1
|
Fernandes LB, Awasthi VD, Sharma K, Bandyopadhyaya R, Gundabala V. Single-Step Microfluidics-Based Method for Fabrication of Nanoparticle-Coated Functional Microfibers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18920-18930. [PMID: 40084821 DOI: 10.1021/acsami.5c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Fibers coated with nanoparticles have diverse applications as catalysts, biosensors, tissue scaffolds, and adsorbents for contaminants in water purification. However, current fabrication techniques employ multistep processes that often result in uneven nanoparticle coatings, consequently leading to reduced activity. Here we present a single-step microfluidics-based approach for the generation of microfibers with uniformly coated nanoparticles. Inside a microfluidic device, magnesium oxide (MgO) nanoparticles are deposited onto a poly(vinylidene fluoride) (PVDF) polymer solution jet that is solidifying into fibers through solvent evaporation. The formed fibers display a uniform coating of nanoparticles on their surfaces, which is a crucial requirement in all applications. Using these fibers for water purification, we demonstrate that a single adsorbent of MgO can effectively remove multiple heavy metal contaminants, including As(III), As(V), Pb(II), Cd(II), and both As(III) and As(V) together. Remarkably, MgO nanoparticles, when coated onto fibers, have shown higher contaminant removal efficiency than when used alone, arguably due to the greater nanoparticle surface area available in the coated form. The developed microfluidic technique could possibly be used to fabricate various other nanomaterial (nanorods, quantum dots, and proteins) coated fibers, leading to a diverse array of applications.
Collapse
Affiliation(s)
- Lizelle B Fernandes
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vishwesh Dutt Awasthi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kajal Sharma
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajdip Bandyopadhyaya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Venkat Gundabala
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Akdaşçi E, Duman H, Eker F, Bechelany M, Karav S. Chitosan and Its Nanoparticles: A Multifaceted Approach to Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:126. [PMID: 39852740 PMCID: PMC11768082 DOI: 10.3390/nano15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products. Within the context of the antibacterial mechanism of chitosan and chitosan NPs, we present a review that provides an overview of the synthesis methods, including novel procedures, and compiles the applications that have been developed in the field of biomedicine. These applications include wound healing, drug delivery, dental treatment, water purification, agriculture, and food preservation. In addition to this, we focus on the mechanisms of action and the factors that determine the antibacterial activity of chitosan and its derivatives. In conjunction with this line of inquiry, researchers are strongly urged to concentrate their efforts on developing novel and ground-breaking applications of chitosan NPs.
Collapse
Affiliation(s)
- Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Mikhael Bechelany
- European Institute for Membranes (IEM), UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CEDEX 5, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| |
Collapse
|
3
|
Li S, Thiyagarajan D, Lee BK. Efficient removal of methylene blue from aqueous solution by ZIF-8-decorated helicoidal electrospun polymer strips. CHEMOSPHERE 2023; 333:138961. [PMID: 37207900 DOI: 10.1016/j.chemosphere.2023.138961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Immobilization of metal-organic frameworks (MOFs) on electrospun products for wastewater treatment has garnered considerable attention in recent years. However, the effect of the overall geometry and surface-area-to-volume ratio of MOF-decorated electrospun architectures on their performances have rarely been investigated. Herein, we prepared polycaprolactone (PCL)/polyvinylpyrrolidone (PVP) strips with helicoidal geometries via immersion electrospinning. By regulating the weight ratio of PCL to PVP, the morphologies and surface-area-to-volume ratios of the PCL/PVP strips could be controlled precisely. Then, the zeolitic imidazolate framework-8 (ZIF-8) for removing methylene blue (MB) from an aqueous solution was immobilized on the electrospun strips, resulting in ZIF-8-decorated PCL/PVP strips. The key characteristics of these composite products, such as adsorption and photocatalytic degradation behavior toward MB in the aqueous solution, were carefully investigated. Owing to the desired overall geometry and high surface-area-to-volume ratio of the ZIF-8-decorated helicoidal strips, a high MB adsorption capacity of 151.6 mg g-1 was obtained, which is significantly higher than those with conventional electrospun straight fibers. In addition, higher MB uptake rates, higher recycling and kinetic adsorption efficiencies, higher MB photocatalytic degradation efficiencies, and faster MB photocatalytic degradation rates were confirmed. This work provides new insights to improve the performance of existing and potential electrospun product-based water treatment strategies.
Collapse
Affiliation(s)
- Shichen Li
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| | - Dhandayuthapani Thiyagarajan
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Bong-Kee Lee
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Anaerobic Membrane Bioreactor (AnMBR) for the Removal of Dyes from Water and Wastewater: Progress, Challenges, and Future Perspectives. Processes (Basel) 2023. [DOI: 10.3390/pr11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The presence of dyes in aquatic environments can have harmful effects on aquatic life, including inhibiting photosynthesis, decreasing dissolved oxygen levels, and altering the behavior and reproductive patterns of aquatic organisms. In the initial phase of this review study, our aim was to examine the categories and properties of dyes as well as the impact of their toxicity on aquatic environments. Azo, phthalocyanine, and xanthene are among the most frequently utilized dyes, almost 70–80% of used dyes, in industrial processes and have been identified as some of the most commonly occurring dyes in water bodies. Apart from that, the toxicity effects of dyes on aquatic ecosystems were discussed. Toxicity testing relies heavily on two key measures: the LC50 (half-lethal concentration) and EC50 (half-maximal effective concentration). In a recent study, microalgae exposed to Congo Red displayed a minimum EC50 of 4.8 mg/L, while fish exposed to Disperse Yellow 7 exhibited a minimum LC50 of 0.01 mg/L. Anaerobic membrane bioreactors (AnMBRs) are a promising method for removing dyes from water bodies. In the second stage of the study, the effectiveness of different AnMBRs in removing dyes was evaluated. Hybrid AnMBRs and AnMBRs with innovative designs have shown the capacity to eliminate dyes completely, reaching up to 100%. Proteobacteria, Firmicutes, and Bacteroidetes were found to be the dominant bacterial phyla in AnMBRs applied for dye treatment. However, fouling has been identified as a significant drawback of AnMBRs, and innovative designs and techniques are required to address this issue in the future.
Collapse
|
5
|
Zhong ZR, Jiang HL, Shi N, Lv HW, Liu ZJ, He FA. A novel tetrafluoroterephthalonitrile-crosslinked quercetin/chitosan adsorbent and its adsorption properties for dyes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Pai S, Kini MS, Rangasamy G, Selvaraj R. Mesoporous calcium hydroxide nanoparticle synthesis from waste bivalve clamshells and evaluation of its adsorptive potential for the removal of Acid Blue 113 dye. CHEMOSPHERE 2023; 313:137476. [PMID: 36513196 DOI: 10.1016/j.chemosphere.2022.137476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/05/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Calcium hydroxide nanoadsorbent was prepared from waste bivalve clamshells and used for the adsorptive removal of Acid Blue 113 (AB113) dye. The morphology, elemental nature, functional groups, and thermal stability of the nanoadsorbent were characterized by various methods. The nanoadsorbent had a high monolayer adsorption capacity (153.53 mg/g) for AB113 dye. Langmuir and Temkin isotherms better fitted (R2 > 0.95) the experimental data. The adsorption rate followed pseudo-second-order kinetics (R2 > 0.99). The thermodynamic study ascertained spontaneous and exothermic adsorption. This study confirmed the possibility of using calcium hydroxide as an adsorbent to effectively remove AB113 dye from aqueous solutions.
Collapse
Affiliation(s)
- Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal, Karnataka, 576104, India
| | - M Srinivas Kini
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal, Karnataka, 576104, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Zhou Y, Wang J, Zhao Q, Cai H, Zhang H. Selective Adsorption and Removal of Congo Red Based on Ethylenediamine Functionalized Mesoporous Silica. ChemistrySelect 2022. [DOI: 10.1002/slct.202203280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yunpeng Zhou
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| | - Jing Wang
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| | - Qian Zhao
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| | - Honghui Cai
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| | - Hao Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| |
Collapse
|
8
|
Waste polystyrene foam – Chitosan composite materials as high-efficient scavenger for the anionic dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Rápó E, Tonk S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules 2021; 26:5419. [PMID: 34500848 PMCID: PMC8433845 DOI: 10.3390/molecules26175419] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/07/2022] Open
Abstract
The primary, most obvious parameter indicating water quality is the color of the water. Not only can it be aesthetically disturbing, but it can also be an indicator of contamination. Clean, high-quality water is a valuable, essential asset. Of the available technologies for removing dyes, adsorption is the most used method due to its ease of use, cost-effectiveness, and high efficiency. The adsorption process is influenced by several parameters, which are the basis of all laboratories researching the optimum conditions. The main objective of this review is to provide up-to-date information on the most studied influencing factors. The effects of initial dye concentration, pH, adsorbent dosage, particle size and temperature are illustrated through examples from the last five years (2017-2021) of research. Moreover, general trends are drawn based on these findings. The removal time ranged from 5 min to 36 h (E = 100% was achieved within 5-60 min). In addition, nearly 80% efficiency can be achieved with just 0.05 g of adsorbent. It is important to reduce adsorbent particle size (with Φ decrease E = 8-99%). Among the dyes analyzed in this paper, Methylene Blue, Congo Red, Malachite Green, Crystal Violet were the most frequently studied. Our conclusions are based on previously published literature.
Collapse
Affiliation(s)
- Eszter Rápó
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
- Department of Genetics, Microbiology and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly No. 1, H-2100 Gödöllő, Hungary
| | - Szende Tonk
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Uflyand IE, Zhinzhilo VA, Nikolaevskaya VO, Kharisov BI, González CMO, Kharissova OV. Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Competitive adsorption of anionic dyes onto DMOA modified MCM-41. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04521-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Lin J, Su T, Chen J, Xue T, Yang S, Guo P, Lin H, Wang H, Hong Y, Su Y, Peng L, Li J. Efficient adsorption removal of anionic dyes by an imidazolium-based mesoporous poly(ionic liquid) including the continuous column adsorption-desorption process. CHEMOSPHERE 2021; 272:129640. [PMID: 33465618 DOI: 10.1016/j.chemosphere.2021.129640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/31/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The mesoporous poly(N,N'-methylene-bis(1-(3-vinylimidazolium)) chloride), labeled as PDVIm-Cl, with double anions (Cl-) and low monomer molecular weight was synthesized and applied in the adsorption of anionic dyes (acid orange 7 (AO7), sunset yellow (SY), reactive blue 19 (RB19), congo red (CR)). Due to the mesoporous structure, abundant Cl- and positively charged imidazole rings, the poly(ionic liquid) (PIL) exhibited superior adsorption ability towards anionic dyes. What is more, the RB19 adsorption by PDVIm-Cl could achieve the highest capacity (2605 ± 254 mg g-1) which was nearly twice higher than the maximum adsorption capacity of the previously reported materials. All the adsorption kinetic data and isotherms fitted well with the pseudo second-order model and Langmuir-Freundlich model. To better explore the practical potential of the PIL for dye adsorption, the adsorption under different pH values and column adsorption performances were also evaluated. Results showed that PDVIm-Cl exhibited high removal efficiencies for anionic dyes over a wide pH range (2-10). Also, the great reusability could be well demonstrated by the achievable continuous column adsorption-desorption process. It is worth mentioning that the regeneration could be realized with very little desorbent which was far less than the adsorption volume flowing through the column and the desorption efficiency was well maintained after three consecutive cycles. At last, the adsorption mechanism was explored by experiments combined with quantum chemical calculations and showed anionic dyes adsorption by PDVIm-Cl was a joint process dominated by the ion exchange, electrostatic interaction, hydrogen bond and π-π stacking.
Collapse
Affiliation(s)
- Ju Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tiezhu Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiawen Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianwei Xue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuliang Yang
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Peiwen Guo
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongying Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongtao Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanzhen Hong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuzhong Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li Peng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen, 361005, China; Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen, 361005, China.
| |
Collapse
|
13
|
Aramesh N, Bagheri AR, Bilal M. Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms. Int J Biol Macromol 2021; 183:399-422. [PMID: 33930445 DOI: 10.1016/j.ijbiomac.2021.04.158] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/01/2023]
Abstract
Environmental pollution by dyes molecules has become a subject of intensive research in recent years due to their hazardous effects on human health, organisms, and animals. Effective treatment and removal of dye molecules from the environmental matrices and water sources are of supreme concern. The deployment of cheap, safe, green, sustainable, and eco-friendly materials to remove these pollutants from water is the main challenge during the last decades. Chitosan and its derivatives/composites, as a cheap, easily available, and environmentally friendly sorbent, have attracted increasing attention for the removal of dye molecules. This review article focuses on the application of chitosan and chitosan-based smart adsorbents for the removal of dyes. Recent methods for the preparation of chitosan-based composites and their application in the removal of dyes are discussed. Moreover, the possible mechanisms for the interaction of chitosan and chitosan-based adsorbents with dyes molecules were evaluated. Finally, future prospects of using chitosan as an adsorbent for the removal of dye molecules are directed.
Collapse
Affiliation(s)
- Nahal Aramesh
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
14
|
Azha SF, Shahadat M, Ismail S, Ali SW, Ahammad SZ. Prospect of clay-based flexible adsorbent coatings as cleaner production technique in wastewater treatment, challenges, and issues: A review. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
|
16
|
Tang Y, Zhao J, Zhang Y, Zhou J, Shi B. Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization. CHEMOSPHERE 2021; 263:127987. [PMID: 32835980 DOI: 10.1016/j.chemosphere.2020.127987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The high value-added use of tannery solid waste and elimination of tannery liquid waste in the leather-making industry have attracted widespread attention. In this study, a MgO-doped biochar (MgO/BC) adsorbent was successfully prepared by utilizing tannery solid waste (i.e., non-tanned hide wastes) as the biomass material for dye removal from tannery wastewater. Characterization results indicated that MgO was uniformly embedded into the porous BC structure. The adsorption capacity of acid orange II by MgO/BC reached up to 448.4 mg g-1, which drastically exceeded the pure BC and other reported adsorbents. The adsorption behavior of acid orange II by MgO/BC matched nicely with Langmuir isotherm and pseudo-second-order kinetic model. This satisfactory adsorption capacity of MgO/BC for acid orange II was mainly due to the large specific surface area and the enhanced electrostatic interaction. According to the BET, zeta potential and XPS analysis, the possible mechanism towards acid orange II removal was attributed to the pore filling, surface complexation, electrostatic attraction and π-π interaction. In addition, MgO/BC showed the efficient removal towards anionic dyes from actual tannery wastewater. This work could provide guidance for the value-added utilization of tannery solid waste and a practical way to remove dyes from tannery wastewater.
Collapse
Affiliation(s)
- Yuling Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Jieting Zhao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Yingjiao Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Jianfei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China.
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, PR China
| |
Collapse
|
17
|
Green and facile synthesis of cobalt-based metal–organic frameworks for the efficient removal of Congo red from aqueous solution. J Colloid Interface Sci 2020; 578:500-509. [DOI: 10.1016/j.jcis.2020.05.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/23/2020] [Accepted: 05/31/2020] [Indexed: 01/03/2023]
|
18
|
Wang H, Zhou Y, Hu X, Guo Y, Cai X, Liu C, Wang P, Liu Y. Optimization of Cadmium Adsorption by Magnetic Graphene Oxide Using a Fractional Factorial Design. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6648. [PMID: 32933079 PMCID: PMC7559111 DOI: 10.3390/ijerph17186648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
Graphene materials have attracted increasing interest in water remediation. In this study, magnetic graphene oxide (MGO) was prepared through the modified Hummers method and the adsorption behaviors of cadmium were investigated. Firstly, the sorption kinetics, isotherms, as well as the effects of pH were investigated. Then, fractional factorial design (FFD) was used to optimize the effects of pH, temperature, time, initial concentration of cadmium ion and NaCl on cadmium adsorption. The results indicate that MGO could effectively remove cadmium ions from an aqueous solution and the sorption data could be described well by pseudo-second-order and Freundlich models, showing that the adsorption rate of cadmium ions on MGO is multilayer adsorption and dominated by the chemical adsorption. According to the FFD results, the maximum adsorption capacity of cadmium ions was 13.169 mg/g under the optimum condition of pH value 8, 45 °C, contact time 60 min, initial cadmium concentration of 70 mg/L and NaCl concentration of 100 mg/L. Higher levels of the pH value, temperature and initial cadmium concentration are beneficial to the adsorption process. These results are important for estimating and optimizing the removal of metal ions by MGO composite.
Collapse
Affiliation(s)
- Hui Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (Y.Z.); (X.H.)
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yiming Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (Y.Z.); (X.H.)
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (Y.Z.); (X.H.)
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuan Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.G.); (C.L.)
| | - Xiaoxi Cai
- College of Art and Design, Hunan First Normal University, Changsha 410205, China;
| | - Chunjie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.G.); (C.L.)
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (Y.Z.); (X.H.)
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
19
|
Removal of textile dyes from single and binary component systems by Persian bentonite and a mixed adsorbent of bentonite/charred dolomite. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124807] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Ganglo C, Rui J, Zhu Q, Shan J, Wang Z, Su F, Liu D, Xu J, Guo M, Qian J. Chromium (III) coordination capacity of chitosan. Int J Biol Macromol 2020; 148:785-792. [PMID: 31978470 DOI: 10.1016/j.ijbiomac.2020.01.203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 11/19/2022]
Abstract
Polycationic chitosan has a strong coordination to heavy metal ions due to its multifunctional hydroxyl and amino groups. However, due to the fast and facile dissolution of chitosan in acidic medium, it is difficult to measure the exact adsorption amount or coordination capacity accurately. In this work, a simple method of lyophilization plus ethanol-washing was employed to separate and purify chitosan/Cr(III) complex for further determining the coordination capacity. Meanwhile, the coordination structure of Bridge-chitosan-N(OH)3(H2O) and morphology of regenerated fibrillar sponge of CS/Cr(III) were further certified. The coordination capacity of Cr(III) on chitosan increased with the rising concentration of Cr(III) ions till the maximum coordination capacity was reached up to 355.03 mg/g. The mechanisms and characteristic parameters of the adsorption process were fit using two-parameter isotherm models which revealed the following order (based on the coefficient of determination) of Langmuir > Halsey > Freundlich > Temkin > Dubinin-Radushkevich. A proposed coordination formula of CS/Cr (III) might be a good certificate for the homogeneous chemical combination nature of Cr(III) on the monolayer surface of chitosan in a molecular scale.
Collapse
Affiliation(s)
- Caroline Ganglo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jilong Rui
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qiufeng Zhu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jiaqi Shan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhuoying Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fan Su
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Dagang Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Jianqiang Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mengna Guo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jun Qian
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
21
|
Qiu W, Vakili M, Cagnetta G, Huang J, Yu G. Effect of high energy ball milling on organic pollutant adsorption properties of chitosan. Int J Biol Macromol 2020; 148:543-549. [DOI: 10.1016/j.ijbiomac.2020.01.171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
|
22
|
Reyes-Ledezma JL, Uribe-Ramírez D, Cristiani-Urbina E, Morales-Barrera L. Biosorptive removal of acid orange 74 dye by HCl-pretreated Lemna sp. PLoS One 2020; 15:e0228595. [PMID: 32027708 PMCID: PMC7004341 DOI: 10.1371/journal.pone.0228595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/18/2020] [Indexed: 11/18/2022] Open
Abstract
Acid orange 74 (AO74) is a chromium-complex monoazo acid dye widely used in the textile industry. Due to being highly toxic and non-biodegradable, it must be removed from polluted water to protect the health of people and the environment. The aim of this study was two-fold: to evaluate the biosorption of AO74 from an aqueous solution by utilizing HCl-pretreated Lemna sp. (HPL), and to examine dye desorption from the plant material. The maximum capacity of AO74 biosorption (64.24 mg g-1) was reached after 4 h at the most adequate pH, which was 2. The biosorption capacity decreased 25% (to 48.18 mg g-1) during the second biosorption/desorption cycle and remained essentially unchanged during the third cycle. The pseudo-second-order kinetics model concurred well with the experimental results of assays involving various levels of pH in the eluent solution and distinct initial concentrations of AO74. NaOH (0.01 M) was the best eluent solution. The Toth isotherm model best described AO74 biosorption equilibrium data. FTIR analysis confirmed the crucial role of HPL proteins in AO74 biosorption. SEM-EDX and CLSM techniques verified the effective biosorption/desorption of the dye during the three cycles. Therefore, HPL has potential for the removal of AO74 dye from wastewaters.
Collapse
Affiliation(s)
- Jessica Lizeth Reyes-Ledezma
- Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
23
|
Theerakarunwong CD, Boontong D. Removal and recyclable chitosan nanowires: Application to water soluble dyes. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Zhang X, Shi X, Ma L, Pang X, Li L. Preparation of Chitosan Stacking Membranes for Adsorption of Copper Ions. Polymers (Basel) 2019; 11:polym11091463. [PMID: 31500181 PMCID: PMC6780952 DOI: 10.3390/polym11091463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023] Open
Abstract
Chitosan (CS) stacking mats with excellent performance for adsorption of copper ions (Cu(II)) in wastewater were fabricated by alternating electrospinning/electrospraying. The hierarchical structure of the stacking membranes was designed by CS micro-hemispheres sandwiched between CS fibers. The CS stack membranes prepared by the electrospinning technology could effectively increase the specific surface area, and thus, facilitate the adsorption of copper ions. CS stacking membranes with three layers reached adsorption equilibrium within 60 min, and had a maximum absorbance of 276.2 mg/g. The absorbance performance was superior to most of the reported CS adsorbents. Compared with CS fiber mats which were dominated by CS chemical structure during adsorption, the stacking structure of CS membranes contributed to the high efficient capability, and exhibited the multilayer adsorption behavior. This study may develop a promising method for the design of environmentally-friendly natural polymer adsorbents to remove Cu(II) in wastewater.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Xuejuan Shi
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Liang Ma
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Lili Li
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
25
|
Zhou Y, Lu J, Zhou Y, Liu Y. Recent advances for dyes removal using novel adsorbents: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:352-365. [PMID: 31158664 DOI: 10.1016/j.envpol.2019.05.072] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 05/06/2023]
Abstract
Dyeing wastewaters are toxic and carcinogenic to both aquatic life and human beings. Adsorption technology, as a facile and effective method, has been extensively used for removing dyes from aqueous solutions for decades. Numerous researchers have attempted to seek or design alternative materials for dye adsorption. However, using various novel adsorbents to remove dyes has not been extensively reviewed before. In this review, the key advancement on the preparation and modification of novel adsorbents and their adsorption capacities for dyes removal under various conditions have been highlighted and discussed. Specific adsorption mechanisms and functionalization methods, particularly for increasing adsorption capacities are discussed for each adsorbent. This review article mainly includes (1) the categorization, side effects and removal technologies of dyes; (2) the characteristics, advantages and limitations of each sort of adsorbents; (3) the functionalization and modification methods and controlling mechanisms; and (4) discussion on the problems and future perspectives about adsorption technology from adsorbents aspects and practical application aspects.
Collapse
Affiliation(s)
- Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
| | - Jian Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Shanghai, 200092, China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Shanghai, 200092, China
| |
Collapse
|
26
|
Tang Y, Li M, Mu C, Zhou J, Shi B. Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles. CHEMOSPHERE 2019; 229:570-579. [PMID: 31100628 DOI: 10.1016/j.chemosphere.2019.05.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 05/27/2023]
Abstract
Trace anionic dyes in wastewater are difficult to be rapidly and efficiently removed because they are completely soluble and poorly biodegradable. Herein, a facile and environmentally friendly adsorbent was fabricated via the surface functioned SiO2 with abundant amine groups of polyethyleneimine (PEI). The structural characterization indicated that PEI was successfully immobilized on the SiO2 surface. The adsorption performance of SiO2-PEI was evaluated using acid orange II (AOII) as model pollutant. The adsorption of AOII on SiO2-PEI displayed high removal rates in the pH range of 2.0-9.0, and exhibited ultrafast removal (99.1% removal rate at 10 min). The adsorption behavior fitted well with the Langmuir isotherm and pseudo-second-order kinetic model, and the maximum uptake capability of AOII was higher than 705.3 mg/g. The excellent adsorption capacity of AOII on SiO2-PEI mainly relied on the electrostatic attraction between the sulfonic acid group of AOII and amine group of PEI in the adsorption process. Additionally, other anionic dyes like acid fuchsin and direct sky blue 5B could also be fast and efficiently removed by SiO2-PEI. This work is expected to open new possibilities for the ultrafast removal of anionic dye pollutants.
Collapse
Affiliation(s)
- Yuling Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Minghui Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Chuanhui Mu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Jianfei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China.
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, PR China
| |
Collapse
|
27
|
Facile synthesis of copper ions chelated sand via dopamine chemistry for recyclable and sustainable catalysis. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Lipatova I, Losev N, Makarova L. The influence of the combined impact of shear stress and cavitation on the structure and sorption properties of chitin. Carbohydr Polym 2019; 209:320-327. [DOI: 10.1016/j.carbpol.2019.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
29
|
Villegas-Peralta Y, Correa-Murrieta MA, Meza-Escalante ER, Flores-Aquino E, Álvarez-Sánchez J, Sánchez-Duarte RG. Effect of the preparation method in the size of chitosan nanoparticles for the removal of allura red dye. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2601-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|