1
|
Guo Y, Zhang Y, Dong F, Wu X, Pan X, Zheng Y, Xu J. Pesticide thiamethoxam in seed treatment: Uptake, metabolic transformation and associated synergistic effects against wheat aphids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174955. [PMID: 39069177 DOI: 10.1016/j.scitotenv.2024.174955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Precise, effective and green control plays an essential role in reducing environmental and ecosystem damage. Seed treatment has proven effective and long-lasting for target organisms, and exploring the reasons for long-term protection is important for sustainable agricultural development. This study examined the uptake and metabolism behaviour of thiamethoxam under seed treatment in wheat samples throughout the whole growth cycle, as well as the associated synergistic effects of thiamethoxam and its metabolites during the most severe period of aphid occurrence. Uptake and metabolism results showed that 41 % of thiamethoxam and its active metabolites (clothianidin and demethyl-clothianidin) accumulated mainly in flag leaves of wheat, severely harming aphids, which was significant in controlling leaf-feeding pests. Combined activity results showed that thiamethoxam, clothianidin and demethyl-clothianidin produced synergistic efficacy in controlling aphids, with cotoxicity coefficients ranging from 179.34 to 452.07. Compared with the control, thiamethoxam seed treatments at a rate of 1.5 a.i. g/kg seeds and 3.0 a.i. g/kg seeds can significantly enhance salicylic acid (55 % and 41 %) and jasmonic acid (168 % and 125 %) concentrations and invoke changes in the concentrations of plant secondary substances, which promoted wheat resistance to aphids. Future studies cannot ignore the synergistic effects of metabolites and plant secondary substances in pest control. These results provided data support for reducing pesticide use, increasing efficiency and making more rational use of neonicotinoid insecticides.
Collapse
Affiliation(s)
- Yage Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Wang X, Di W, Wang Z, Qi P, Liu Z, Zhao H, Ding W, Di S. Cadmium stress alleviates lipid accumulation caused by chiral penthiopyrad through regulating endoplasmic reticulum stress and mitochondrial dysfunction in zebrafish liver. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135560. [PMID: 39173367 DOI: 10.1016/j.jhazmat.2024.135560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The coexistence of cadmium (Cd) can potentiate (synergism) or reduce (antagonism) the pesticide effects on organisms, which may change with chiral pesticide enantiomers. Previous studies have reported the toxic effects of chiral penthiopyrad on lipid metabolism in zebrafish (Danio rerio) liver. The Cd effects and toxic mechanism on lipid accumulation were investigated from the perspective of endoplasmic reticulum (ER) stress and mitochondrial dysfunction. The coexistence of Cd increased the concentrations of penthiopyrad and its metabolites in zebrafish. Penthiopyrad exposure exhibited significant effects on lipid metabolism and mitochondrial function-related indicators, which were verified by lipid droplets and mitochondrial damage in subcellular structures. Moreover, penthiopyrad activated the genes of ER unfolded protein reaction (UPR) and Ca2+ permeable channels, and S-penthiopyrad exhibited more serious effects on ER stress with ER hyperplasia than R-penthiopyrad. As a mitochondrial uncoupler, the coexistence of Cd could decrease lipid accumulation by alleviating ER stress and mitochondrial dysfunction, and these effects were the most significant for R-penthiopyrad. There were antagonistic effects between Cd and penthiopyrad, which could reduce the damage caused by penthiopyrad in zebrafish, thus increasing the bioaccumulation of penthiopyrad in zebrafish. These findings highlighted the importance and necessity of evaluating the ecological risks of metal-chiral pesticide mixtures.
Collapse
Affiliation(s)
- Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Weixuan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China; College of Plant Protection, Northeast agricultural university, Harbin 150030, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Wei Ding
- College of Plant Protection, Northeast agricultural university, Harbin 150030, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
3
|
Zhao G, Tian Y, Yu H, Li J, Mao D, Faisal RM, Huang X. Development of solid agents of the diphenyl ether herbicide degrading bacterium Bacillus sp. Za based on a mixed organic fertilizer carrier. Front Microbiol 2022; 13:1075930. [PMID: 36504824 PMCID: PMC9729343 DOI: 10.3389/fmicb.2022.1075930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
The long-term and widespread use of diphenyl ether herbicides has caused serious soil residue problems and threatens the agricultural ecological environment. The development of biodegrading agents using high-efficiency degrading strains as pesticide residue remediation materials has been widely recognized. In this study, the strain Bacillus sp. Za was used to prepare solid agents for the remediation of diphenyl ether herbicides-contaminated soil. The ratio of organic fertilizer was 1:3 (pig manure: cow dung), the inoculum amount of Za was 10%, the application amount of solid agents was 7%, and the application mode was mixed application, all of which were the most suitable conditions for solid agents. After the solid agents were stored for 120 days, the amount of Za remained above 108 CFU/g. The degradation rates of the solid agents for lactofen, bifenox, fluoroglycofen, and fomesafen in soil reached 87.40, 82.40, 78.20, and 65.20%, respectively, on the 7th day. The application of solid agents alleviated the toxic effect of lactofen residues on maize seedlings. A confocal laser scanning microscope (CLSM) was used to observe the colonization of Za-gfp on the surface of maize roots treated in the solid agents, and Za-gfp mainly colonized the elongation zone and the mature area of maize root tips, and the colonization time exceeded 21 days. High-throughput sequencing analysis of soil community structural changes in CK, J (solid agents), Y (lactofen), and JY (solid agents + lactofen) groups showed that the addition of solid agents could restore the bacterial community structure in the rhizosphere soil of maize seedlings. The development of solid agents can facilitate the remediation of soil contaminated with diphenyl ether herbicide residues and improve the technical level of the microbial degradation of pesticide residues.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Houyu Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jintao Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rayan Mazin Faisal
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China,*Correspondence: Xing Huang,
| |
Collapse
|
4
|
Bhagat J, Zang L, Kaneco S, Nishimura N, Shimada Y. Combined exposure to nanoplastics and metal oxide nanoparticles inhibits efflux pumps and causes oxidative stress in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155436. [PMID: 35461948 DOI: 10.1016/j.scitotenv.2022.155436] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The ubiquity of microplastic/nanoplastics (MP/NPs) provides an opportunity for their interaction with other widely spread environmental contaminants. MP/NP and nanoparticles share a similar transport route from sources, production, and disposal. Metal oxide nanoparticles (nMOx) have varied industrial applications, and limited knowledge is available on their interaction with MP/NPs. The present study investigated the effect of NPs (1 mg/L) on the efflux of two nMOx, aluminium oxide nanoparticles (nAl2O3, 1 mg/L) and cerium oxide nanoparticles (nCeO2, 1 mg/L), and their combined toxicity to zebrafish embryos. The results illustrated increased accumulation of aluminium and cerium in the combined exposure group compared to the nMOx alone treatment. The presence of NPs exacerbated the oxidative stress caused by nAl2O3 and nCeO2, as evidenced by an increase in the concentration of reactive oxygen species (ROS), alteration of antioxidants, and lipid peroxidation. The integrated biomarker response (IBRv2) values showed the induction of an antioxidative response in NP + nAl2O3, whereas a decline in IBRv2 values was observed in NP + nCeO2. Our results indicate that NPs aggravated the accumulation of nMOx and their toxicity. The present work highlights that more attention should be paid to the discharge of these contaminants into the natural environment.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Satoshi Kaneco
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
5
|
Guo D, He R, Luo L, Zhang W, Fan J. Enantioselective acute toxicity, oxidative stress effects, neurotoxicity, and thyroid disruption of uniconazole in zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40157-40168. [PMID: 35119633 DOI: 10.1007/s11356-022-18997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Uniconazole is a widely used plant growth retardant in the agricultural field. However, toxicological effects of uniconazole in aquatic ecosystem at chiral level are still unclear. Herein, acute toxicity, oxidative stress effects, neurotoxicity, and thyroid disruption of uniconazole enantiomers were investigated through using zebrafish as a model. (R)-Uniconazole possessed 1.16-fold greater acute toxicity to zebrafish than (S)-enantiomer. Then, integrated biomarker response values of oxidative stress parameters in zebrafish exposed to (R)-uniconazole were about 1.27~1.53 times greater than those treated by (S)-uniconazole, revealing that (R)-uniconazole could result in more significant adverse effects than (S)-uniconazole. Subsequently, the results of acetylcholinesterase activity of experimental fish demonstrated a state of inhibition-activation-inhibition after 14-day exposure to uniconazole, and a significant enantioselective neurotoxicity of uniconazole was observed in zebrafish after exposure for 4 and 7 days (p < 0.05). Moreover, thyroxine and triiodothyronine contents in (R)-uniconazole-exposed zebrafish were 0.89-fold (p=0.007) and 0.80-fold (p=0.007) than those in (S)-enantiomer-treated group, respectively. Furthermore, molecular docking results between uniconazole enantiomers and thyroid hormone receptors revealed that (R)-uniconazole was more tightly bound than (S)-uniconazole to the receptors. Briefly, our findings provide favorable information for ecological risk assessments of chiral agrochemicals in the environment and health of aquatic organisms.
Collapse
Affiliation(s)
- Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, China
| | - Rujian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, China
| | - Lulu Luo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, China
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, China.
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Zheng Y, Zhang D, Sun Z, Yang Q, Liu Y, Cao T, Chen R, Dzakpasu M, Wang XC. Stereoselective degradation pathway of amide chiral herbicides and its impacts on plant and bacterial communities in integrated vertical flow constructed wetlands. BIORESOURCE TECHNOLOGY 2022; 351:126997. [PMID: 35292382 DOI: 10.1016/j.biortech.2022.126997] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This study demonstrates the stereoselective degradation patterns and biodegradation mechanisms of metolachlor (MET) and napropamide (NAP) in integrated vertical flow constructed wetlands (IVCW). The higher interphase transferability of NAP resulted in higher degradation rates of 90.60 ± 4.09%. The enantiomeric fraction (EF) values of 0.38 ± 0.02 and 0.54 ± 0.03, respectively, recorded for the enantiomers S-MET and R-NAP, with higher herbicidal activities, demonstrated their highly selective biodegradation patterns. The antioxidant enzyme activities and fluorescence parameters of plants showed positive correlations with the degradation efficiency and enantioselectivity of MET and NAP. Adaptive regulations by plants promoted the proliferation of microbial genera like Enterobacter and unclassified_Burkholderiales, which could facilitate plant growth. Moreover, enrichment of the herbicide-degrading functional bacteria Terrimonas (5.10%), Comamonas (4.05%) Pseudoxanthomonas (4.49%) and Mycobacterium (1.42%) demonstrably promoted the preferential degradation of S-MET and R-NAP. Furthermore, the abundance of Ferruginibacter favored the use of R-NAP as carbon source to achieve co-removal of R-NAP and NO3--N.
Collapse
Affiliation(s)
- Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dongxian Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Zhuanzhuan Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qian Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ying Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ting Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
7
|
Wang F, Gao J, Li P, Jiang S, Wu J, Yao Z. Herbicidal activity and differential metabolism of lactofen in rat and loach on an enantiomeric level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28307-28316. [PMID: 34993807 DOI: 10.1007/s11356-021-17986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Enantioselectivity of chiral compounds is receiving growing concern. Lactofen, a chiral herbicide widely used in field crops and vegetables to control broadleaf weeds, is still sold as racemate. In this work, the herbicidal activity and metabolism behavior of lactofen were investigated on an enantiomeric level. Two common broadleaf weeds (Eclipta prostrata L. and Portulaca oleracea L.) were used to evaluate the herbicidal activity of rac-/R- and S-lactofen, and their metabolism behavior in loach and rat liver microsomes was explored. Higher herbicidal activity of S-lactofen was observed, with the 20d-EC50 values being 1.9-3.4 times lower than R-lactofen. Both loach and rat liver microsomes had ability to metabolize rac-lactofen, with half-lives of 1.93 and 1.28 h, respectively. Enantioselective metabolism behaviors were observed in loach and rat liver microsomes and the direction of enantioselectivity were different. R-lactofen was preferentially metabolized in loach liver microsome, while S-lactofen was preferentially metabolized in rat liver microsome. No interconversion of R- and S-lactofen was found. Besides, the main metabolic pathways of R- and S-lactofen were found to be significantly different. R-lactofen was metabolized to R-desethyl lactofen in both loach and rat liver microsomes without further metabolism. However, S-lactofen was metabolized to both S-desethyl lactofen and acifluorfene in rat liver microsome, which was mainly metabolized to acifluorfene in loach liver microsome. This study indicated enantioselectivity and metabolites should be taken into consideration when overall evaluating the environmental behavior of lactofen.
Collapse
Affiliation(s)
- Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health. Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health. Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Peize Li
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health. Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Junxue Wu
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, People's Republic of China
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
8
|
Shang N, Chen L, Cheng M, Tian Y, Huang X. Biodegradation of diphenyl ether herbicide lactofen by Bacillus sp. YS-1 and characterization of two initial degrading esterases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151357. [PMID: 34742792 DOI: 10.1016/j.scitotenv.2021.151357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of the diphenyl ether herbicide lactofen in recent years has caused serious environmental problems. Therefore, detoxification and elimination of lactofen from the environment are urgently required. In this study, the lactofen-degrading strain Bacillus sp. YS-1 was isolated, which achieved a 97.6% degradation rate of 50 mg/L lactofen within 15 h. The ester bond of lactofen was hydrolyzed, which generated acifluorfen, and then, the nitro group was reduced to the amino group, which generated aminoacifluorfen. Finally, the amino group was acetylated, which formed acetylated aminoacifluorfen, a novel end product in the degradation of lactofen. The toxicity of acetylated aminoacifluorfen to the root and seedling growth of cucumber and sorghum was significantly decreased compared with that of lactofen. The two esterase genes rhoE and rapE, encoding two esterases responsible for lactofen hydrolysis to acifluorfen, were cloned and expressed. The amino acid sequences encoded by rhoE and rapE were 27.78% and 88.21% identical with known esterases, respectively. The optimum temperatures for RhoE and RapE degradation of lactofen were 35 °C and 25 °C, respectively, and both esterases displayed maximal activity at pH 8.0. Both RhoE and RapE prioritized the degradation of (S)-(+)-lactofen, (S)-(-)-quizalofop-ethyl, and (S)-(-)-diclofop-methyl. This study provided the resources of bacterial strain and hydrolyzing enzyme for the removal of lactofen from the environment and the bioremediation of herbicide-contaminated soil.
Collapse
Affiliation(s)
- Na Shang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Lingling Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Minggen Cheng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
9
|
Canedo A, de Jesus LWO, Bailão EFLC, Rocha TL. Micronucleus test and nuclear abnormality assay in zebrafish (Danio rerio): Past, present, and future trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118019. [PMID: 34670334 DOI: 10.1016/j.envpol.2021.118019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nuclear abnormality (NA) assay in fish has been widely applied for toxicity risk assessment under field and laboratory conditions. The zebrafish (Danio rerio) has become a suitable model system for assessing the NA induced by pollutants. Thus, the current study aimed to summarize and discuss the literature concerning micronucleus (MN) and other NA in zebrafish and its applications in toxicity screening and environmental risk assessment. The data concerning the publication year, pollutant type, experimental design, and type of NA induced by pollutants were summarized. Also, molecular mechanisms that cause NA in zebrafish were discussed. Revised data showed that the MN test in zebrafish has been applied since 1996. The MN was the most frequently NA, but 15 other nuclear alterations were reported in zebrafish, such as notched nuclei, blebbed nuclei, binucleated cell, buds, lobed nuclei, bridges, and kidney-shaped. Several pollutants can induce NA in zebrafish, mainly effluents (mixture of pollutants), agrochemicals, and microplastics. The pollutant-induced NA in zebrafish depends on experimental design (i.e., exposure time, concentration, and exposure condition), developmental stages, cell/tissue type, and the type of pollutant. Besides, research gaps and recommendations for future studies are indicated. Overall, the current study showed that zebrafish is a suitable model to assess pollutant-induced mutagenicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
10
|
Ren B, Zhao T, Li Y, Liang H, Zhao Y, Chen H, Li L, Liang H. Enantioselective bioaccumulation and toxicity of the novel chiral antifungal agrochemical penthiopyrad in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113010. [PMID: 34826729 DOI: 10.1016/j.ecoenv.2021.113010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides has been extensively used in agricultural production, which are not easily degrade in the environment and have various toxic effects on aquatic organisms. However, the toxic effects information to non-target organisms were mostly at the racemate level, which were poorly understood at the enantiomers level. Thus, this study aimed to investigate the enantioselective bioaccumulation behavior and toxic effects of penthiopyrad in zebrafish. Significant enantioselective bioaccumulation was observed when exposed to penthiopyrad at two dose levels: S-(+)-penthiopyrad was preferentially accumulated. Moreover, S-(+)-penthiopyrad caused oxidative stress in zebrafish liver. The results of real-time RT-PCR analyses revealed that exposure to penthiopyrad also enantioselectivity interfered with the expression of mitochondrial respiratory complexes, mtDNA synthesis, lipid metabolism and apoptosis-related genes. S-(+)-penthiopyrad significantly decreased most of the expression of the above gene, which showed higher toxic effects. We inferred that the toxicity mechanism of penthiopyrad was caused by lipid metabolism disorder and mitochondrial dysfunction in zebrafish, and further leads to apoptosis even DNA damage. This study provides more accurate data to investigate the environmental impact of penthiopyrad at the enantiomer level.
Collapse
Affiliation(s)
- Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Li Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
11
|
Wei Y, Cui J, Zhai W, Liu X, Zhou Z, Wang P, Liu D. Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116894. [PMID: 33774544 DOI: 10.1016/j.envpol.2021.116894] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4'-OH- pyriproxyfen and 5″-OH- pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4'-OH- pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (-)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms.
Collapse
Affiliation(s)
- Yimu Wei
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Jingna Cui
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wangjing Zhai
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Xueke Liu
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Peng Wang
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Donghui Liu
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Hu T, Xiang Y, Chen Q, Shang N, Xu M, Huang X. A novel esterase LanE from Edaphocola flava HME-24 and the enantioselective degradation mechanism of herbicide lactofen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111141. [PMID: 32846294 DOI: 10.1016/j.ecoenv.2020.111141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Lactofen is a chiral herbicide and widely used against broadleaf weeds in agriculture. As a pesticide, it is directly released to the environment, and easily caused contamination in soil and aquatic ecosystem. The enantioselective degradation of lactofen in the environment has been reported, but the molecular biological mechanism of this phenomenon is still unclear. In this study, strain Edaphocola flava HME-24 could degrade 96.7% of 50 mg L-1 lactofen within 72 h. Lactofen was initially hydrolyzed to desethyl lactofen and subsequently acifluorfen by strain HME-24. A novel gene lanE, involved in lactofen transformation, was obtained from Edaphocola flava HME-24. Gene lanE encoded a protein of 471 amino acids that contained the conserved GXSXG esterase motif and clustered into esterase subfamily V. LanE shared the highest identity with esterase EstD (Q9WYH1) from Thermotoga maritima MSB8 (29.14%). This esterase was also able to transform p-nitrophenyl esters (C4-C8), and the activity decreased when the carbon chain length increased. LanE showed enantioselectivity during the degradation of lactofen, diclofop-methyl, and quizalofop-ethyl, with a higher degradation efficiency of (S)-enantiomers than (R)-enantiomers. The three-dimensional structure of LanE was simulated, and molecular docking revealed that when the (S)-enantiomers of lactofen occupied the active sites, the distance between the ligand molecule and the coordination atom was shorter than that when the (R)-enantiomers occupied the active sites, which facilitated the formation of the transition state complex. The results in this study enhanced our understanding of the preferential catabolism of the (S)-enantiomers of lactofen on the molecular level and could illustrate the reported enantioselective degradation of lactofen in the environment.
Collapse
Affiliation(s)
- Ting Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yun Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qifeng Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Na Shang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingyang Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
13
|
Gao J, Wang F, Jiang W, Miao J, Wang P, Zhou Z, Liu D. A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114808. [PMID: 32434115 DOI: 10.1016/j.envpol.2020.114808] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 05/27/2023]
Abstract
Pesticides applied to paddy fields may pose considerable danger to non-target aquatic organisms and further threaten human health. Flufiprole is a pesticide used in rice fields; considering the widespread existence of rice-fish-farming ecosystems, the acute toxicities of flufiprole enantiomers and its six metabolites (fipronil, flufiprole sulfide, flufiprole sulfone, detrifluoromethylsulfinyl flufiprole, desulfinyl flufiprole, and flufiprole amide) to four common aquatic organisms in rice fields including Misgurnus anguillicaudatus (pond loach), Carassius gibelio (Prussian carp), Pelophylax nigromaculatus (black-spotted frog), and Daphnia magna (water flea) were investigated. Genotoxicity, pathological changes and the effects on the antioxidant system of M. anguillicaudatus were also evaluated after exposure. The LC50 (EC50) values showed that fipronil and desulfinyl flufiprole were the most toxic compounds and were approximately about six times as toxic as flufiprole. No enantioselective toxicity was observed between the two enantiomers. The activity of antioxidant defense enzymes and the content of malondialdehyde (MDA) in the liver and gills of M. anguillicaudatus were significantly increased by the chemicals in most cases. In addition, fipronil and desulfinyl flufiprole were found to induce an increase in the micronucleus rate in M. anguillicaudatus. Histopathological analysis showed that the liver of M. anguillicaudatus was not significantly affected by flufiprole. Our study demonstrated a potential negative effect on flufiprole-treated aquatic organisms. As an alternative to fipronil, the environmental risk of flufiprole and its metabolites to non-target organisms in rice fields cannot be ignored.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Fang Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jingwen Miao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China.
| |
Collapse
|
14
|
Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 2019; 40:37-63. [DOI: 10.1002/jat.3910] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
15
|
Cui J, Wang F, Gao J, Zhai W, Zhou Z, Liu D, Wang P. Bioaccumulation and Metabolism of Carbosulfan in Zebrafish ( Danio rerio) and the Toxic Effects of Its Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12348-12356. [PMID: 31638788 DOI: 10.1021/acs.jafc.9b03674] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbosulfan is a carbamate insecticide that has been widely used in agriculture. However, studies showed that carbosulfan could be highly toxic to aquatic organisms. The metabolism of carbosulfan in adult zebrafish is still largely unexplored, and the metabolites in individual or in combination may pose a potential threat to zebrafish. In the present study, the bioaccumulation and metabolism of carbosulfan in zebrafish (Danio rerio) were assessed, and the main metabolites, including carbofuran and 3-hydroxycarbofuran, were determined. The toxicity of carbosulfan and its metabolites individually or in combination to zebrafish was also investigated. The bioaccumulation and metabolism experiment indicated that carbosulfan was not highly accumulated in zebrafish, with a bioaccumulation factor of 18 after being exposed to carbosulfan for 15 days, and the metabolism was fast, with a half-life of 1.63 d. The two main metabolites were relatively persistent, with half-lives of 3.33 and 5.68 d for carbofuran and 3-hydroxycarbofuran, respectively. The acute toxicity assay showed that carbofuran and 3-hydroxycarbofuran had 96-h LC50 values of 0.15 and 0.36 mg/L, showing them to be more toxic than carbosulfan (96-h LC50 = 0.53 mg/L). Combinations of binary or ternary mixtures of carbosulfan and its metabolites displayed coincident synergistic effects on acute toxicity, with additive index (AI) values of 1.9-14.3. In the livers and gills of zebrafish exposed to carbosulfan, carbofuran, and 3-hydroxycarbofuran, activities of catalase, superoxide dismutase, and glutathione-S-transferase were significantly changed in most cases, and the content of malondialdehyde was greatly increased, indicating that carbosulfan and its metabolites induced varying degrees of oxidative stress. The metabolites were more persistent and toxic to zebrafish and exhibit coincident synergistic effects in combination. These results can provide evidence for the potential risk of pesticides and highlight the importance of a systematic assessment for the combination of the precursor and its metabolites.
Collapse
Affiliation(s)
- Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Fang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Wangjing Zhai
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| |
Collapse
|
16
|
Shen Y, Zhang J, Xie J, Liu J. In vitro assessment of corticosteroid effects of eight chiral herbicides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:91-102. [PMID: 31524045 DOI: 10.1080/03601234.2019.1665408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Information regarding the enantioselective endocrine disruption of chiral herbicides is scarce. This study assessed the disrupting effects of eight typical chiral herbicides on corticosteroids (including glucocorticoids and mineralocorticoids). Enantioselectivity of eight chiral herbicides were evaluated for their agonistic/antagonistic effects on glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) with CHOK1 cell line using reporter gene assay. Their influence on the production of corticosteroids were further investigated in H295R cell line using enzyme-linked immunosorbent assay (ELISA). None of the racemates or enantiomers of eight chiral herbicides exhibited GR or MR agonistic activity at non-cytotoxic concentrations. However, rac-propisochlor and S-imazamox antagonized cortisol-induced transactivation of GR by 21.79% and 38.73% at the concentration of 1.0 × 10-7 M and 1.0 × 10-6 M, respectively, and R-napropamide remarkably attenuated aldosterone-induced MR transactivation by 68.78% at 1.0 × 10-6 M. The secretion of cortisol was significantly restrained after treated with 1.0 × 10-6 M rac-propisochlor and rac-/R-napropamide at the concentration of 1.0 × 10-6 M by 26.49%, 30.10% and 35.27%, respectively, while this glucocorticoid was remarkably induced by 1.0 × 10-5 M rac-diclofop-methyl and its two enantiomers at the concentration of 1.0 × 10-5 M by 75.60%, 100.1% and 68.78%, respectively. Exposure to rac-propisochlor (1.0 × 10-6 M), S-diclofop-methyl (1.0 × 10-5 M) or rac-/S-/R- acetochlor (1.0 × 10-6 M) and rac-/S-/R-lactofen (1.0 × 10-6 M) inhibited the secretion of aldosterone by approximately 40%. Our findings suggested that chiral herbicides disrupted corticosteroid homeostasis in an enantioselective way. Therefore, more comprehensive screening is required to better understand the ecological and health risks of chiral pesticides.
Collapse
Affiliation(s)
- Yuqing Shen
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jianyun Zhang
- Department of Public Health, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Lu Q, Qiu L, Yu L, Zhang S, de Toledo RA, Shim H, Wang S. Microbial transformation of chiral organohalides: Distribution, microorganisms and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:849-861. [PMID: 30772625 DOI: 10.1016/j.jhazmat.2019.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 05/27/2023]
Abstract
Chiral organohalides including dichlorodiphenyltrichloroethane (DDT), Hexabromocyclododecane (HBCD) and polychlorinated biphenyls (PCBs) raise a significant concern in the environmental occurrence, fate and ecotoxicology due to their enantioselective biological effects. This review provides a state-of-the-art overview on enantioselective microbial transformation of the chiral organohalides. We firstly summarized worldwide field assessments of chiral organohalides in a variety of environmental matrices, which suggested the pivotal role of microorganisms in enantioselective transformation of chiral organohalides. Then, laboratory studies provided experimental evidences to further link enantioselective attenuation of chiral organohalides to specific functional microorganisms and enzymes, revealing mechanistic insights into the enantioselective microbial transformation processes. Particularly, a few amino acid residues in the functional enzymes could play a key role in mediating the enantioselectivity at the molecular level. Finally, major challenges and further developments toward an in-depth understanding of the enantioselective microbial transformation of chiral organohalides are identified and discussed.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Lan Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Ling Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Shangwei Zhang
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Renata Alves de Toledo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078 Macau SAR, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078 Macau SAR, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, 510275 Guangzhou, China.
| |
Collapse
|