaling pathway, 64 male BALB/c mice were allotted randomly to four groups and treated with deionized water containing 0, 55, 110 and 221 mg/L NaF for 3 months, respectively. The results demonstrated that fluoride significantly increased mouse cancellous bone formation and the protein expression of Wnt3a, phospho-GSK3β (ser 9) and Runx2. Moreover, partial correlation analysis indicated that there was no significant correlation between fluoride exposure and Runx2 protein levels, after adjusting for β-catenin, suggesting that β-catenin might play a crucial role in fluoride-induced aberrant osteogenesis. In vivo, viability of SaoS2 cells was significantly facilitated by 4 mg/L NaF, and fluoride could induce the abnormal activation of Wnt/β-catenin signaling, the expression of its target gene Runx2 and significantly increased Tcf/Lef reporter activity. Importantly, inhibition of β-catenin suppressed fluoride-induced Runx2 protein expression and the osteogenic phenotypes. Taken together, the present study provided in vivo and in vitro evidence reveals a potential mechanism for fluoride-induced aberrant osteoblast activation and indicates that β-catenin is the pivot molecule mediating viability and differentiation of osteoblasts and might be a therapeutic target for skeletal fluorosis.
Collapse
Affiliation(s)
- Yanru Chu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Limei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Liaowei Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Weikuan Gu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, 38163, TN, USA; Research Service, Veterans Affairs Medical Center, Memphis, 38104, TN, USA.
| |
Collapse
|
25
|
Wang F, Li C, Qin Y, Han X, Gao J, Zhang A, Luo P, Pan X. Analysis of the microRNA Profile of Coal-Burning Endemic Fluorosis Using Deep Sequencing and Bioinformatic Approaches. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:56-63. [PMID: 31256201 DOI: 10.1007/s00128-019-02660-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) differentially expressed in plasma were identified using microRNA sequencing (miRNA-seq), and five miRNAs were selected for validation. Potential target genes of these five miRNAs were predicted using the miRWalk3.0 database, and the overlapping portions were analyzed using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Comparison of the cases and controls revealed 127 known differentially expressed miRNAs. A total of 44 and 83 miRNAs were upregulated and downregulated, respectively. Through target gene prediction of five miRNAs, we obtained 1360 target genes. GO enrichment analysis showed that the target genes of these dysregulated miRNAs were related with secretion, protein binding, and cell growth. The KEGG pathway analysis showed that pathways in cancer, calcium signaling, and rat sarcoma (Ras) signaling, etc. were likely regulated by these five miRNAs. These findings highlight the distinct expression patterns of miRNAs in coal-burning endemic fluorosis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Chen Li
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Qin
- Guizhou Orthopedics Hospital, Guiyang, 550007, China
| | - Xue Han
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Jiayu Gao
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Peng Luo
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Xueli Pan
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
26
|
Li M, Jin X, Guo F, Wu G, Wu L, Deng S. Integrative analyses of key genes and regulatory elements in fluoride-affected osteosarcoma. J Cell Biochem 2019; 120:15397-15409. [PMID: 31037778 DOI: 10.1002/jcb.28807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022]
Abstract
Osteosarcoma is one of the most malignant tumors in adolescents with severe outcomes while fluoride is one of the most abundant elements in the environment. Epidemiological evidence has elucidated the relationship between fluoride and osteosarcoma, but the molecular mechanisms are extremely complicated. Microarray profiles were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) in the progression of fluoride-affected osteosarcoma. The functional enrichment analysis was performed, a protein-protein interaction network, a microRNA-messenger RNA (mRNA) and a transcription factors-mRNA regulatory network were constructed and performed using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. A total of 171 DEGs were identified. The functions and pathways of the DEGs were enriched in nucleolus, protein ubiquitination, protein binding, RNA transport, and the spliceosome. Eighteen hub genes were identified and functional analysis revealed that these genes are mainly enriched in protein binding, nucleoplasm, and ribosomal RNA processing. Survival analysis showed that the hub genes may be involved in the invasion or recurrence of osteosarcoma. In conclusion, the DEGs and hub genes with their regulatory elements identified in this study will help us understand the molecular mechanisms underlying fluoride-affected osteosarcoma and provide candidate targets for future research.
Collapse
Affiliation(s)
- Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wu
- Geriatrics Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sisi Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Ming J, Wu S, You T, Wang X, Yu C, Luo P, Zhang A, Pan X. Histone Deacetylation in the Promoter of p16 Is Involved in Fluoride-Induced Human Osteoblast Activation via the Inhibition of Sp1 Binding. Biol Trace Elem Res 2019; 188:373-383. [PMID: 29931577 DOI: 10.1007/s12011-018-1413-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/07/2018] [Indexed: 01/22/2023]
Abstract
Chronic fluorosis is a systemic condition which principally manifests as defects in the skeleton and teeth. Skeletal fluorosis is characterized by aberrant proliferation and activation of osteoblasts, however, the underlying mechanisms of osteoblast activation induced by fluoride are not fully understood. Therefore, we investigated the pathogenic mechanism of human primary osteoblast proliferation and activation in relation to histone acetylation of the promoter p16, a well-known cell cycle regulation-related gene. The results showed that sodium fluoride (NaF) induced deacetylation and decreased expression of the p16 gene via inhibition of specificity protein 1 (Sp1) binding to its response element, which accounts for NaF increasing cell viability and promoting proliferation in human primary osteoblasts. These results reveal the regulatory mechanism of histone acetylation of the p16 gene on osteoblast activation in skeletal fluorosis.
Collapse
Affiliation(s)
- Juan Ming
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shouli Wu
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Tongzhao You
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xilan Wang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chun Yu
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Peng Luo
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xueli Pan
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
28
|
Wu S, Yan W, Qiu B, Liao Y, Gu J, Wei S, Zhang A, Pan X. Aberrant methylation-induced dysfunction of p16 is associated with osteoblast activation caused by fluoride. ENVIRONMENTAL TOXICOLOGY 2019; 34:37-47. [PMID: 30259626 DOI: 10.1002/tox.22655] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 05/19/2023]
Abstract
Chronic exposure to fluoride continues to be a public health problem worldwide, affecting thousands of people. Fluoride can cause abnormal proliferation and activation of osteoblast and osteoclast, leading to skeletal fluorosis that can cause pain and harm to joints and bones and even lead to permanent disability. Nevertheless, there is no recognized mechanism to explain the bone lesions of fluorosis. In this work, we performed a population study and in vitro experiments to investigate the pathogenic mechanism of skeletal fluorosis in relation to methylation of the promoter of p16. The protein coded by the p16 gene inhibits cdk (cyclin-dependent kinase) 4/cdk6-mediated phosphorylation4 of retinoblastoma gene product and induces cell cycle arrest. The results showed that hypermethylation of p16 and reduced gene expression was evident in peripheral blood mononuclear cells of patients with fluorosis and correlated with the level of fluoride exposure. Studies with cell cultures of osteoblasts revealed in response to sodium fluoride (NaF) treatment, there was an induction of p16 hypermethylation and decreased expression, leading to increased cell proliferation, a longer S-phase of the cell cycle, and development of skeletal fluorosis. Further, the methylation inhibitor, 5-aza-2-deoxycytidine, reversed the p16 hypermethylation and expression in response to NaF. These results reveal a regulatory role of p16 gene methylation on osteoblasts activation during the development of skeletal fluorosis.
Collapse
Affiliation(s)
- Shouli Wu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Weimin Yan
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Bing Qiu
- Guizhou Orthopedics Hospital, Guiyang, China
| | | | - Junying Gu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Shaofeng Wei
- School of Public Health, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xueli Pan
- School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|