1
|
Deng S, Luo S, Lin Q, Shen L, Gao L, Zhang W, Chen J, Li C. Analysis of heavy metal and arsenic sources in mangrove surface sediments at Wulishan Port on Leizhou Peninsula, China, using the APCS-MLR model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116788. [PMID: 39067073 DOI: 10.1016/j.ecoenv.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mangrove forests are sources and sinks for various pollutants. This study analyzed the current status of heavy metal and arsenic (As) pollution in mangrove surface sediments in rapidly industrializing and urbanizing port cities. Surface sediments of mangroves at Wulishan Port on the Leizhou Peninsula, China, were analyzed using inductively coupled plasma emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) for the presence of Cr, Pb, Ni, Zn, Cd, Cu, As, and Hg. The Pollution load index, Nemerow pollution index, and Potential ecological risk index were employed to evaluate the pollutant. Multivariate statistical methods were applied for the qualitative analysis of pollutant sources, and the APCS-MLR receptor model was used for quantification. This study indicated the following results: (1) The average content of eight pollutants surpassed the local background level but did not exceed the Marine Sediment Quality standard. The pollution levels across the four sampling areas were ranked as Ⅲ > Ⅳ > Ⅰ > Ⅱ. The area Ⅱ exhibited relatively lower pollution levels with the grain size of the sediments dominated by sand, which was not conducive to pollutant adsorption and enrichment. (2) The factor analysis and cluster analyses identified three primary sources of contamination. As, Cr, Ni, and Pb originated from nearby industrial activities and their associated wastewater, suggesting that the primary source was the industrial source. Cd, Cu, and Zn stem from the cement columns utilized in oyster farming, alongside discharges from mariculture and pig farming, establishing a secondary agricultural source. Hg originated from ship exhaust burning oil and vehicle emissions in the vicinity, representing the third traffic source. (3) The APCS-MLR receptor model results demonstrated industrial, agricultural, and traffic sources contributing 47.19 %, 33.13 %, and 13.03 %, respectively, with 6.65 % attributed to unidentified sources.
Collapse
Affiliation(s)
- Suyan Deng
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China; Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Songying Luo
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China; Mangrove Institute, Lingnan Normal University, Zhanjiang, China.
| | - Qiance Lin
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Linli Shen
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Linmei Gao
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Wei Zhang
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Jinlian Chen
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Chengyang Li
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China.
| |
Collapse
|
2
|
Li C, Zhang Y, Chen R, Wang N, Liu J, Liu F. Influence of mineralized organic carbon in marine sediments on ecological heavy metal risk: Bohai Bay case study. ENVIRONMENTAL RESEARCH 2024; 240:117542. [PMID: 37914009 DOI: 10.1016/j.envres.2023.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The organic matter in sediments can mineralize over time, which impacts the morphology of the heavy metals therein, which in turn affects the assessment of the risks posed by heavy metals. We used the sediments of Bohai Bay as the study object and analyzed the effects of different organic carbon mineralization levels on the concentrations of heavy metals (Cr, Pb, Cu, Zn, and Cd) using water extraction and potassium permanganate oxidation. The mean concentrations of Cd, Pb, Cu, and Zn in Bohai Bay were within the limits recommended by the World Health Organization. The proportions of the active and inert organic carbon fractions were 61.72% and 32.94%, respectively. Organic carbon mineralization most strongly impacted Cd and Pb levels, with releases accounting for 47.92% and 25.75%, respectively, of the oxidizable fractions. The release of all heavy metals, except for Cr, increased with increases in organic carbon mineralization, and heavy metals were released at a maximum rate of 12.94% when the organic carbon was highly mineralized, whereas Cr was released at a maximum of 0.023% during the first stage of organic carbon mineralization. In terms of spatial distribution, the concentration of mineralizable organic carbon in the sediments of the estuaries was substantially higher than that in other marine areas. Estuary sediments were more easily affected by organic carbon mineralization; therefore, the heavy metals in the oxidizable fraction of the estuarine region were more easily transformed into unstable heavy metal forms, posing high risk levels. Therefore, this study highlights the effects of organic carbon mineralization on heavy metal morphology and stability, when evaluating the ecological risk of heavy metals in marine sediments.
Collapse
Affiliation(s)
- Congxiao Li
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology / School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Yan Zhang
- Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China.
| | - Rui Chen
- Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Nayu Wang
- State Environmental Protection Engineering Center (Tianjin) for Hazardous Waste Disposal, Tianjin, 300457, China
| | - Jingjing Liu
- Tianjin Lishen Battery Joint-Stock Co., Ltd., Tianjin, 300392, China
| | - Fude Liu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology / School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
3
|
Dat ND, Nguyen LSP, Vo TDH, Van Nguyen T, Do TTL, Tran ATK, Hoang NTT. Pollution characteristics, associated risks, and possible sources of heavy metals in road dust collected from different areas of a metropolis in Vietnam. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7889-7907. [PMID: 37493982 DOI: 10.1007/s10653-023-01696-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Road dust samples were collected from different areas in Ho Chi Minh City (HCMC)-the largest city in Vietnam to explore pollution characteristics, ecological and human health risks, and sources of heavy metals (HMs). Results revealed the level of HMs found in the samples from residential and industrial zones of HCMC in the order of Mn > Zn > Cu > Cr > Pb > Ni > Co > As > Cd, Zn > Mn > Cu > Cr > Pb > Ni > Co > As > Cd. Due to the high enrichment of Cu, Zn in residential areas and Cu, Pb, Zn in industrial areas, the HM contamination in these areas remained moderate to severe. The findings also revealed a rising trend in the level of HMs in road dust from the east to the west of HCMC, and a heavy metal contamination hotspot in the west. In addition, industrial areas were more contaminated with HMs, posing greater associated risks than residential areas. Children living in urban areas of HCMC were found to be exposed to unacceptable health risks. Meanwhile, adults living in industrial areas face intolerable cancer risk. Among the nine HMs, Cd, Pb, and Cu posed the greatest ecological risk, while Cr and As were the main culprits behind health risks. HMs in road dust might derive from non-exhaust vehicular emissions, crustal materials, and industrial activities. The results suggested that industrial areas to the west of HCMC should focus more on reducing and controlling severe pollution of HMs.
Collapse
Affiliation(s)
- Nguyen Duy Dat
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Viet Nam.
| | - Ly Sy Phu Nguyen
- Faculty of Environment, University of Science, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Truc Van Nguyen
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam
| | - Thi Thuy Linh Do
- Institute for Environment and Resources (IER), Ho Chi Minh City, 700000, Viet Nam
- Department of Science and Technology, Vietnam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Anh Thi Kim Tran
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Viet Nam
| | - Nhung Thi-Tuyet Hoang
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Viet Nam
| |
Collapse
|
4
|
Dan SF, Udoh EC, Zhou J, Wijesiri B, Ding S, Yang B, Lu D, Wang Q. Heavy metals speciation in surface sediments of the Cross River Estuary, Gulf of Guinea, South East Nigeria. MARINE POLLUTION BULLETIN 2022; 185:114257. [PMID: 36274556 DOI: 10.1016/j.marpolbul.2022.114257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The speciation of heavy metals (Ni, Cr, Cu, Zn, Pb, and Cd) was studied in surface sediments of the Cross River Estuary (CRE), Gulf of Guinea, South East Nigeria. Pb (~56 %), Cd (~71 %), Zn (~67 %), and Cr (~76 %) were mainly available in non-residual phases, suggesting potential bioavailability. High contents of Ni and Cu in residual phase indicated immobilization of these metals in aluminosilicate minerals. Cd was the most polluted heavy metal with the highest bioavailability risk. Bayesian Network model results revealed that sedimentary organic carbon (OC) from terrestrial C3 plants controlled the contents and variability of Pb and Zn, while the input of terrestrial soil OC strongly influenced Cu and Ni. However, Cd and Cr were dominantly influenced by sediment pH, while Ni was mainly influenced by sediment salinity. Strong interdependency between Cd and total nitrogen (TN) suggested that nitrogen might increase Cd bioavailability upon release from sediments.
Collapse
Affiliation(s)
- Solomon Felix Dan
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China.
| | - Enobong Charles Udoh
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
| | - Jiaodi Zhou
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China.
| | - Buddhi Wijesiri
- School of Civil and Environmental Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bin Yang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Dongliang Lu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Qianqian Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Dan SF, Udoh EC, Wang Q. Contamination and ecological risk assessment of heavy metals, and relationship with organic matter sources in surface sediments of the Cross River Estuary and nearshore areas. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129531. [PMID: 35820332 DOI: 10.1016/j.jhazmat.2022.129531] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Chemical speciation of heavy metals (Zn, Pb, Cu, and Cd) was studied to evaluate the contamination status and associated risks and to constrain the sources of heavy metals in relation to sedimentary organic matter (OM) sources in surface sediments of the Cross River Estuary (CRE) and nearshore areas surrounded by a degrading mangrove ecosystem (typical C3 plants). The contamination factor (CF) and geo-accumulation (Igeo) indicated that Cd and Zn were the most polluted heavy metals. High percentages of Zn (63.78%), Pb (64.48%), Cd (76.72%) and the considerable amount of Cu (48.57%) in non-residual fractions indicated that these heavy metals are bioavailable. Cd showed moderate to high ecological and bioavailability risk based on the ecological risk (Er) and risk assessment code (RAC). Significant positive correlations occurred among the heavy metals, fine-grained sediments, and sedimentary OM from terrestrial C3 sources. These correlations, together with high percentages of heavy metals in the oxidizable fraction (~33-50%), indicated that the erosive washout of OM and fine sediments ladened with heavy metals from the adjoining degraded mangrove ecosystem contributed significantly to the increased contents of heavy metals in surface sediments of the study area.
Collapse
Affiliation(s)
- Solomon Felix Dan
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China.
| | - Enobong Charles Udoh
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
| | - Qianqian Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Hossain Bhuiyan MA, Chandra Karmaker S, Saha BB. Nexus between potentially toxic elements' accumulation and seasonal/anthropogenic influences on mangrove sediments and ecological risk in Sundarbans, Bangladesh: An approach from GIS, self-organizing map, conditional inference tree and random forest models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119765. [PMID: 35870534 DOI: 10.1016/j.envpol.2022.119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Mangroves play a vital role in protecting the coastal community from the climate change effect and in the restoration of the coastal ecosystem. This research has been designed to determine the spatial and seasonal changes of potentially toxic elements' (PTEs) concentration in sediments and their potential source contribution among the different human-driven processes in Sundarbans, Bangladesh. Different pollution evaluation indices, random forest (RF) model, conditional inference tree (CIT), self-organizing map (SOM), geographical information system (GIS), and principal component analysis (PCA) were used for the interpretation of sources and risk assessment of PTEs. The mean concentration of PTEs both in winter and monsoon seasons has fallen below the threshold effect level but exceeded the rare effect level of marine sediments quality standards. Results showed that the PTEs were significantly enriched (EF > 1.00 < 70.00) in sediments, whereas the Cd enrichment (7.00% samples) was very alarming (EF = 60-70). Except for Zn and Cd, other PTEs were enriched in 30-60% samples. The highest geoaccumulation and contamination factors for Cd were observed in 46-72% of samples. The ecological risk (ER) factors showed similar results where Cd showed strong to very strong factors (ER = 110-2218) in 80% of samples. The CIT explained the natural/geogenic and anthropogenic sources of pollution, where the higher CIT values for Cd indicated industrial, aquaculture, and coal-based thermal powerplant. The RF model provided that shrimp firms, power plants, industry, and seaport were recognized as the influential sources for Zn, Pb, Cr, Cd, and As in sediments. Though Pb and As were found as the most significant pollutants, Cd was identified as a severe threat to ecology and public health. Based on CIT, RF, SOM and PCA the order of PTEs in mangroves sediment were:industrial/urban > aquaculture/shrimpfirm > powerplant > seaportoperation > tourism > geogenic/natural. The present study will help the policymakers for effective and sustainable management of the mangrove ecosystem.
Collapse
Affiliation(s)
- Mohammad Amir Hossain Bhuiyan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744, Motooka, Nishi-ku, Fukuoka-City, 819-0395, Japan; Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
| | - Shamal Chandra Karmaker
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744, Motooka, Nishi-ku, Fukuoka-City, 819-0395, Japan; Mechanical Engineering Department, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan; Department of Statistics, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Bidyut Baran Saha
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744, Motooka, Nishi-ku, Fukuoka-City, 819-0395, Japan; Mechanical Engineering Department, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| |
Collapse
|
7
|
Van Thinh N, Chung NT, Luong LTM, Chinh PM, Anh PP, Huy NT, Thuy DT, Thai PK. Assessment of total concentrations of heavy metals in industrial sludges from the North of Vietnam and their potential impact on the ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42055-42066. [PMID: 34822083 DOI: 10.1007/s11356-021-17619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Industrial sludges from wastewater treatment plants of industrial parks and a drinking water treatment plant in northern Vietnam were investigated in this study. The total concentrations of heavy metals (As, Cd, Cu, Cr, Ni, Hg, Pb, Zn) and other elements (Mn, Pd, Sb, V) in the sludges were measured using the ICP-MS method. In addition, the surface characteristics of the samples were analyzed using SEM-EDS and FTIR techniques. According to Vietnam's current waste management regulation, the investigated industrial sludges belonged to the hazardous waste category (with Pb concentration > 300 µg/g). In contrast, the sludge from the drinking water treatment plant had a low content of heavy metals and toxic elements. The sequential extraction method revealed that the heavy metals in the industrial sludges exhibited higher mobilization forms (exchangeable and reduceable fractions) than those in the drinking water sludges. The mobilization ability of heavy metals is probably related to the surface function groups of the sludges, which were dominated by (-COOH) and (-OH) groups. The potential ecological risk assessment calculations indicated that the industrial sludges had high potential risk (with the RI values ranging from 229.7 to 605.4), mainly due to the content of Cd in the sludge samples. Further studies about the fate and transport of Cd and other toxic metals in the sludges are highly recommended to better understand their risk to the surrounding environment, such as groundwater and agricultural soil.
Collapse
Affiliation(s)
- Nguyen Van Thinh
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, 819-0395, Japan.
- Consulting Center of Technological Sciences for Natural Resources and Environment, Vietnam National University of Agriculture, Hanoi, Vietnam.
| | - Nguyen Thuy Chung
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam.
| | - Ly Thi Mai Luong
- Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Pham Minh Chinh
- Faculty of Environmental Engineering, National University of Civil Engineering, Hanoi, Vietnam
| | - Phan Phuong Anh
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Nguyen The Huy
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Dang Thi Thuy
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
8
|
Jeong H, Ra K. Seagrass and green macroalgae Halimeda as biomonitoring tools for metal contamination in Chuuk, Micronesia: Pollution assessment and bioaccumulation. MARINE POLLUTION BULLETIN 2022; 178:113625. [PMID: 35381460 DOI: 10.1016/j.marpolbul.2022.113625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, we evaluated metal accumulation in different species and tissues of seagrasses and green macroalgae Halimeda and assessed metal pollution levels in Chuuk, Micronesia. In seagrass, the concentrations of Ni, Cu, Zn, Cd, Pb, and Hg were higher in leaves than in roots, whereas Cr and As concentrations were higher in roots. Halimeda had higher concentrations of Ni than of the other metals, and the mean Ni concentration was approximately 2.1 times higher in Halimeda than in seagrass leaves. The concentrations of Cr, As, Cu, Pb, and Hg in Halimeda were similar to those in seagrasses, whereas the Zn and Cd concentrations in Halimeda were very low. Significant correlations in metal concentrations between sediment and both seagrasses and Halimeda were observed for Cr, Ni, Cu, Zn, and Pb. This study suggests that seagrasses and Halimeda are useful indicators for monitoring metal pollution in coastal environments.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
9
|
Araújo PRM, Biondi CM, do Nascimento CWA, da Silva FBV, Ferreira TO, de Alcântara SF. Geospatial modeling and ecological and human health risk assessments of heavy metals in contaminated mangrove soils. MARINE POLLUTION BULLETIN 2022; 177:113489. [PMID: 35325795 DOI: 10.1016/j.marpolbul.2022.113489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal-contaminated wastes can threaten mangrove forests, one of the most biodiverse ecosystems in the world. The study evaluated the geospatial distribution of heavy metals concentrations in soils, the ecological and human health risks, and metal contents in soil fractions and mangrove organisms in the Botafogo estuary, Brazil, one of the most environmentally impacted estuaries in the country. The metal concentrations exceeded by up to 2.6-fold the geochemical background; 91%, 59%, 64%, 31%, and 82% of the soils were contaminated with Cr, Zn, Pb, Cu, and Ni, respectively. Adverse effects to the biota may occur due to Cr, Cu, Ni and Pb exposures. Contents of clay and organic matter were the main factors governing the distribution of metals in soil, contributing to up to 63% of the total variability. However, the geospatial modeling showed that the predictive ability of these variables varied spatially with the metal and location. The ecological and human health risks assessments indicated that the metal concentrations in soils are safe for the environment and human beings. There was a low transfer of metals from the soil to the biota, with values of sediment-biota accumulation factor (SBAF) and biological accumulation coefficients (BAC) lower than 1.0, except for Zn (SBAF = 13.1). The high Zn bioaccumulation by Crassostrea rhizophorae may be associated with the concentrations of Zn in the bioavailable fractions.
Collapse
Affiliation(s)
- Paula Renata Muniz Araújo
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | - Caroline Miranda Biondi
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | | | - Fernando Bruno Vieira da Silva
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Tiago Osório Ferreira
- Soil Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Av. Pádua Dias 11, CEP 13418-900 Piracicaba, SP, Brazil.
| | - Silvia Fernanda de Alcântara
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil
| |
Collapse
|
10
|
Recovery of Soil Processes in Replanted Mangroves: Implications for Soil Functions. FORESTS 2022. [DOI: 10.3390/f13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mangrove revegetation is a vital strategy to recover ecosystem services (e.g., climate regulation and pollutants retention) provided by these ecosystems. Although soils are directly or indirectly responsible for diverse ecosystem services in mangrove ecosystems, few studies have focused on the recovery of soil functions (e.g., carbon sequestration) after mangrove replanting. This study aimed to evaluate the recovery of soil processes associated with Fe, S, and C dynamics and its implications for the restoration of soil functions. Two mangrove sites under replanting initiatives were studied along the Brazilian coast (i.e., NE and SE). The study was conducted in 3- and 7-year-old replanted mangrove forests, and a comparison was made with degraded and mature mangroves. Particle size, soil C stocks, Fe forms, total Fe and S contents, degrees of pyritization of Fe, and mineralogical assemblages were assessed. Seven years after replanting, soil C stocks increased by 42% and 29% in mangrove soils from the NE and SE sites, respectively. In addition, significant increases were observed in fine particles, reactive Fe, and pyrite contents in replanted plots. These new conditions promoted organic matter accumulation, stabilization, and potential metal retention. Our findings highlight the potential of revegetation programs for recovering soil processes and essential soil functions.
Collapse
|
11
|
Yap CK, Al-Mutairi KA. Comparative Study of Potentially Toxic Nickel and Their Potential Human Health Risks in Seafood (Fish and Mollusks) from Peninsular Malaysia. BIOLOGY 2022; 11:376. [PMID: 35336750 PMCID: PMC8945417 DOI: 10.3390/biology11030376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
Human exposure to highly nickel (Ni)-polluted environments through oral ingestion pathways may cause various pathological effects. This biomonitoring study aimed to assess the human health risk of potentially toxic Ni in 19 species of marine fishes from Setiu (Terengganu) and two popular seafood molluscs (mangrove snail Cerithidea obtusa and cockle Anadara granosa) from the coastal area of Peninsular Malaysia. The Ni levels of the three seafood types were found below the maximum permissible limit for Ni. The Ni target hazard quotient values of all seafood were lower than 1.00 for average and high-level (AHL) Malaysian consumers, indicating no Ni's non-carcinogenic risk of seafood consumption. It was also found that the calculated values of estimated weekly intake were below than established provisional tolerable weekly intake of Ni for both AHL consumers. It can be concluded that both the AHL consumption of seafood would not pose adverse effects of Ni to the consumers. This study provided a scientific basis for the food safety assessment of Ni and suggestions for risk management of potentially toxic Ni of seafood consumption in Malaysia.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Malaysia
| | | |
Collapse
|
12
|
Miranda LS, Ayoko GA, Egodawatta P, Goonetilleke A. Adsorption-desorption behavior of heavy metals in aquatic environments: Influence of sediment, water and metal ionic properties. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126743. [PMID: 34364212 DOI: 10.1016/j.jhazmat.2021.126743] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Limited knowledge of the combined effects of water and sediment properties and metal ionic characteristics on the solid-liquid partitioning of heavy metals constrains the effective management of urban waterways. This study investigated the synergistic influence of key water, sediment and ionic properties on the adsorption-desorption behavior of weakly-bound heavy metals. Field study results indicated that clay minerals are unlikely to adsorb heavy metals in the weakly-bound fraction of sediments (e.g., r = -0.37, kaolinite vs. Cd), whilst dissociation of metal-phosphates can increase metal solubility (e.g., r = 0.61, dissolved phosphorus vs. Zn). High salinity favors solubility of weakly-bound metals due to cation exchange (e.g., r = 0.60, conductivity vs. Cr). Dissolved organic matter does not favor metal solubility (e.g., r = -0.002, DOC vs. Pb) due to salt-induced flocculation. Laboratory study revealed that water pH and salinity dictate metal partitioning due to ionic properties of Ca2+ and H+. Selectivity for particulate phase increased in the order Cu>Pb>Ni>Zn, generally following the softness (2.89, 3.58, 2.82, 2.34, respectively) of the metal ions. Desorption followed the order Ni>Zn>Pb>Cu, which was attributed to decreased hydrolysis constant (pK1 = 9.4, 9.6, 7.8, 7.5, respectively). The study outcomes provide fundamental knowledge for understanding the mobility and potential ecotoxicological impacts of heavy metals in aquatic ecosystems.
Collapse
Affiliation(s)
- Lorena S Miranda
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia.
| | - Godwin A Ayoko
- Faculty of Science, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia; Centre for the Environmenment, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Queensland, Australia.
| | - Prasanna Egodawatta
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia.
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia.
| |
Collapse
|
13
|
Kieu-Le TC, Tran QV, Truong TNS, Strady E. Anthropogenic fibres in white clams, Meretrix lyrata, cultivated downstream a developing megacity, Ho Chi Minh City, Viet Nam. MARINE POLLUTION BULLETIN 2022; 174:113302. [PMID: 34995884 DOI: 10.1016/j.marpolbul.2021.113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Anthropogenic fibres are an emerging pollutant worldwide. The Can Gio mangrove area is located downstream of the Saigon River, and is characterised by high level of anthropogenic fibres originating from domestic and industrial textile and apparel manufacturing. In this area, biota is thus subjected to a high potential risk of anthropogenic fibre contamination. This study aims to characterise the accumulation of anthropogenic fibres in different tissues, i.e. gills, digestive systems, and remaining tissues, of white clams (Meretrix lyrata) cultivated in the Can Gio beach sand, during a seven-month sampling period. The results showed an average concentration of 3.6 ± 2.1 fibres individual-1 or 2.7 ± 2.4 fibres g-1 ww. Higher fibre accumulation was observed in remaining tissues than in gills and digestive systems, and no temporal variation was observed in all clam tissues. The intake of fibres by humans consuming clams was estimated to be 324 fibres inhabitant-1 yr-1.
Collapse
Affiliation(s)
- Thuy-Chung Kieu-Le
- Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology (HCMUT), Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Viet Nam
| | - Quoc-Viet Tran
- Vietnam National University Ho Chi Minh City (VNU-HCM), Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Viet Nam; Asian Center for Water Research (CARE), Ho Chi Minh City University of Technology (HCMUT), Viet Nam
| | - Tran-Nguyen-Sang Truong
- Vietnam National University Ho Chi Minh City (VNU-HCM), Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Viet Nam; Asian Center for Water Research (CARE), Ho Chi Minh City University of Technology (HCMUT), Viet Nam
| | - Emilie Strady
- Asian Center for Water Research (CARE), Ho Chi Minh City University of Technology (HCMUT), Viet Nam; Aix-Marseille Univ., Mediterranean Institute of Oceanography (M I O), Marseille, Universite de Toulon, CNRS/IRD, France.
| |
Collapse
|
14
|
Yap CK, Al-Mutairi KA. Ecological-Health Risk Assessments of Heavy Metals (Cu, Pb, and Zn) in Aquatic Sediments from the ASEAN-5 Emerging Developing Countries: A Review and Synthesis. BIOLOGY 2021; 11:biology11010007. [PMID: 35053006 PMCID: PMC8773003 DOI: 10.3390/biology11010007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
The ASEAN-5 countries (Malaysia, Indonesia, Thailand, Philippines, and Vietnam) of the Association of Southeast Asian Nations as a group is an ever-increasing major economy developmental hub in Asia besides having wealthy natural resources. However, heavy metal (HM) pollution in the region is of increasing environmental and public concern. This study aimed to review and compile the concentrations of Cu, Pb, and Zn in the aquatic sediments of the ASEAN-5 countries published in the literature from 1981 to February 2021. The mean values of Cu, Pb, and Zn in aquatic sediments were elevated and localized in high human activity sites and compared to the earth's upper continental crust and reference values. Based on 176 reports from 113 publications, the ranges of concentrations (mg/kg dry weight) were 0.09-3080 for Cu, 0.37-4950 for Zn, and 0.07-2666 for Pb. The ecological risk (ER) values ranged from 0.02-1077 for Cu, 0.01-95.2 for Zn, and 0.02-784 for Pb. All reports (100%) showed the Zn ER values were categorized as being between 'low potential ecological risk' and 'considerable potential ecological risk'. Almost all Cu ER values (97.7%) also showed similar ranges of the above two risk categories except for a few reports. The highest Cu level (3080 mg/kg dry weight) was reported from a mine-tailing spill in Marinduque Island of the Philippines with 'very high ecological risk'. In addition, drainage sediments in the western part of Peninsular Malaysia were categorized as Cu 'high potential ecological risk'. Almost all reports (96%) showed Pb ER values categorized as between 'low potential ecological risk' and 'moderate potential ecological risk' except for a few reports. Six reports showed Pb ER values of 'considerable potential ecological risk', while one report from Semarang (Indonesia) showed Pb ER of 'very high ecological risk' (Pb level of 2666 mg/kg dry weight). For the ingestion and dermal contact pathways for sediments from the ASEAN-5 countries, all non-carcinogenic risk (NCR) values (HI values 1.0) for Cu, Pb, and Zn reflected no NCR. The ER and human health risk assessment of Cu, Pb, and Zn were compared in an integrative and accurate manner after we reassessed the HM data mentioned in the literature. The synthesis carried out in this review provided the basis for us to consider Cu, Pb, and Zn as being of localized elevated levels. This provided evidence for the ASEAN-5 group of countries to be considered as being a new socio-economic corridor. Beyond any reasonable doubt, an ever-increasing anthropogenic input of HMs is to be expected to a certain degree. We believe that this paper provides the most fundamental useful baseline data for the future management and sustainable development of the aquatic ecosystems in the region. Lastly, we claim that this review is currently the most up-to-date review on this topic in the literature.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: or
| | - Khalid Awadh Al-Mutairi
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
15
|
Koukina SE, Lobus NV, Shatravin AV. Multi-element signatures in solid and solution phases in a tropical mixing zone: A case study in the Cai River estuary, Vietnam. CHEMOSPHERE 2021; 280:130951. [PMID: 34162112 DOI: 10.1016/j.chemosphere.2021.130951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
This study provides baseline concentrations of major, trace, and rare earth elements (REEs) in the solid and solution phases of the tropical Cai River estuary under influence of multiple stresses. The application of the selected multivariate analysis tools (principal component analysis and redundancy analysis) to the enrichment factor and partitioning coefficients (KSPM/Water and KSPM/Sed) calculated from the bulk element contents highlighted the strongest relationships (considered as multi-element signatures) according to the efficiency of the transfer across the estuarine gradients (considered as a selective geochemical filter). Thus, most of the major and trace elements, and REEs studied mainly settle within the mixing zone due to the association with terrigenous aluminosilicate clay minerals, whereas Co, Ni, Cu, As, and Mo are transferred seaward because of their association with the most labile fraction of the fluvial particulate load (such as clays, organic colloids, and carbonates). The major and trace elements, and REEs investigated in this study are mainly introduced in the Cai River and its estuary via basement rock weathering under enhanced monsoonal precipitation, whereas Bi showed the most severe enrichment in the non-weathering distribution pattern. The fractionation of the fluvial element load within the estuarine geochemical filter is mainly controlled by the differential settling of fluvial mineral element-bearing phases along with estuarine colloid dynamics - a topic that must warrants further investigation.
Collapse
Affiliation(s)
- Sofia E Koukina
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nahimovskiy Pr. 36, 117997, Moscow, Russia.
| | - Nikolay V Lobus
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, 127276, Moscow, Russia.
| | - Alexander V Shatravin
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nahimovskiy Pr. 36, 117997, Moscow, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991, Moscow, Russia.
| |
Collapse
|
16
|
Castro MF, Neves JCL, Francelino MR, Schaefer CEGR, Oliveira TS. Seabirds enrich Antarctic soil with trace metals in organic fractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147271. [PMID: 33940409 DOI: 10.1016/j.scitotenv.2021.147271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Coastal areas of Antarctica are subjected to anthropic contamination from around the world by trace metals biotransported and accumulated by seabird excrements. To explore this hypothesis, this study investigated the influence of seabirds on the contents of trace metals in soil organic fractions from Antarctica under different climatic conditions and from different parent materials. For this, soil profiles from the Maritime Antarctica region were selected based on the criteria of ornithogenesis, parent material, and climate. The contents of C, N, and selected metals (Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn) were analysed in the organic matter associated with minerals (MAOM), the particulate fraction (POM), and in the total soil (MAOM + POM). The ornithogenic soils presented the highest amounts of C and N in the soil, MAOM, and POM as compared to nonornithogenic soils. Seabird activity resulted in an enrichment of Pb, Zn, and Cu. Among these biotransported metals, Cu and Zn seem to originate from natural biogenic processes in marine food chains, unlike Pb, which seems to come from anthropogenic sources. The soils developed from igneous rocks presented higher amounts of Ba, Co, Cu, Fe, Mn, and Sr in the soil, MAOM, and POM than soils from sedimentary rocks. The climate had no clear effect on most metals. Hence, seabirds enrich soils, MAOM, and POM with Cu, Zn, and Pb, whereas the amounts of Ba, Co, Cr, Fe, Mn, Ni, and Sr are mainly lithogenic, associated with the parent material. Monitoring biotransported trace metals in ornithogenic soils is of great importance, since they can create environmental toxicity to terrestrial plants and animals and can influence the food chain in the coastal areas of Antarctica.
Collapse
Affiliation(s)
- Marllon F Castro
- Soil Department, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - Júlio C L Neves
- Soil Department, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | |
Collapse
|
17
|
Miranda LS, Wijesiri B, Ayoko GA, Egodawatta P, Goonetilleke A. Water-sediment interactions and mobility of heavy metals in aquatic environments. WATER RESEARCH 2021; 202:117386. [PMID: 34229194 DOI: 10.1016/j.watres.2021.117386] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The adsorption-desorption behaviour of heavy metals in aquatic environments is complex and the processes are regulated by the continuous interactions between water and sediments. This study provides a quantitative understanding of the effects of nutrients and key water and sediment properties on the adsorption-desorption behaviour of heavy metals in riverine and estuarine environments. The influence levels of the environmental factors were determined as conditional regression coefficients. The research outcomes indicate that the mineralogical composition of sediments, which influence other sediment properties, such as specific surface area and cation exchange capacity, play the most important role in the adsorption and desorption of heavy metals. It was found that particulate organic matter is the most influential nutrient in heavy metals adsorption in the riverine environment, while particulate phosphorus is more important under estuarine conditions. Dissolved nutrients do not exert a significant positive effect on the release of heavy metals in the riverine area, whilst dissolved phosphorus increases the transfer of specific metals from sediments to the overlying water under estuarine conditions. Furthermore, the positive interdependencies between marine-related ions and the release of most heavy metals in the riverine and estuarine environments indicate an increase in the mobility of heavy metals as a result of cation exchange reactions.
Collapse
Affiliation(s)
- Lorena S Miranda
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Buddhi Wijesiri
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Godwin A Ayoko
- Faculty of Science, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Prasanna Egodawatta
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| |
Collapse
|
18
|
Seasonal Variation and Ecological Risk Assessment of Heavy Metal in an Estuarine Mangrove Wetland. WATER 2021. [DOI: 10.3390/w13152064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potential toxic metal pollution in mangroves has attracted extensive attention globally; however, the seasonal variation of potential toxic metals in mangrove wetlands is still poorly understood. Herein, we investigated the variation of content as well as chemical speciation of typical metals (Pb, Cr, Zn and Cu) in the sediments from the Zhangjiang Estuary mangrove wetland, China. The potential risk of metal contamination was also investigated. Compared to the wet season, we found that sediment metal content was higher in the dry season. Mangrove sites show accumulated significant metals than does the mudflat both in wet and dry seasons. Geo-accumulation (Igeo) shows moderate pollution, probably because of the dilution as result of runoff and tidal hydrodynamics in the wet season. Increased concentrations of all metals in the acid-soluble fraction and decreased metal contents in the residue fraction were found in the dry season. Risk assessment indicated that the concentrations of Pb poses a higher environmental risk in the dry season. These results can increase awareness of metal pollution in the dry season and provide information for potential toxic metal management in mangrove wetlands.
Collapse
|
19
|
Dhaliwal SS, Setia RK, Bhatti SS, Singh J. Potential Ecological Impacts of Heavy Metals in Sediments of Industrially Contaminated Perennial Drain of India. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:949-958. [PMID: 33988727 DOI: 10.1007/s00128-021-03260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Globally, heavy metal contamination of natural waterways and surrounding environments due to anthropogenic activities has become a grave cause of concern. Therefore, the present study was conducted to analyze the ecological risk posed by heavy metals in sediment samples (N = 24) collected from different depths of Budha Nalah drain located in Ludhiana (Punjab, India). The concentration of As, Cd, Cr, Cu, Ni, Pb and Zn were found to be above the maximum permissible limits for metals in soils and sediments, which was attributed to anthropogenic activities (industrialization, urbanization and agriculture). The values observed for Contamination Factor, Enrichment Factor and Pollution Load Index revealed that sediment samples were highly contaminated by As, Cd, Cr and Pb. The ecological Risk Index (range: 212-1566) and Modified Risk Index (range: 2793-12,182) values indicated that high concentrations of metals (especially As, Cd, Cr and Pb) posed severe ecological risks in the areas around the drain.
Collapse
Affiliation(s)
| | - Raj K Setia
- Punjab Remote Sensing Center, Ludhiana, India
| | - Sandip Singh Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
20
|
Miranda LS, Ayoko GA, Egodawatta P, Hu WP, Ghidan O, Goonetilleke A. Physico-chemical properties of sediments governing the bioavailability of heavy metals in urban waterways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142984. [PMID: 33498122 DOI: 10.1016/j.scitotenv.2020.142984] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Bioavailability is a critical facet of metal toxicity. Although past studies have investigated the individual role of sediment physico-chemical properties in relation to the bioavailability of heavy metals, their collective effects are little-known. Further, limited knowledge exists on the contribution of nutrients to metal bioavailability. In this study, the influence of physico-chemical properties of sediments, including total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), cation exchange capacity (CEC), specific surface area (SSA), and mineralogical composition to metal bioavailability is reported. The weak-acid extraction method was used to measure Cd, Cr, Cu, Ni, Pb and Zn as the potentially bioavailable fraction in sediments in an urban creek. The results confirmed that Cu has strong selectivity for organic matter (r = 0.814, p < 0.01). Cr bioavailability was influenced by either sediment mineralogy, nutrients, CEC or SSA. Zn, Ni and Pb showed strong affinity to mineral oxides, though their preferred binding positions were with nutrients, particularly organic matter (r = 0.794, 0.809, and 0.753, p < 0.01, respectively). The adsorption of Cd was strongly influenced by the competition with other metals and its bioavailability was weakly influenced by ion exchange (CEC: r = 0.424, p < 0.01). The study results indicate that nitrogen and phosphorus compounds can elevate metal bioavailability due to complexation reactions. Generally, the estuarine area was more favourable for the adsorption of weakly-bound metals. This is concerning as estuaries generate high biogeochemical activity and are economically important.
Collapse
Affiliation(s)
- Lorena S Miranda
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia.
| | - Godwin A Ayoko
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia.
| | - Prasanna Egodawatta
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia.
| | - Wan-Ping Hu
- Institute for Future Environments, Central Analytical Research Facility (CARF), Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia.
| | - Osama Ghidan
- Institute for Future Environments, Central Analytical Research Facility (CARF), Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia.
| | - Ashantha Goonetilleke
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia.
| |
Collapse
|
21
|
Thuy HTT, Loan TTC, Luu PT, Van Dong N, Bao LD, Phuong TH, Khanh NT, Yen TTH, Huy DX. Spatial and temporal variations of PAHs in surface sediments of estuarine and coast of CanGio wetland, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11962-11975. [PMID: 32227300 DOI: 10.1007/s11356-020-08523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Surface sediments from estuarine and coast of CanGio wetland (CGW) of Hochiminh City, Vietnam, were investigated to identify the spatial and temporal variations of polycyclic aromatic hydrocarbons (PAHs). The total PAHs showed wide variation but similar to patterns observed (F = 0.901, p = 0.46) in LongTau (31 ± 77 ng/g dry weight, n = 13), SoaiRap (53 ± 81, n = 4), ThiVai (60 ± 62, n = 10) estuaries, and coastal areas (112 ± 211, n = 9). A decreasing trend in the wet season (F = 8.8, p = 0.01) reflected that inland sources such as wastewater discharged and atmospherically transported contaminants contributed to PAHs in sediments. The risk posed by the PAHs in the coastal and estuarine areas of CGW is still negligible. The present study provides baseline data, which can be used for regular monitoring and future strategy of environmental protection for the study area.
Collapse
Affiliation(s)
- Hoang Thi Thanh Thuy
- Hochiminh City University of Natural Resources and Environment, 236B LeVanSy Street, TanBinh District,, Hochiminh City, Vietnam.
| | - Tu Thi Cam Loan
- Hochiminh City University of Natural Resources and Environment, 236B LeVanSy Street, TanBinh District,, Hochiminh City, Vietnam
| | - Pham Thanh Luu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), Hochiminh City, Vietnam
| | - Nguyen Van Dong
- University of Science, Vietnam National University Ho Chi Minh City (VNU-HCM), Hochiminh City, Vietnam
| | - Le Duy Bao
- University of Science, Vietnam National University Ho Chi Minh City (VNU-HCM), Hochiminh City, Vietnam
| | - Trinh Hong Phuong
- Hochiminh City University of Natural Resources and Environment, 236B LeVanSy Street, TanBinh District,, Hochiminh City, Vietnam
| | - Nguyen Trong Khanh
- Hochiminh City University of Natural Resources and Environment, 236B LeVanSy Street, TanBinh District,, Hochiminh City, Vietnam
| | - Tran Thi Hoang Yen
- Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), Hochiminh City, Vietnam
| | - Do Xuan Huy
- Institute for Environment and Resources, Vietnam National University, Hochiminh City, Vietnam
| |
Collapse
|
22
|
Jiang R, Huang S, Wang W, Liu Y, Pan Z, Sun X, Lin C. Heavy metal pollution and ecological risk assessment in the Maowei sea mangrove, China. MARINE POLLUTION BULLETIN 2020; 161:111816. [PMID: 33157505 DOI: 10.1016/j.marpolbul.2020.111816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The level and ecological impact of heavy metal pollution in the Maowei Sea mangrove are poorly understood. This work first investigated the distribution and ecological risk of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Maowei Sea mangrove sediments. The results showed that heavy metals were mainly concentrated in the top 10 cm of mangrove stands, declined up to 20 cm deep, and were constant afterwards. Exceptionally, Mn concentration increased significantly with depth in the mudflat. Multiple environmental risk indices indicated that the investigated area was broadly contaminated by heavy metals and that Cd was the dominant contributor to potential ecological risks. However, the biological toxicity posed by these metals was negligible. Multivariate analyses implied that Cd, Co, Cr, Cu, Ni, Pb, and Zn originated mainly from anthropogenic sources, whereas Mn was primarily from natural processes. These findings could provide insightful information for future management of this mangrove.
Collapse
Affiliation(s)
- Ronggen Jiang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Xiuwu Sun
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
23
|
Methane and carbon dioxide emissions from different ecosystems at the end of dry period in South Vietnam. Trop Ecol 2020. [DOI: 10.1007/s42965-020-00118-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe carbon cycle includes important fluxes of methane (CH4) and carbon dioxide (CO2) between the ecosystem and the atmosphere. The fluxes may acquire either positive (release) or negative values (consumption). We calculated these fluxes based on short-campaign in situ chamber measurements from four ecosystems of South Vietnam: intact mountain rain forest, rice field, Melaleuca forest and mangroves (different sites with Avicennia or Rhizophora and a typhoon-disturbed gap). Soil measurements were supplemented by chamber measurements of gas fluxes from the tree stems. Measuring CH4 and CO2 together facilitates the assessment of the ratio between these two gases in connection with current conditions and specificity of individual ecosystems. The highest fluxes of CH4 were recorded in the Melaleuca forest, being within the range from 356.7 to 784.2 mg CH4–C m−2 day−1 accompanied by higher fluxes of CH4 release from Melaleuca tree stems (8.0–262.1 mg CH4–C m−2 day−1). Significant negative soil fluxes of CH4 were recorded in the mountain rain forest, within the range from − 0.3 to − 0.8 mg CH4–C m−2 day−1. Fluxes of CO2 indicate prevailing aerobic activity in the soils of the ecosystems investigated. Quite a large variability of CO2 fluxes was recorded in the soil of the Avicennia mangroves. The in situ measurements of different ecosystems are fundamental for follow-up measurements at different levels such as aerial and satellite gas fluxes observations.
Collapse
|
24
|
Taillardat P, Marchand C, Friess DA, Widory D, David F, Ohte N, Nakamura T, Van Vinh T, Thanh-Nho N, Ziegler AD. Respective contribution of urban wastewater and mangroves on nutrient dynamics in a tropical estuary during the monsoon season. MARINE POLLUTION BULLETIN 2020; 160:111652. [PMID: 33181932 DOI: 10.1016/j.marpolbul.2020.111652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Estuaries of Southeast Asia are increasingly impacted by land-cover changes and pollution. Here, our research objectives were to (1) determine the origins of nutrient loads along the Can Gio estuary (Vietnam) and (2) identify the processes that affect the nutrient pools during the monsoon. We constructed four 24-h time-series along the salinity gradient measuring nutrient concentrations and stable isotopes values. In the upper estuary, urban effluents from Ho Chi Minh City were the main input of nutrients, leading to dissolved oxygen saturation <20%. In the lower estuary, ammonium and nitrite concentration peaks were explained by mangrove export. No contribution from aquaculture was detected, as it represents <0.01% of the total river discharge. Along the salinity gradient, nutrient inputs were rapidly consumed, potentially by phytoplankton while nitrate dual-stable isotopes indicated that nitrification occurred. Thus, even in a large and productive estuary, urban wastewater can affect nutrient dynamics with potentially important ecological risks.
Collapse
Affiliation(s)
- Pierre Taillardat
- Department of Geography, National University of Singapore, 1 Arts Link, Singapore 117570, Singapore; GEOTOP Research Center, Université du Québec à Montréal, Montréal, Canada.
| | - Cyril Marchand
- IMPMC, Institut de Recherche pour le Développement (IRD), Sorbonne Université, CNRS, MNHN, Noumea, New Caledonia, France; Université de Nouvelle-Calédonie, ISEA, EA 7484, Noumea, New Caledonia, France
| | - Daniel A Friess
- Department of Geography, National University of Singapore, 1 Arts Link, Singapore 117570, Singapore
| | - David Widory
- GEOTOP Research Center, Université du Québec à Montréal, Montréal, Canada; Department of Earth and Atmospheric sciences, Université du Québec à Montréal, Montréal, Canada
| | - Frank David
- BOREA Biologie des Organismes et Ecosystèmes Aquatiques, UMR 7208 MNHN CNRS SU UA UCN IRD 207, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Nobuhito Ohte
- Biosphere Informatics Laboratory, Kyoto University, Kyoto, Japan
| | - Takashi Nakamura
- Interdisciplinary Centre for River Basin Environment, Yamanashi University, Japan
| | - Truong Van Vinh
- Nong Lam University, Linh Trung, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Nguyen Thanh-Nho
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Alan D Ziegler
- Faculty of Fisheries and Aquatic Resources, Mae Jo University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Bourgeois C, Alfaro AC, Bisson E, Alcius S, Marchand C. Trace metal dynamics in soils and plants along intertidal gradients in semi-arid mangroves (New Caledonia). MARINE POLLUTION BULLETIN 2020; 156:111274. [PMID: 32510413 DOI: 10.1016/j.marpolbul.2020.111274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Trace metal dynamics were investigated in mangroves developing in semi-arid New Caledonia, where Avicennia and Rhizophora stands grow in the upper and lower intertidal zone, respectively. We collected soil samples and mangrove tissues in an undisturbed site, a mining-influenced site and in a mining and aquaculture-influenced site. Differences in duration of immersion and organic matter (OM) cycling resulted in a sharp decrease of metal concentrations in soils and plants from landside to seaside. Both species were tolerant to metals mainly via exclusion, (i.e. metal bioaccumulation restricted to roots and leaf litter). Strong correlations (p < 0.05) were found between Na and Fe, Mn, Cu and Zn in green and senesced leaves of Avicennia marina, indicating a possible role of those metals in mechanisms to cope with hypersaline conditions. Increasing metal pollution, aridity and sea-level rise are likely to result in a decrease in mangrove efficiency in filtering trace metals seaward.
Collapse
Affiliation(s)
- Carine Bourgeois
- Auckland University of Technology (AUT): Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Private Bag 92006, Auckland 1142, New Zealand; IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France
| | - Andrea C Alfaro
- Auckland University of Technology (AUT): Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Private Bag 92006, Auckland 1142, New Zealand.
| | - Estelle Bisson
- IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France
| | - Steevensen Alcius
- IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France
| | - Cyril Marchand
- IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France; ISEA, University of New Caledonia BP R4, 98851 Noumea, New Caledonia
| |
Collapse
|
26
|
Costa-Böddeker S, Thuyên LX, Hoelzmann P, de Stigter HC, van Gaever P, Huy HĐ, Smol JP, Schwalb A. Heavy metal pollution in a reforested mangrove ecosystem (Can Gio Biosphere Reserve, Southern Vietnam): Effects of natural and anthropogenic stressors over a thirty-year history. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137035. [PMID: 32059307 DOI: 10.1016/j.scitotenv.2020.137035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In order to assess the impact of recent industrialization and land-use changes in the Can Gio Mangrove Forest, a Biosphere Reserve in Southern Vietnam, we analyzed heavy metal (HM), total organic carbon (TOC) and total nitrogen (TN) concentrations in a 210Pb-dated sediment core, allowing for the environmental reconstruction of the last three decades. C/N ratios were very high (>20) until ~1990, reflecting highly refractory organic matter. Sediment Quality Guidelines (SQG's) violations were observed particularly after the establishment of industries in the area in the late-1990s. Chromium (Cr) and copper (Cu) exceeded the threshold effect levels (TEL); whereas nickel (Ni) was above the probable effects level (PEL), identifying the risk of potential adverse biological effects. Moderate contamination, mainly from cobalt (Co) and lead (Pb), was detected by the contamination factor (CF) index, with Pb levels likely originating from mainly anthropogenic sources, particularly after ~1992, as indicated by elevated enrichment factor (EF) values. A high positive correlation was found between Pb, Cr, Cu and Ni (r ≥ 0.8), while Co, cadmium (Cd) and TOC were highly positive correlated (r = 0.9). We identified evidence of point sources, atmospheric pollution and erosion as the main contributors to enhanced HM levels. However, negative values of the Geo-accumulation index (I-geo) indicated uncontaminated sediments. This discrepancy in pollution indices was likely due to the use of shale averages instead of regional levels as background values, as well as the influence of multiple stressors.
Collapse
Affiliation(s)
- Sandra Costa-Böddeker
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany.
| | - Lê Xuân Thuyên
- Faculty of Biology - Biotechnology, Vietnam National University, Ho Chi Minh University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Viet Nam..
| | - Philipp Hoelzmann
- Institut für Geographische Wissenschaften, Physische Geographie, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany.
| | - Henko C de Stigter
- NIOZ - Royal Netherlands Institute for Sea Research and Utrecht University, Landsdiep 4, 1797 SZ Den Hoorn, Texel, the Netherlands..
| | - Piet van Gaever
- NIOZ - Royal Netherlands Institute for Sea Research and Utrecht University, Landsdiep 4, 1797 SZ Den Hoorn, Texel, the Netherlands..
| | - Hoàng Đức Huy
- Faculty of Biology - Biotechnology, Vietnam National University, Ho Chi Minh University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Viet Nam..
| | - John P Smol
- Paleoecological Environmental Assessment and Research Lab (PEARL), Queen's University, Dept. Biology, 116 Barrie St., Kingston, Ontario K7L 3N6, Canada.
| | - Antje Schwalb
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany.
| |
Collapse
|
27
|
Koukina SE, Lobus NV. Relationship between enrichment, toxicity, and chemical bioavailability of heavy metals in sediments of the Cai River estuary. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:305. [PMID: 32323036 DOI: 10.1007/s10661-020-08282-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
This study focuses on heavy metals (HMs) (Cr, Co, Ni, Cu, Zn, and Pb) along with Al, Fe, Mn, organic carbon (TOC), and carbonates (TIC) detected in surface sediments from the River Cai-Nha Trang Bay estuarine system (South China Sea). The enrichment factors (EFAl and EFFe), Geoaccumulation Index (Igeo), Adverse Effect Index (AEI), and toxic units (TUs) were used to assess the HM enrichment and toxicity in the sediments. The selective single-step extraction procedure was applied to determine the chemical forms of HMs in order to assess their potential bioavailability. The EF and Igeo calculations suggest that sedimentary Fe, Mn, Cr, Co, Ni, and Cu are derived mainly from natural sources (EFAl and EFFe < 1.5 and Igeo < 0 at all sampling sites), while the moderate Pb enrichment (EFAl and EFFe ≥ 2 and Igeo ≥ 1 at all sampling sites) may indicate a moderate contamination. Cr, Cu, and Zn suggest low potential toxicity, while both Ni and Pb show above threshold AEI levels (AEI ≥ 1) and contribute up to 30-40% to the sum of toxic units (∑TUs) at all sampling sites. According to their comparative ability to mobilize metals from the sediments, the single extractants applied were arranged in descending order: acetic acid > ammonium oxalate >> sodium pyrophosphate. All single-step extractants mobilized substantive amounts of Pb (7-30% of total content, on average) from sediments, indicating considerable potential bioavailability. Among HMs studied, the percentage of acid-soluble Pb (23-35%) significantly exceeded the respective ranges in the sediments of other coastal regions. Pearson's correlation and PCA analyses revealed that among HMs studied, Cr, Ni, and Co enrichment is positively associated with the salinity gradient due to the accumulation of the most fine-grained Fe-rich aluminosilicate host minerals in the bay zone, while sediments in the transitional zone are mainly enriched in Cu, Zn, and Pb due to the local accumulation of metal-rich detrital heavy minerals. The percentages of bioavailable forms of most of the HMs are negatively associated with the salinity gradient due to the preferential accumulation with fluvial Fe/Mn oxyhydroxides in the frontal and transitional zones. Generally, distribution of the enrichment indices of most of the HMs is not associated or even negatively associated with the percentage of the bioavailable forms. The intensity of monsoonal precipitation is shown to be an essential factor in the natural enrichment of estuarine sediments with bioavailable metals. Determining the local geochemical background of HMs and Pb, in particular, is a major goal for future study.
Collapse
Affiliation(s)
- Sofia E Koukina
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Prospekt, 36, 117997, Moscow, Russia.
| | - Nikolay V Lobus
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Prospekt, 36, 117997, Moscow, Russia
| |
Collapse
|
28
|
Bastakoti U, Robertson J, Bourgeois C, Marchand C, Alfaro AC. Temporal variations of trace metals and a metalloid in temperate estuarine mangrove sediments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:780. [PMID: 31786680 DOI: 10.1007/s10661-019-7916-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Mangrove sediments are strong modulators of organic matter (OM) content and pollutant dynamics, acting both as sinks and sources of these components. This study aimed to assess temporal dynamics of OM within temperate mangrove sediments and their ability to sequester pollutants. Specifically, levels of trace metals (Fe, Cu, Zn, Pb, Cd) and a metalloid (As) were examined within mangrove and mudflat sediments located in a high-energy environment in Mangawhai Harbour Estuary, northern New Zealand. Sediment cores were collected from a mangrove stand and adjacent mudflats at three sediment depths during different months over a year. Variations in OM and elements were compared to rainfall and temperature patterns observed during the sampling period. All element concentrations, except for those of As, were significantly higher in mangrove compared to mudflat sediments during the entire sampling period. This is consistent with the well-reported ability of mangroves to trap suspended particles and OM. In addition, we observed a decreasing trend in trace metal concentrations with increasing sediment depth within mangrove habitat, which correlated well with decreasing OM content. Our results also suggested that most elements had different, but significant, temporal variations throughout the year, especially in mangrove sediments. Overall, the concentrations of Cu, Zn, Pb, Cd, and As in mangrove sediments increased during summer, whereas maximum levels of Fe and OM were observed in winter. This temporal pattern was determined to be related to OM and redox cycling as a result of changes in effluent input rates and physical/chemical environments during different seasons.
Collapse
Affiliation(s)
- Ujwal Bastakoti
- Institute for Applied Ecology, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - John Robertson
- Institute for Applied Ecology, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Carine Bourgeois
- Institute for Applied Ecology, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia
| | - Cyril Marchand
- Université de la Nouvelle-Calédonie (UNC), ISEA, EA 3325, Noumea, New Caledonia
| | - Andrea C Alfaro
- Institute for Applied Ecology, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
29
|
Sadat-Noori M, Glamore W. Porewater exchange drives trace metal, dissolved organic carbon and total dissolved nitrogen export from a temperate mangrove wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109264. [PMID: 31398678 DOI: 10.1016/j.jenvman.2019.109264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Porewater exchange is usually the least quantified process in delivering dissolved material from wetlands to coastal waters, although it has been recognised as an important pathway for the transport of trace metal, carbon and nutrient to the ocean. Here, surface water fluxes of dissolved manganese (Mn), iron (Fe), dissolved organic/inorganic carbon (DOC/DIC), total dissolved nitrogen (TDN) and phosphorous (TDP) were estimated from a temperate mangrove wetland (Kooragang Island, Newcastle, Australia). Radon (222Rn, a natural groundwater tracer) was used to develop a mass balance model to quantify porewater exchange rates and evaluate the contribution of porewater-derived dissolved material to the overall wetland surface water export. A 25-h time series dataset depicted a clear peak of Mn, Fe, TDN, DOC and radon during ebb tides which related to porewater discharge. Porewater exchange rates were estimated to be 14.0 ± 6.3 cm/d (0.18 ± 0.08 m3/s), mainly driven by tidal pumping, and facilitated by a large number of crab burrows at the site. Results showed that the wetland was a source of Mn, Fe, TDN and DOC to the adjacent river system and a sink for TDP and DIC. Surface water Mn, Fe, TDN and DOC exports were 4.0 ± 0.6, 6.6 ± 1.6, 23.9 ± 3.6 and 197.7 ± 29.7 mmol/m2 wetland/d, respectively. Porewater-derived Mn, Fe, TDN and DOC accounted for ~95, 100, 89 and 54% of the wetland surface water exports demonstrating its significant contribution. Our study indicates that temperate mangrove wetlands can be a major source of dissolved metal, carbon and nutrient delivery to coastal waters and that mangrove porewater exchange significantly contributes to this process.
Collapse
Affiliation(s)
- Mahmood Sadat-Noori
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW Sydney, NSW 2052, Australia.
| | - William Glamore
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
30
|
Yang D, Liu J, Wang Q, Hong H, Zhao W, Chen S, Yan C, Lu H. Geochemical and probabilistic human health risk of chromium in mangrove sediments: A case study in Fujian, China. CHEMOSPHERE 2019; 233:503-511. [PMID: 31185334 DOI: 10.1016/j.chemosphere.2019.05.245] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Deciphering the mobility and transfer of heavy metals in transition buffers is vital to understanding their behavior in mangrove forests. As one of the most redox-sensitive metals, the geochemical fractionation of sediment Chromium in mangrove forests and its health risks to the coastal fishermen folk is not clearly understood. This study investigated the current levels, enrichment, geochemical fractionation, and eco-toxicity on organisms of sediment Chromium from three mangrove forests in southeast China. A health risk assessment for different exposure pathways were also determined with Monte Carlo simulations technique. The results revealed that the concentration of sediment Chromium ranged from 30.75 mg kg-1 to 99.28 mg kg-1. The geochemical fractionations of sediment Chromium were mainly associated with amorphous Fe fraction, crystalline Fe fraction and residual fraction. Notably, 83.12% of samples analyzed in the residual phases of Chromium exceeded the background value of 40.7 mg kg-1. Adverse effect index revealed a considerably negative effect on benthos occurrence in the mangroves. Values of non-carcinogenic risks were below unity at all samples, whereas the cancer risks associated with Cr(VI) exposure via fish consumption at median were close to 1.73 ×10-5. A sensitivity analysis indicated that sediment Cr(VI) concentration and exposure frequency were the most relevant variables in the risk model. As the first attempt to provide information on the human health risks of sediment Chromium in mangrove forests in China, findings from this study can help track potential adverse effects and avoid risks from sediment Chromium.
Collapse
Affiliation(s)
- Dan Yang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiang Wang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hualong Hong
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Weiwei Zhao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shan Chen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Haoliang Lu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
31
|
Thanh-Nho N, Marchand C, Strady E, Huu-Phat N, Nhu-Trang TT. Bioaccumulation of some trace elements in tropical mangrove plants and snails (Can Gio, Vietnam). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:635-645. [PMID: 30849582 DOI: 10.1016/j.envpol.2019.02.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/12/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Mangrove sediments can store high amount of pollutants that can be more or less bioavailable depending on environmental conditions. When in available forms, these elements can be subject to an uptake by mangrove biota, and can thus become a problem for human health. The main objective of this study was to assess the distribution of some trace elements (Fe, Mn, Co, Ni, Cr, As, and Cu) in tissues of different plants and snails in a tropical mangrove (Can Gio mangrove Biosphere Reserve) developing downstream a megacity (Ho Chi Minh City, Vietnam). In addition, we were interested in the relationships between mangrove habitats, sediment quality and bioaccumulation in the different tissues studied. Roots and leaves of main mangrove trees (Avicennia alba and Rhizophora apiculata) were collected, as well as different snail species: Chicoreus capucinus, Littoraria melanostoma, Cerithidea obtusa, Nerita articulata. Trace elements concentrations in the different tissues were determined by ICP-MS after digestion with concentrated HNO3 and H2O2. Concentrations differed between stands and tissues, showing the influence of sediment geochemistry, species specific requirements, and eventually adaptation abilities. Regarding plants tissues, the formation of iron plaque on roots may play a key role in preventing Fe and As translocation to the aerial parts of the mangrove trees. Mn presented higher concentrations in the leaves than in the roots, possibly because of physiological requirements. Non-essential elements (Ni, Cr and Co) showed low bioconcentration factors (BCF) in both roots and leaves, probably resulting from their low bioavailability in sediments. Regarding snails, essential elements (Fe, Mn, and Cu) were the dominant ones in their tissues. Most of snails were "macroconcentrators" for Cu, with BCF values reaching up to 42.8 for Cerithidea obtusa. We suggest that high quantity of As in all snails may result from its high bioavailability and from their ability to metabolize As.
Collapse
Affiliation(s)
- Nguyen Thanh-Nho
- Department of Analytical Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City, Viet Nam; IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France.
| | - Cyril Marchand
- Department of Analytical Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City, Viet Nam; IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France; Université de la Nouvelle-Calédonie (UNC), PPME, EA 3325, BP R4, 98 851, Noumea, New Caledonia, France
| | - Emilie Strady
- Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP*, IGE, F-38000, Grenoble, France; CARE-HCMUT, Ho Chi Minh City, Viet Nam
| | - Nguyen Huu-Phat
- Department of Analytical Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City, Viet Nam
| | - Tran-Thi Nhu-Trang
- Faculty of Chemical Engineering and Food Technology, Nguyen Tat Thanh University, Viet Nam
| |
Collapse
|