1
|
Gupta K, Soni N, Nema RK, Sahu N, Srivastava RK, Ratre P, Mishra PK. Microcystin-LR in drinking water: An emerging role of mitochondrial-induced epigenetic modifications and possible mitigation strategies. Toxicol Rep 2024; 13:101745. [PMID: 39411183 PMCID: PMC11474209 DOI: 10.1016/j.toxrep.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Algal blooms are a serious menace to freshwater bodies all over the world. These blooms typically comprise cyanobacterial outgrowths that produce a heptapeptide toxin, Microcystin-LR (MC-LR). Chronic MC-LR exposure impairs mitochondrial-nuclear crosstalk, ROS generation, activation of DNA damage repair pathways, apoptosis, and calcium homeostasis by interfering with PC/MAPK/RTK/PI3K signaling. The discovery of the toxin's biosynthesis pathways paved the way for the development of molecular techniques for the early detection of microcystin. Phosphatase inhibition-based bioassays, high-performance liquid chromatography, and enzyme-linked immunosorbent tests have recently been employed to identify MC-LR in aquatic ecosystems. Biosensors are an exciting alternative for effective on-site analysis and field-based characterization. Here, we present a synthesis of evidence supporting MC-LR as a mitotoxicant, examine various detection methods, and propose a novel theory for the relevance of MC-LR-induced breakdown of mitochondrial machinery and its myriad biological ramifications in human health and disease.
Collapse
Affiliation(s)
- Kashish Gupta
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Ram Kumar Nema
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Neelam Sahu
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Zhu M, Hu T, Song W, Cui X, Tian Y, Yao B, Wu M, Huang S, Niu Z. Guanidinylated/PEGylated chitosan in the bioink promotes the formation of multi-layered keratinocytes in a human skin equivalent. Carbohydr Polym 2023; 314:120964. [PMID: 37173017 DOI: 10.1016/j.carbpol.2023.120964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The biological differences of skin between rodent and human beings and the strong appeal to replace the experimental animals have led to the development of alternative models with structures similar to the real human skin. Keratinocytes cultured in vitro on conventional dermal scaffolds tend to form monolayer rather than multi-layer epithelial tissue architectures. How to construct human skin or epidermal equivalents with multi-layered keratinocytes similar to real human epidermis remains one of the greatest challenges. Herein, a human skin equivalent with multi-layered keratinocytes was constructed by 3D bioprinting fibroblasts and subsequent culturing epidermal keratinocytes. Biocompatible guanidinylated/PEGylated chitosan (GPCS) was used as the main component of bioink to 3D bioprint tissue-engineered dermis. The function of GPCS to promote HaCat cell proliferation and connection was confirmed at the genetic, cellular, and histological levels. Compared with the skin tissues with mono-layered keratinocytes engineered with collagen and gelatin, adding GPCS in the bioink generated tissue-engineered human skin equivalents with multi-layered keratinocytes. Such human skin equivalents could be alternative models for biomedical, toxicological, and pharmaceutical research.
Collapse
Affiliation(s)
- Meng Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, PR China
| | - Tian Hu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, PR China; MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Wei Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, PR China; Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, PR China
| | - Xiaoliang Cui
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, PR China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, PR China
| | - Bin Yao
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, PR China
| | - Man Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, PR China
| | - Sha Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, PR China.
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Lynch KD, Iverson DT, Bachhav NK, Call MR, Yue GE, Prasad B, Clarke JD. Involvement of the p38/MK2 Pathway in MCLR Hepatotoxicity Revealed through MAPK Pharmacological Inhibition and Phosphoproteomics in HepaRG Cells. Int J Mol Sci 2023; 24:11168. [PMID: 37446360 PMCID: PMC10342686 DOI: 10.3390/ijms241311168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Microcystin-leucine arginine (MCLR) is one of the most common and toxic microcystin variants, a class of cyanotoxins produced by cyanobacteria. A major molecular mechanism for MCLR-elicited liver toxicity involves the dysregulation of protein phosphorylation through protein phosphatase (PP) inhibition and mitogen-activated protein kinase (MAPK) modulation. In this study, specific pharmacological MAPK inhibitors were used in HepaRG cells to examine the pathways associated with MCLR cytotoxicity. SB203580 (SB), a p38 inhibitor, rescued HepaRG cell viability, whereas treatment with SP600125 (JNK inhibitor), MK2206 (AKT inhibitor), or N-acetylcysteine (reactive oxygen species scavenger) did not. Phosphoproteomic analysis revealed that phosphosites-which were altered by the addition of SB compared to MCLR treatment alone-included proteins involved in RNA processing, cytoskeletal stability, DNA damage response, protein degradation, and cell death. A closer analysis of specific proteins in some of these pathways indicated that SB reversed the MCLR-mediated phosphorylation of the necroptosis-associated proteins, the mixed lineage kinase domain-like protein (MLKL), receptor-interacting serine/threonine kinase 1 (RIP1), DNA damage response proteins, ataxia telangiectasia and Rad3-related kinase (ATR), and checkpoint kinase 1 (CHK1). Overall, these data implicate p38/MK2, DNA damage, and necroptosis in MCLR-mediated hepatotoxicity, and suggest these pathways may be targets for prevention prior to, or treatment after, MCLR toxicity.
Collapse
Affiliation(s)
- Katherine D. Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (K.D.L.); (B.P.)
| | | | | | | | | | | | - John D. Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (K.D.L.); (B.P.)
| |
Collapse
|
4
|
Liu W, Huang X, Luo W, Liu X, Chen W. The Role of Paxillin Aberrant Expression in Cancer and Its Potential as a Target for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24098245. [PMID: 37175948 PMCID: PMC10179295 DOI: 10.3390/ijms24098245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Paxillin is a multi-domain adaptor protein. As an important member of focal adhesion (FA) and a participant in regulating cell movement, paxillin plays an important role in physiological processes such as nervous system development, embryonic development, and vascular development. However, increasing evidence suggests that paxillin is aberrantly expressed in many cancers. Many scholars have also recognized that the abnormal expression of paxillin is related to the prognosis, metastases, invasion, survival, angiogenesis, and other aspects of malignant tumors, suggesting that paxillin may be a potential cancer therapeutic target. Therefore, the study of how aberrant paxillin expression affects the process of tumorigenesis and metastasis will help to develop more efficacious antitumor drugs. Herein, we review the structure of paxillin and its function and expression in tumors, paying special attention to the multifaceted effects of paxillin on tumors, the mechanism of tumorigenesis and progression, and its potential role in tumor therapy. We also hope to provide a reference for the clinical prognosis and development of new tumor therapeutic targets.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
5
|
Yang Y, Zheng S, Chu H, Du C, Chen M, Emran MY, Chen J, Yang F, Tian L. Subchronic Microcystin-LR Aggravates Colorectal Inflammatory Response and Barrier Disruption via Raf/ERK Signaling Pathway in Obese Mice. Toxins (Basel) 2023; 15:toxins15040262. [PMID: 37104200 PMCID: PMC10145857 DOI: 10.3390/toxins15040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Microcystin-LR (MC-LR) is an extremely poisonous cyanotoxin that poses a threat to ecosystems and human health. MC-LR has been reported as an enterotoxin. The objective of this study was to determine the effect and the mechanism of subchronic MC-LR toxicity on preexisting diet-induced colorectal damage. C57BL/6J mice were given either a regular diet or a high-fat diet (HFD) for 8 weeks. After 8 weeks of feeding, animals were supplied with vehicle or 120 μg/L MC-LR via drinking water for another 8 weeks, and their colorectal were stained with H&E to detect microstructural alterations. Compared with the CT group, the HFD and MC-LR + HFD-treatment group induced a significant weight gain in the mice. Histopathological findings showed that the HFD- and MC-LR + HFD-treatment groups caused epithelial barrier disruption and infiltration of inflammatory cells. The HFD- and MC-LR + HFD-treatment groups raised the levels of inflammation mediator factors and decreased the expression of tight junction-related factors compared to the CT group. The expression levels of p-Raf/Raf and p-ERK/ERK in the HFD- and MC-LR + HFD-treatment groups were significantly increased compared with the CT group. Additionally, treated with MC-LR + HFD, the colorectal injury was further aggravated compared with the HFD-treatment group. These findings suggest that by stimulating the Raf/ERK signaling pathway, MC-LR may cause colorectal inflammation and barrier disruption. This study suggests that MC-LR treatment may exacerbate the colorectal toxicity caused by an HFD. These findings offer unique insights into the consequences and harmful mechanisms of MC-LR and provide strategies for preventing and treating intestinal disorders.
Collapse
Affiliation(s)
- Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
- Changsha Center for Disease Control and Prevention, Changsha 410004, China
| | - Hanyu Chu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mohammed Y. Emran
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li Tian
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
6
|
Wu Q, Li G, Huo T, Du X, Yang Q, Hung TC, Yan W. Mechanisms of parental co-exposure to polystyrene nanoplastics and microcystin-LR aggravated hatching inhibition of zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145766. [PMID: 33610984 DOI: 10.1016/j.scitotenv.2021.145766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
The combined toxicity effects of microcystins-LR (MCLR) and polystyrene nanoplastics (PSNPs) on the hatching of F1 zebrafish (Danio rerio) embryos were investigated in this study due to the increasing concerns of both plastic pollution and eutrophication in aquatic environments. Three-month-old zebrafish were used to explore the molecular mechanisms underlying the combined effect of MCLR (0, 0.9, 4.5, and 22.5 μg/L) on egg hatching in the existence of PSNPs (100 μg/L). The results demonstrated the existence of PSNPs further increased the accumulation of MCLR in F1 embryos. The hatching rates of F1 embryos were inhibited after exposure to 22.5 μg/L MCLR, and the presence of PSNPs aggravated the hatching inhibition induced by MCLR. The decrease of hatching enzyme activity and the abnormality of spontaneous movement were observed. We examined the altered expression levels of the genes associated with the hatching enzyme (tox16, foxp1, ctslb, xpb1, klf4, cap1, bmp4, cd63, He1.2, zhe1, and prl), cholinergic system (ache and chrnα7), and muscle development (Wnt, MyoD, Myf5, Myogenin, and MRF4). The results suggested the existence of PSNPs exacerbated the hatching inhibition of F1 embryos through decreasing the activity of enzyme, interfering with the cholinergic system, and affecting the muscle development.
Collapse
Affiliation(s)
- Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province 435002, China; Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tangbin Huo
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Xue Du
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydro-ecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Wei Yan
- Institute of Quality Standard & Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, Hubei, China.
| |
Collapse
|
7
|
Huang F, Wang L, Jia H. Research trends for papillary thyroid carcinoma from 2010 to 2019: A systematic review and bibliometrics analysis. Medicine (Baltimore) 2021; 100:e26100. [PMID: 34032748 PMCID: PMC8154384 DOI: 10.1097/md.0000000000026100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Thyroid carcinoma comprises the fastest rising incidence of carcinomas over the past decade. Papillary thyroid carcinoma (PTC) is the most predominant type of thyroid carcinoma. This study aimed to assess the research trends in the field of PTC. METHODS Publications from January 2010 to December 2019 were retrieved from the Web of Science Core Collection database using Thompson Reuters. Searching strategies were determined according to Medical Subject Heading terms. Different kinds of bibliometrics software, such as HistCite and VOSviewer, and online bibliometrics analysis platforms were utilized to evaluate and visualize the results. RESULTS A total of 8102 publications across 93 countries were identified, with the annual number of publications showing an increasing trend. The United States, China, and South Korea showed their dominant position in PTC publication outputs, H-index, total citations, and international collaborations. Thyroid was the most productive journal. Akira Miyauchi published the most articles, and the most productive institution was Yonsei University. The hotspots keywords proliferation, invasion and metastasis, diagnoses and prognoses, therapeutic resistance, recurrence, and microcarcinomas appeared earlier and were sustained over the last 3 years. CONCLUSIONS This bibliometric study provides a comprehensive analysis delineating the scientific productivity, collaboration, and research hotspots within the PTC field, which will be very helpful when focusing on the direction of research over the next few years.
Collapse
Affiliation(s)
- Fengyan Huang
- Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012
| | - Lihua Wang
- Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012
| | - Hongying Jia
- Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012
- The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Dajie, Jinan, Shandong 250033, PR China
| |
Collapse
|
8
|
Li S, Khan MH, Wang X, Cai M, Zhang J, Jiang M, Zhang Z, Wen XA, Liang H, Yang F. Synthesis of a series of novel In(III) 2,6-diacetylpyridine bis(thiosemicarbazide) complexes: structure, anticancer function and mechanism. Dalton Trans 2020; 49:17207-17220. [PMID: 33201167 DOI: 10.1039/d0dt02266g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The anticancer function and anticancer mechanism of indium (In) complexes still remain mysterious to date. Furthermore, it is greatly challenging to design a multi-functional metal agent that not only kills cancer cells but also inhibits their invasion and metastasis. Thus, to develop novel next-generation anticancer metal agents, we designed and synthesized a series of novel In(iii) 2,6-diacetylpyridine bis(thiosemicarbazide) complexes (C1-C4) for the first time and then investigated their structure-activity relationships with human urinary bladder cancer (T-24) cells. In particular, C4 not only showed higher cytotoxicity to cancer cells and less toxicity toward normal cells relative to cisplatin but also inhibited cell invasion and metastasis of T-24 cells. Interestingly, C4 acted against T-24 cells exhibiting multiple mechanisms: (1) arresting the S-phase of cell cycle via regulation of cytokine kinases, (2) activating the mitochondrial-mediated apoptosis, endoplasmic reticulum-stress-mediated cell death, PERK and c-Jun N-terminal kinase 1 (JNK) cell signaling pathways, and (3) inhibiting the expression of telomerase via the regulation of c-myc and h-TERT proteins. Our results suggested that C4 may be developed as a potential multi-functional and multi-targeting anticancer candidate.
Collapse
Affiliation(s)
- Shanhe Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Brózman O, Kubickova B, Babica P, Laboha P. Microcystin-LR Does Not Alter Cell Survival and Intracellular Signaling in Human Bronchial Epithelial Cells. Toxins (Basel) 2020; 12:E165. [PMID: 32156079 PMCID: PMC7150819 DOI: 10.3390/toxins12030165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/18/2023] Open
Abstract
Changes in ecological and environmental factors lead to an increased occurrence of cyanobacterial water blooms, while secondary metabolites-producing cyanobacteria pose a threat to both environmental and human health. Apart from oral and dermal exposure, humans may be exposed via inhalation and/or swallowing of contaminated water and aerosols. Although many studies deal with liver toxicity, less information about the effects in the respiratory system is available. We investigated the effects of a prevalent cyanotoxin, microcystin-LR (MC-LR), using respiratory system-relevant human bronchial epithelial (HBE) cells. The expression of specific organic-anion-transporting polypeptides was evaluated, and the western blot analysis revealed the formation and accumulation of MC-LR protein adducts in exposed cells. However, MC-LR up to 20 μM neither caused significant cytotoxic effects according to multiple viability endpoints after 48-h exposure, nor reduced impedance (cell layer integrity) over 96 h. Time-dependent increase of putative MC-LR adducts with protein phosphatases was not associated with activation of mitogen-activated protein kinases ERK1/2 and p38 during 48-h exposure in HBE cells. Future studies addressing human health risks associated with inhalation of toxic cyanobacteria and cyanotoxins should focus on complex environmental samples of cyanobacterial blooms and alterations of additional non-cytotoxic endpoints while adopting more advanced in vitro models.
Collapse
Affiliation(s)
- Ondřej Brózman
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; (O.B.); (B.K.); (P.B.)
| | - Barbara Kubickova
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; (O.B.); (B.K.); (P.B.)
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; (O.B.); (B.K.); (P.B.)
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Petra Laboha
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; (O.B.); (B.K.); (P.B.)
| |
Collapse
|
10
|
Anticancer Function and ROS-Mediated Multi-Targeting Anticancer Mechanisms of Copper (II) 2-hydroxy-1-naphthaldehyde Complexes. Molecules 2019; 24:molecules24142544. [PMID: 31336900 PMCID: PMC6680819 DOI: 10.3390/molecules24142544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Multi-targeting of oncoproteins by a single molecule represents an effectual, rational, and an alternative approach to target therapy. We carried out a systematic study to reveal the mechanisms of action of newly synthesized Cu2+ compounds of 2-naphthalenol and 1-(((2-pyridinylmethyl)imino)methyl)- (C1 and C2). The antiproliferative activity of the as-synthesized complexes in three human cancer cell lines indicates their potential as multi-targeted antitumor agents. Relatively, C1 and C2 showed better efficacy in vitro relative to Cisplatin and presented promising levels of toxicity against A-549 cells. On the whole, the Cu2+ complexes exhibited chemotherapeutic effects by generating reactive oxygen species (ROS) and arresting the cell cycle in the G0/G1 phase by competent regulation of cyclin and cyclin-dependent kinases. Fascinatingly, the Cu2+ complexes were shown to activate the apoptotic and autophagic pathways in A-549 cells. These complexes effectively induced endoplasmic reticulum stress-mediated apoptosis, inhibited topoisomerase-1, and damaged cancer DNA through a ROS-mediated mechanism. The synthesized Cu2+ complexes established ROS-mediated targeting of multiple cell signaling pathways as a fabulous route for the inhibition of cancer cell growth.
Collapse
|