1
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
2
|
Huang Q, Yang Z, Tao X, Ma C, Cao P, Wei P, Jiang C, Ren H, Li X. Sprayable chitosan nanogel with nitric oxide to accelerate diabetic wound healing through bacteria inhibition, biofilm eradication and macrophage polarization. Int J Biol Macromol 2024; 254:127806. [PMID: 37918593 DOI: 10.1016/j.ijbiomac.2023.127806] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Bacterial infection and chronic inflammation are two major risks in diabetic wound healing, which increase patient mortality. In this study, a multifunctional sprayable nanogel (Ag-G@CS) based on chitosan has been developed to synergistically inhibit bacterial infection, eradicate biofilm, and relieve inflammation of diabetic wounds. The nanogel is successfully crafted by encapsulating with a nitric oxide (NO) donor and performing in-situ reduction of silver nanoparticles (Ag). The released NO enhances the antibacterial efficacy of Ag, nearly achieving complete eradication of biofilms in vitro. Upon application on both normal or diabetic chronic wounds, the combination effects of released NO and Ag offer a notable antibacterial effect. Furthermore, after bacteria inhibition and biofilm eradication, the NO released by the nanogel orchestrates a transformation of M1 macrophages into M2 macrophages, significantly reducing tumor necrosis factor α (TNF-α) release and relieving inflammation. Remarkably, the released NO also promotes M2a to M2c macrophages, thereby facilitating tissue remodeling in chronic wounds. More importantly, it upregulates the expression of vascular endothelial growth factor (VEGF), further accelerating the wound healing process. Collectively, the formed sprayable nanogel exhibits excellent inhibition of bacterial infections and biofilms, and promotes chronic wound healing via inflammation resolution, which has excellent potential for clinical use in the future.
Collapse
Affiliation(s)
- Qinqin Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xinyue Tao
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Ma
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Peiyao Cao
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Ashrafudoulla M, Mevo SIU, Song M, Chowdhury MAH, Shaila S, Kim DH, Nahar S, Toushik SH, Park SH, Ha SD. Antibiofilm mechanism of peppermint essential oil to avert biofilm developed by foodborne and food spoilage pathogens on food contact surfaces. J Food Sci 2023; 88:3935-3955. [PMID: 37477280 DOI: 10.1111/1750-3841.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/10/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Minsu Song
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Shanjida Shaila
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Duk Hyun Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
4
|
Liu S, Miao L, Li B, Shan S, Li D, Hou J. Long-term effects of Ag NPs on denitrification in sediment: Importance of Ag NPs exposure ways in aquatic ecosystems. WATER RESEARCH 2023; 242:120283. [PMID: 37413744 DOI: 10.1016/j.watres.2023.120283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
The widespread use of silver nanoparticles (Ag NPs) inevitably leads to their increasing release into aquatic systems, with studies indicating that the mode of Ag NPs entry into water significantly affects their toxicity and ecological risks. However, there is a lack of research on the impact of different exposure ways of Ag NPs on functional bacteria in sediment. This study investigates the long-term influence of Ag NPs on denitrification process in sediments by comparing denitrifies responses to single (pulse injection of 10 mg/L) and repetitive (1 mg/L × 10 times) Ag NPs treatments over 60-day incubation. Results showed that a single exposure of 10 mg/L Ag NPs caused an obvious toxicity on activity and abundance of denitrifying bacteria on the first 30 days, reflecting by the decreased NADH amount, ETS activity, NIR and NOS activity, and nirK gene copy number, which resulted in a significant decline of denitrification rate in sediments (from 0.59 to 0.64 to 0.41-0.47 μmol15N L-1 h-1). While inhibition was mitigated with time and denitrification process recovered to the normal at the end of the experiment, the accumulated nitrate generated in the system showed that the recovery of microbial function did not mean the restoration of aquatic ecosystem after pollution. Differently, the repetitive exposure of 1 mg/L Ag NPs exhibited the evident inhibition on metabolism, abundance, and function of denitrifiers on Day 60, due to the accumulated amount of Ag NPs with the increased dosing number, indicating that the accumulated toxicity on functional microorganic community of repetitive exposure in less toxic concentration. Our study highlights the importance of Ag NPs entry pathways into aquatic ecosystem on their ecological risks, which affected dynamic responses of microbial function to Ag NPs.
Collapse
Affiliation(s)
- Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Sujie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
5
|
Tariq S, Bano A. Role of PGPR and silver nanoparticles on the physiology of Momordica charantia L. irrigated with polluted water comprising high Fe and Mn. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1643-1655. [PMID: 36823757 DOI: 10.1080/15226514.2023.2180288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The current investigation designed to estimate the bioremediation potential of plant growth-promoting rhizobacteria (PGPR) and Ag-nanoparticles. Tube well and HIT water comprising Mn and Fe above recommended values were used as treatments while tap water irrigation was treated as control. The HIT water showed 24, 200, and 64.11% higher content of Na, K Ca over control. Seeds were sterilized in 95% ethanol and soaked for 3 h before sowing in 73 h old culture of Pseudomonas stutzeri (Kx574858) @ 108 cells/ml. Phytotoxic effect of Fe and Mn reduce plant biomass and suppress photosynthetic activity indicates. The carotenoids, proline, and proline activity were 366, 450, and 678% higher in tube well water with combined PGPR and Ag-nanoparticles treatments. Pseudomonas stutzeri was more effective than Ag-nanoparticles to reduce oxidative stress with higher production of carotenoids, flavonoids, proline content, and enzyme SOD and CAT activities in HIT water. It is contingent that the high Mn and Fe bearing waste water enhance PGPR bioremediation potential to reduce metal stress in plants with synergistic action of PGPR and organic matter to alleviate oxidative stresses under metal stress. The residual effect of P. stutzeri on organic matter content of the rhizosphere soil and germination rate was higher for Momordica charantia L.
Collapse
Affiliation(s)
- Shiza Tariq
- Department of Biosciences, University of Wah, Wah, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah, Pakistan
| |
Collapse
|
6
|
Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli. NANOMATERIALS 2022; 12:nano12132183. [PMID: 35808019 PMCID: PMC9268453 DOI: 10.3390/nano12132183] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 μg/mL and 20 ± 5, 15 + 5, 15 + 5 μg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.
Collapse
|
7
|
Ihtisham M, Noori A, Yadav S, Sarraf M, Kumari P, Brestic M, Imran M, Jiang F, Yan X, Rastogi A. Silver Nanoparticle's Toxicological Effects and Phytoremediation. NANOMATERIALS 2021; 11:nano11092164. [PMID: 34578480 PMCID: PMC8465113 DOI: 10.3390/nano11092164] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The advancement in nanotechnology has brought numerous benefits for humans in diverse areas including industry, medicine, and agriculture. The demand in the application of nanomaterials can result in the release of these anthropogenic materials into soil and water that can potentially harm the environment by affecting water and soil properties (e.g., soil texture, pH, organic matter, and water content), plants, animals, and subsequently human health. The properties of nanoparticles including their size, surface area, and reactivity affect their fate in the environment and can potentially result in their toxicological effects in the ecosystem and on living organisms. There is extensive research on the application of nano-based materials and the consequences of their release into the environment. However, there is little information about environmentally friendly approaches for removing nanomaterials from the environment. This article provides insight into the application of silver nanoparticles (AgNPs), as one of the most commonly used nanomaterials, their toxicological effects, their impacts on plants and microorganisms, and briefly reviews the possibility of remediation of these metabolites using phytotechnology approaches. This article provides invaluable information to better understand the fate of nanomaterials in the environment and strategies in removing them from the environment.
Collapse
Affiliation(s)
- Muhammad Ihtisham
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Azam Noori
- Department of Biology, Merrimack College, North Andover, MA 01845, USA;
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran;
| | - Pragati Kumari
- Scientist Hostel-S-02, Chauras Campus, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Xiaojun Yan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
- Correspondence: (X.Y.); (A.R.)
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, The Netherlands
- Correspondence: (X.Y.); (A.R.)
| |
Collapse
|
8
|
Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111918. [PMID: 33433370 DOI: 10.1016/j.jenvman.2020.111918] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles are one of the most beneficial forms of heavy metals in nanotechnology applications. Due to its exceptional antimicrobial properties, low electrical and thermal resistance, and surface plasmon resonance, silver nanoparticles are used in a wide variety of products, including consumer goods, healthcare, catalysts, electronics, and analytical equipment. As the production and applications of silver nanoparticles containing products increase daily, the environmental pollution due to silver nanoparticles release is increasing and affecting especially the aqueous ecosystem. Silver nanoparticles can kill useful bacteria in soil and water, and bioaccumulate in living organisms even at low concentrations from 10-2 to 10 μg/mL silver can show antibacterial effect. On the other hand, the maximum silver discharge limit into freshwater is 0.1 μg/L and 3.2 μg/L for Australia and the USA, respectively. To reduce its toxic consequences and meet the regulatory guidelines, it is crucial to remove silver nanoparticles from wastewater before it is discharged into other water streams. Several technologies are available to remove silver nanoparticles, but the adsorption process using low-cost adsorbents is a promising alternative to mitigate silver nanoparticle pollution in the bulk stage. As one of the low-cost adsorbents, biochar produced from the biomass waste could be a suitable adsorbent. This review focuses on collating the latest evidence on silver nanoparticle production, applications, environmental consequences, and cost-effective technological approaches for silver removal from wastewater.
Collapse
Affiliation(s)
- Md Anwarul Islam
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
9
|
Silver nanoparticles from Hpytus suaveolens and their effect on biochemical and physiological parameter in mesquite plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Foliar application of green nanoparticles in Annona muricata L. plants and their effects in physiological and biochemical parameters. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Zhang B, Liu N, Liu QS, Zhang J, Zhou Q, Jiang G. Silver nanoparticles induce size-dependent and particle-specific neurotoxicity to primary cultures of rat cerebral cortical neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110674. [PMID: 32387843 DOI: 10.1016/j.ecoenv.2020.110674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are widely applied in many fields because of their excellent antibacterial activities. Toxicological studies have showed that AgNPs can cross the blood-brain barrier and exhibit high retention in the brain. Therefore, the potential neurotoxicity of AgNPs is raising serious concerns. This study investigated the neurotoxicological effects of AgNPs with two different sizes (20 nm and 70 nm, AgNPs-20 and AgNPs-70) using primary cultures of rat cerebral cortical neurons in mature and developing stages. The contribution of silver ion release was investigated by testing the effects of ionic silver in parallel. The results showed that both AgNPs-20 and AgNPs-70 significantly decreased neuronal cell viability, and AgNPs-20 had stronger toxicity compared with AgNPs-70. AgNP applications caused the granulated skeleton structure of the mature neurons with some broken synapses after a 24-h exposure, and inhibited neuronal growth during a 7-day exposure. Intracellular silver accumulation at non-cytotoxic exposure levels inhibited dopamine efflux, which was particle-specific and free of released silver ions. The findings herein can aid in guiding the proper applications of AgNPs in different areas, especially in medical use.
Collapse
Affiliation(s)
- Bingjie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
The Effect of the Chorion on Size-Dependent Acute Toxicity and Underlying Mechanisms of Amine-Modified Silver Nanoparticles in Zebrafish Embryos. Int J Mol Sci 2020; 21:ijms21082864. [PMID: 32325940 PMCID: PMC7215958 DOI: 10.3390/ijms21082864] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/16/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
As the worldwide application of nanomaterials in commercial products increases every year, various nanoparticles from industry might present possible risks to aquatic systems and human health. Presently, there are many unknowns about the toxic effects of nanomaterials, especially because the unique physicochemical properties of nanomaterials affect functional and toxic reactions. In our research, we sought to identify the targets and mechanisms for the deleterious effects of two different sizes (~10 and ~50 nm) of amine-modified silver nanoparticles (AgNPs) in a zebrafish embryo model. Fluorescently labeled AgNPs were taken up into embryos via the chorion. The larger-sized AgNPs (LAS) were distributed throughout developing zebrafish tissues to a greater extent than small-sized AgNPs (SAS), which led to an enlarged chorion pore size. Time-course survivorship revealed dose- and particle size-responsive effects, and consequently triggered abnormal phenotypes. LAS exposure led to lysosomal activity changes and higher number of apoptotic cells distributed among the developmental organs of the zebrafish embryo. Overall, AgNPs of ~50 nm in diameter exhibited different behavior from the ~10-nm-diameter AgNPs. The specific toxic effects caused by these differences in nanoscale particle size may result from the different mechanisms, which remain to be further investigated in a follow-up study.
Collapse
|
13
|
Lu T, Qu Q, Lavoie M, Pan X, Peijnenburg WJGM, Zhou Z, Pan X, Cai Z, Qian H. Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113727. [PMID: 31838393 DOI: 10.1016/j.envpol.2019.113727] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used because of their excellent antibacterial properties. They are, however, easily discharged into the water environment, causing potential adverse environmental effects. Meta-transcriptomic analyses are helpful to study the transcriptional response of prokaryotic and eukaryotic aquatic microorganisms to AgNPs. In the present study, microcosms were used to investigate the toxicity of AgNPs to a natural aquatic microbial community. It was found that a 7-day exposure to 10 μg L-1 silver nanoparticles (AgNPs) dramatically affected the structure of the microbial community. Aquatic micro eukaryota (including eukaryotic algae, fungi, and zooplankton) and bacteria (i.e., heterotrophic bacteria and cyanobacteria) responded differently to the AgNPs stress. Meta-transcriptomic analyses demonstrated that eukaryota could use multiple cellular strategies to cope with AgNPs stress, such as enhancing nitrogen and sulfur metabolism, over-expressing genes related to translation, amino acids biosynthesis, and promoting bacterial-eukaryotic algae interactions. By contrast, bacteria were negatively affected by AgNPs with less signs of detoxification than in case of eukaryota; various pathways related to energy metabolism, DNA replication and genetic repair were seriously inhibited by AgNPs. As a result, eukaryotic algae (mainly Chlorophyta) dominated over cyanobacteria in the AgNPs treated microcosms over the 7-d exposure. The present study helps to understand the effects of AgNPs on aquatic microorganisms and provides insights into the contrasting AgNPs toxicity in eukaryota and bacteria.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Michel Lavoie
- Quebec-Ocean and Takuvik Joint International Research Unit, Université Laval, Québec, G1VOA6, Canada
| | - Xiangjie Pan
- Zhejiang Fangyuan Test Group Co Ltd, Hangzhou, 310013, Zhejiang, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology and Biotechnology, School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, 213164, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
14
|
Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Levard C, Vandenbulcke F. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:578-598. [PMID: 31330350 DOI: 10.1016/j.envpol.2019.07.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely incorporated in many products, partly due to their antimicrobial properties. The subsequent discharge of this form of silver into wastewater leads to an accumulation of silver species (AgNPs and derivatives resulting from their chemical transformation), in sewage sludge. As a result of the land application of sewage sludge for agricultural or remediation purposes, soils are the primary receiver media of silver contamination. Research on the long-term impact of AgNPs on the environment is ongoing, and this paper is the first review that summarizes the existing state of scientific knowledge on the potential impact of silver species introduced into the soil via sewage sludge, from microorganisms to earthworms and plants. Silver species can easily enter cells through biological membranes and affect the physiology of organisms, resulting in toxic effects. In soils, exposure to AgNPs may change microbial biomass and diversity, decrease plant growth and inhibit soil invertebrate reproduction. Physiological, biochemical and molecular effects have been documented in various soil organisms and microorganisms. Negative effects on organisms of the dominant form of silver in sewage sludge, silver sulfide (Ag2S), have been observed, although these effects are attenuated compared to the effects of metallic AgNPs. However, silver toxicity is complex to evaluate and much remains unknown about the ecotoxicology of silver species in soils, especially with respect to the possibility of transfer along the trophic chain via accumulation in plant and animal tissues. Critical points related to the hazards associated with the presence of silver species in the environment are described, and important issues concerning the ecotoxicity of sewage sludge applied to soil are discussed to highlight gaps in existing scientific knowledge and essential research directions for improving risk assessment.
Collapse
Affiliation(s)
- Pauline Courtois
- Univ. Lille - LGCgE - Laboratoire de Génie Civil et géo-Environnement, Cité scientifique, SN3, F-59655, Villeneuve d'Ascq, France
| | - Agnieszka Rorat
- Univ. Lille - LGCgE - Laboratoire de Génie Civil et géo-Environnement, Cité scientifique, SN3, F-59655, Villeneuve d'Ascq, France
| | - Sébastien Lemiere
- Univ. Lille - LGCgE - Laboratoire de Génie Civil et géo-Environnement, Cité scientifique, SN3, F-59655, Villeneuve d'Ascq, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour/E2S/CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et les Matériaux (IPREM), UMR 5254, 64000, Pau, France
| | - Eléonore Attard
- Université de Pau et des Pays de l'Adour/E2S/CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et les Matériaux (IPREM), UMR 5254, 64000, Pau, France
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
| | - Franck Vandenbulcke
- Univ. Lille - LGCgE - Laboratoire de Génie Civil et géo-Environnement, Cité scientifique, SN3, F-59655, Villeneuve d'Ascq, France.
| |
Collapse
|
15
|
Huang J, Yan C, Liu J, Guan W, Singh RP, Cao C, Xiao J. Feasibility study of vertical flow constructed wetland for tertiary treatment of nanosilver wastewater and temporal-spatial distribution of pollutants and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:28-36. [PMID: 31136937 DOI: 10.1016/j.jenvman.2019.04.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) have the potential to cause negative effects on nutrient removal in constructed wetlands (CWs), further leading to the deterioration of the water. The current work aimed to investigate the feasibility of vertical flow CW (VFCW) for tertiary treatment of AgNPs wastewater, temporal-spatial distribution of pollutants, and microbial community after 450-day exposure. Results reveal that the effluent of VFCW could still meet the discharge limits except the slightly excessive concentration of phosphorus (>0.5 mg/L) from day 390, with the average removal efficiencies of 83%, 61%, 42%, 70%, and 66% for the chemical oxygen demand, total nitrogen, ammonia nitrogen, total phosphorus, and soluble orthophosphate during 450 days, respectively. Results show that AgNPs removal was relatively stable over time, up to 96%. The temporal-spatial analysis reveals that all contaminants were mainly retained in the soil layer. The Ag concentrations in the upper soil layer and plant roots were higher than that in the lower soil layer and plant stems and leaves, respectively. Microbial sequencing analysis reveals the significant differences in the microbial community at different depths on day 450, with the dominant phyla of Proteobacteria, Acidobacteria, Chloroflexi and Bacteroidetes, and dominant genera of Halomonas and Pseudomonas. These results provide much needed knowledge for the implementation of ecological technologies for AgNPs and nutrient removal simultaneously.
Collapse
Affiliation(s)
- Juan Huang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Chunni Yan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Jialiang Liu
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Wenzhu Guan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Rajendra Prasad Singh
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Chong Cao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Jun Xiao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
16
|
Alizadeh S, Abdul Rahim A, Guo B, Hawari J, Ghoshal S, Comeau Y. Impacts of Continuous Inflow of Low Concentrations of Silver Nanoparticles on Biological Performance and Microbial Communities of Aerobic Heterotrophic Wastewater Biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9148-9159. [PMID: 31294965 DOI: 10.1021/acs.est.9b01214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Attached-growth wastewater processes are currently used in water resource recovery facilities (WRRFs) for required upgrades due to an increase in influent loading or to reach more stringent discharge criteria. Yet, the distribution and long-term inhibitory effects of silver nanoparticles (AgNPs) in attached-growth biological wastewater processes and their impact on involved microbial communities are poorly understood at relevant, low concentrations. Retention, distribution, and long-term inhibitory effect of polyvinylpyrrolidone (PVP)-coated AgNPs were evaluated in bench-scale moving bed biofilm reactors (MBBRs), achieving soluble organic matter removal, over a 64 day exposure to nominal concentrations of 10 and 100 μg/L. Distributions of continuously added AgNPs were characterized in the influent, bioreactor, and effluent of MBBRs using single particle inductively coupled plasma mass spectroscopy (spICP-MS). Aerobic heterotrophic biofilms in MBBRs demonstrated limited retention capacity for AgNPs over long-term exposure, with release of AgNPs, and Ag-rich biofilm sloughed from the carriers. Continuous exposure to both influent AgNP concentrations significantly decreased soluble chemical oxygen demand (SCOD) removal efficiency (11% to 31%) and reduced biofilm viability (8% to 30%). Specific activities of both intracellular dehydrogenase (DHA) and extracellular α-glucosidase (α-Glu) and protease (PRO) enzymes were significantly inhibited (8% to 39%) with an observed NP dose-dependent intracellular reactive oxygen species (ROS) production and shift in biofilm microbial community composition by day 64. Our results indicated that long-term exposure to AgNPs in biofilm processes at environmentally relevant concentrations can impact the treatment process stability and the quality of the discharged effluent.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| | - Arshath Abdul Rahim
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Bing Guo
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Jalal Hawari
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| | - Subhasis Ghoshal
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Yves Comeau
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| |
Collapse
|
17
|
Hou J, Li T, Miao L, You G, Xu Y, Liu S. Effects of titanium dioxide nanoparticles on algal and bacterial communities in periphytic biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:407-414. [PMID: 31103000 DOI: 10.1016/j.envpol.2019.04.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The widespread application of commercial TiO2 NPs inevitably leads to their release into environmental waters through various ways. TiO2 NPs released into water might be absorbed by and react with periphytic biofilms, which are a kind of aquatic environmental media of important ecological significance, and influence the physiological activity and ecological function of periphytic biofilms. This study investigated the effects of exposure to 1 mg/L and 5 mg/L of TiO2 NPs on periphytic biofilms cultured indoors. After a 10-day exposure to TiO2 NPs, the growth (measured by chlorophyll-a content) of microalgal community was inhibited greatly (more than 60%); however, the primary production (indicated by quantum yield) of periphytic biofilms maintained changeless. As for bacteria, TiO2 NP-exposure increased the bacterial diversity and altered the composition structure. Significant changes were observed in the bacterial communities at the class level, mainly including Alphaproteobacteria, Gammaproteobacteria, Cytophagia, Flavobacteriia, Sphingobacteriia, Synechococcophycideae and Oscillatoriophycideae. The enhancement of metabolic activities (the production of extracellular polymeric substances, especially proteins content increased by 48.51%) of periphytic biofilms was a resistance mechanism to toxicity of NPs. As for extracellular enzyme activities of periphytic biofilms, alkaline phosphatase activity was inhibited (22.43%) after exposed to 5 mg/L of TiO2 NPs, which posed a threat to phosphorus metabolism of periphytic biofilms. Overall, this study demonstrated that 1 mg/L and 5 mg/L of TiO2 NPs negatively influenced physiological activities and ecological functions of periphytic biofilms, highlighting that the ecological risks of TiO2 NPs should be paid attention to.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Tengfei Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Gouxiang You
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
18
|
Majumdar M, Biswas SC, Choudhury R, Upadhyay P, Adhikary A, Roy DN, Misra TK. Synthesis of Gold Nanoparticles UsingCitrus macropteraFruit Extract: Anti‐Biofilm and Anticancer Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201804021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Moumita Majumdar
- Department of ChemistryNational Institute of Technology Agartala, Agartala Tripura 799046 India
| | - Suresh Chandra Biswas
- Department of ChemistryNational Institute of Technology Agartala, Agartala Tripura 799046 India
| | - Rupasree Choudhury
- Department of ChemistryNational Institute of Technology Agartala, Agartala Tripura 799046 India
| | - Priyanka Upadhyay
- Centre for Research in Nanoscience and NanotechnologyCalcutta University Kolkata 700098, WB India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and NanotechnologyCalcutta University Kolkata 700098, WB India
| | - Dijendra Nath Roy
- Department of BioengineeringNational Institute of Technology Agartala Tripura 799046 India
| | - Tarun Kumar Misra
- Department of ChemistryNational Institute of Technology Agartala, Agartala Tripura 799046 India
| |
Collapse
|
19
|
Liu X, Dumitrescu E, Kumar A, Austin D, Goia D, Wallace KN, Andreescu S. Differential lethal and sublethal effects in embryonic zebrafish exposed to different sizes of silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:627-634. [PMID: 30844699 DOI: 10.1016/j.envpol.2019.02.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/20/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Various parameters can influence the toxic response to silver nanoparticles (Ag NPs), including the size and surface properties, as well as the exposure environment and the biological site of action. Herein, we assess the intestinal toxicity of three different sizes (10, 40, and 100 nm) of Ag NPs in embryonic zebrafish, and describe the relationship between the properties and behavior of Ag NPs in the exposure medium, and induction of lethal and sublethal effects. We find that the composition of the medium and the size contribute to differential NPs agglomeration, release of Ag ions, and subsequent effects during exposure. The exposure medium causes dramatic reduction in silver dissolution due to the presence of salts and divalent cations, which limits the lethal potential of silver ions. Lethality is observed primarily for embryos exposed to medium sized Ag NPs (40 nm), but not to the supernatant originated from particles, which suggests that the exposure to particulate silver is the main cause of mortality. On the other hand, the exposure to 10 nm and 100 nm NPs, as well as Ag ions, only causes sublethal developmental defects in skeletal muscles and intestine, and induces a nitric oxide imbalance.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Eduard Dumitrescu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Ajeet Kumar
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Daniel Austin
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Dan Goia
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Kenneth N Wallace
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5805, USA
| | - Silvana Andreescu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA.
| |
Collapse
|
20
|
Alizadeh S, Ghoshal S, Comeau Y. Fate and inhibitory effect of silver nanoparticles in high rate moving bed biofilm reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1199-1210. [PMID: 30180328 DOI: 10.1016/j.scitotenv.2018.08.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Municipal water resource recovery facilities are the primary recipients of a significant fraction of discharged silver nanoparticle (AgNP)-containing wastes, yet the fate and potential risks of AgNPs in attached-growth biological wastewater treatment processes are poorly understood. The fate and inhibitory effects of polyvinylpyrrolidone (PVP)-coated AgNPs at environmentally-relevant nominal concentrations (10, 100, 600 μg/L) were investigated, for the first time, in high rate moving bed biofilm reactors (MBBRs) for soluble organic matter removal. The behavior and removal of continuously added AgNPs were characterized using single-particle inductively coupled plasma mass spectrometry (spICP-MS). While no inhibitory effect at average influent concentration of 10.8 μg/L Ag was observed, soluble COD removal efficiency was significantly decreased at 131 μg/L Ag in 18 days and 631 μg/L Ag in 5 days with suppressed biofilm viability. The inhibitory effect of AgNPs on treatment efficiency was highly correlated to the retained mass of total Ag in attached biofilm on the carriers. Biofilm demonstrated limited retention capacity for AgNPs over 18 days. Considerable mass of Ag (38% to 75%) was released via effluent, predominantly as NPs. We detected some chemically transformed and potentially less toxic forms of silver nanoparticles (Ag2S, AgCl), over the exposure period. This study demonstrated the distinct interaction dynamics, bioavailability and inhibitory effects of AgNPs in a biofilm system. Release of bioavailable AgNPs via effluent and AgNP-rich biofilm, sloughing off the carriers, can affect the treatment chain efficiency of downstream processes. Thus, the inhibitory effects of AgNPs can be a concern even at concentrations as low as 100 to 600 μg/L Ag in biological attached growth wastewater treatments.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, 2500 Polytechnique road, Montreal, (Quebec) H3T 1J4, Canada.
| | - Subhasis Ghoshal
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, (Quebec) H3A 0C3, Canada
| | - Yves Comeau
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, 2500 Polytechnique road, Montreal, (Quebec) H3T 1J4, Canada
| |
Collapse
|
21
|
Khan I, Sivasankaran N, Nagarjuna R, Ganesan R, Dutta JR. Extracellular probiotic lipase capped silver nanoparticles as highly efficient broad spectrum antimicrobial agents. RSC Adv 2018; 8:31358-31365. [PMID: 35548221 PMCID: PMC9085599 DOI: 10.1039/c8ra05999c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022] Open
Abstract
The microbial resistance to different drugs due to excessive usage of antibiotics in various domains has become a serious environmental threat in recent years. This gave the impetus to researchers to find alternatives that do not lead to multi-drug resistant microbes. In this backdrop, silver nanoparticles (Ag NPs) have become a popular choice due to their potential broad spectrum of antimicrobial attributes. Recent literature caution that about 400 metric tons of Ag NPs are synthesized annually all over the world that could cause environmental hazards when used at higher concentrations than the toxicity limit. However, most of the literature reports use higher concentrations of Ag NPs and exposure to such concentrations may lead to environmental and health hazards. In this study, a series of Ag NPs have been synthesized using a lipase derived from a probiotic source Lactobacillus plantarum as the stabilizing agent. The Ag NPs synthesized through different combinations of lipase and AgNO3 are characterized using various techniques such as UV-visible spectroscopy, FT-IR, ED-XRF, DLS and HR-TEM. The lipase capped Ag NPs have been studied for their antimicrobial activity against representative microbes such as Pseudomonas putida, Staphylococcus aureus and Aspergillus niger. Our initial results reveal that the lipase capped Ag NPs possess high potential towards broad spectrum antimicrobial applications at concentrations much lower than the toxicity limit of the standard model, zebra fish.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 6630 3542
| | - Nivetha Sivasankaran
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 6630 3542
| | - Ravikiran Nagarjuna
- Department of Chemistry, BITS Pilani, Hyderabad Campus Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 6630 3602
| | - Ramakrishnan Ganesan
- Department of Chemistry, BITS Pilani, Hyderabad Campus Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 6630 3602
| | - Jayati Ray Dutta
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 6630 3542
| |
Collapse
|
22
|
Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E681. [PMID: 30200373 PMCID: PMC6163202 DOI: 10.3390/nano8090681] [Citation(s) in RCA: 643] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 313 Splaiul Independenței, Bucharest 060042, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, Magurele 077125, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, Craiova 200349, Romania.
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| |
Collapse
|