1
|
Wang HX, Peng QW, Yang YL, He XW, Yang YJ, Zhang S, Song HL. Application of earthworm can enhance biological power generation and accelerate sulfamethoxazole removal in agricultural soils. BIORESOURCE TECHNOLOGY 2024; 413:131442. [PMID: 39241811 DOI: 10.1016/j.biortech.2024.131442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microbial degradation plays a crucial role in removing sulfonamides from soil, enhancing sulfamethoxazole (SMX) remediation. To further augment SMX removal efficiency and mitigate the transmission risk associated with antibiotic resistance genes (ARGs), this study proposes a novel approach that integrates micro-animals, microorganisms, and microbial fuel cell (MFC) technology. The results showed that earthworm-MFC synergy substantially reduces SMX content and ARGs abundance in soil. The introduction of earthworms enhances humus content, facilitating electron transfer within MFC and consequently improving current generation. Furthermore, electrical stimulation applied to earthworms led to increased protein secretion and enhanced antioxidant system activity, thereby accelerating SMX degradation. Earthworms also foster MFC-associated bacterial growth and SMX-degrading bacteria proliferation, augmenting MFC treatment efficacy. This synergistic effect significantly augmented the overall efficacy of MFC treatment for antibiotics. Overall, integrating earthworm activity with MFC technology effectively optimizes electricity generation and enhances pollutant removal.
Collapse
Affiliation(s)
- Hui-Xiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Qi-Wei Peng
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Xi-Wei He
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Yi-Jing Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Qu X, Niu Q, Sheng C, Xia M, Zhang C, Qu X, Yang C. Co-toxicity and co-contamination remediation of polycyclic aromatic hydrocarbons and heavy metals: Research progress and future perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120211. [PMID: 39442665 DOI: 10.1016/j.envres.2024.120211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) has attracted wide attention due to their high toxicity, mutagenicity, carcinogenicity and teratogenicity. A thorough understanding of the progress of the relevant studies about their co-toxicity and co-contamination remediation is of great importance to prevent environmental risk and develop new efficient remediation methods. This paper summarized the factors resulting in different co-toxic effects, the interaction mechanism influencing co-toxicity and the development of remediation technologies for the co-contamination. Also, the inadequacies of the previous studies related to the co-toxic effect and the remediation methods were pointed out, while the corresponding solutions were proposed. The specific type and concentration of PAHs and HMs, the specific type of their action object and environmental factors could affect their co-toxicity by influencing each other's transmembrane process, detoxification process and increasing reactive oxygen species (ROS) and some other mechanisms that need to be further studied. The specific action mechanisms of the concentration, environmental factors and the specific type of PAHs and HMs, their effect on each other's transmembrane processes, investigations at the cellular and molecular levels, non-targeted metabolomics analysis, as well as long-term ecological effects were proposed to be further explored in order to obtain more information about the co-toxicity. The combination of two or more methods, especially combining bioremediation with other methods, is a potential development field for the remediation of co-contamination. It can make full use of the advantages of each remediation method, to achieve an increase of remediation efficiency and a decrease of both remediation cost and ecological risk. This review intends to further improve the understanding on co-toxicity and provide references for the development and innovation of remediation technologies for the co-contamination of PAHs and HMs.
Collapse
Affiliation(s)
- Xiyao Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China.
| | - Cheng Sheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Mengmeng Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chengxu Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, PR China
| |
Collapse
|
3
|
Jing Y, Zhang T, Hu F, Liu G, Sun M. Single and combined effects of phenanthrene and cadmium on oxidative stress and detoxification related biomarkers in clams (Meretrix meretrix). Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110050. [PMID: 39378974 DOI: 10.1016/j.cbpc.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Biomarkers concerning antioxidant reactions and detoxification metabolics were evaluated in Meretrix meretrix exposed to cadmium (Cd, 10 μg/L) and phenanthrene (PHE, 100 μg/L) individually and in combination (10 μg/L Cd + 100 μg/L PHE) for 7 days. The accumulation of Cd and PHE measured in the digestive gland, gill, mantle, and axe foot of the clam showed significant increase in combination treatment and it was higher than the single Cd or single PHE treatment. The activities of oxidative stress-related enzymes, the expression of Cu/Zn SOD, and the content of MDA increased after Cd and PHE exposure in the digestive gland and gill at most cases. In the digestive gland, CAT gene expression was significantly induced in Cd-single group and significantly inhibited in PHE-single group and Cd-PHE mixed group at both day 3 and day 7; in the gill, CAT gene expression was significantly inhibited in all groups at day 3 and except for Cd-single group at day 7. MT expression was significantly induced in Cd-single and Cd-PHE mixed groups at day 7, while hsp70 expression was significantly inhibited in PHE-single and Cd-PHE mixed groups at day 7. The results indicated that SOD, CAT, GST, MDA, Cu/Zn SOD, CAT, MT and hsp70 were sensitive to cadmium and PHE in a water environment, and can be used as indicators of marine heavy metal pollution.
Collapse
Affiliation(s)
- Yuanyuan Jing
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Tianwen Zhang
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Fanguang Hu
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Guangbin Liu
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Ming Sun
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China.
| |
Collapse
|
4
|
Zang X, He M, Xu Y, Che T, Wang F, Xu J, Zhang H, Hu F, Xu L. Metaphire guillelmi exhibited predominant capacity of arsenic efflux. CHEMOSPHERE 2024; 361:142479. [PMID: 38815813 DOI: 10.1016/j.chemosphere.2024.142479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Earthworm could regulate their body concentration of arsenic via storage or excretion, and the ability of As efflux among different earthworms is not consistent. Here, whole and semi As exposure patterns with 0-10-30-60-100 mg kg-1 exposure concentrations were set to characterize the As efflux in geophagous earthworm, Metaphire guillelmi. Cast As (As-C) and earthworms' antioxidative responses were monitored to explore the efflux mechanisms under 30 mg kg-1 As-spiked soil (As30), besides, As concentration in earthworm tissue after egestion and dissection depurations were compared. In the whole exposure pattern, As concentration in gut content (As-G, 19.2-120.3 mg kg-1) surpassed that in the tissue (As-T, 17.2-53.2 mg kg-1), and they both increased with exposure concentrations. With the prolong time, they firstly increased and kept stable between day 10-15, then As-G increased while As-T decreased between day 15-20. In the semi-exposure pattern, both As-G and As-T decreased when M. guillelmi was transferred to clean soil for 5 days. During the 42-day incubation in As30, the antioxidative responses including reactive oxygen species (ROS), glutathione (GSH) and glutathione-S-transferase (GST) were firstly increased and then decreased, and As-C (13.9-43.9 mg kg-1) kept higher than As-G (14.2-35.1 mg kg-1). Significantly positive correlations were found between As-T and GSH, As-C and GST. Moreover, tissue As after dissection (11.6-22.9 mg kg-1) was obviously lower than that after egestion (11.4-26.4 mg kg-1), but significantly related to ROS and GSH. Taken together, M. guillelmi exhibited excellent capacity of As efflux, and GSH explained tissue As accumulation while GST facilitated the As elimination via cast. Besides, dissection instead of egestion revealed the As efflux in M. guillelmi more accurately. These findings contributed to a better understanding of how geophagous earthworm M. guillelmi regulated tissue As accumulation for As stress tolerance, and recommended an optimal depuration mode to characterize As accumulation.
Collapse
Affiliation(s)
- Xiayun Zang
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Mingyue He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuanzhou Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ting Che
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Fei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huijuan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Feng Hu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Li Xu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
5
|
Zhang SN, Zhou YT, Xia J, Wang YM, Ma JW, Wang LK, Hayat K, Bai SS, Li CH, Qian MR, Lin H. Combined effects of cadmium and sulfamethoxazole on Eisenia fetida: Insights into accumulation, subcellular partitioning, biomarkers and toxicological responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173303. [PMID: 38761948 DOI: 10.1016/j.scitotenv.2024.173303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Cadmium (Cd) and sulfamethoxazole (SMX) frequently coexist in farmlands, yet their synergistic toxicological impacts on terrestrial invertebrates remain unexplored. In this study, earthworms were exposed to artificial soils percolated with Cd (5 mg/kg), SMX (5 mg/kg) or combination of them for 7 days, followed by a 12-day elimination phase in uncontaminated soil. The uptake of Cd and SMX by the earthworms, along with their subcellular distribution, was meticulously analyzed. Additionally, a suite of biomarkers-including superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and weight loss-were evaluated to assess the health status of the earthworms and the toxicological effects of the Cd and SMX mixture. Notably, the cotreatment with Cd and SMX resulted in a significantly higher weight loss in Eisenia fetida (41.25 %) compared to exposure to Cd alone (26.84 %). Moreover, the cotreatment group exhibited substantially higher concentrations of Cd in the total internal body, fraction C (cytosol), and fraction E (tissue fragments and cell membranes) in Eisenia fetida compared to Cd alone counterparts. The combined exposure also significantly elevated the SMX levels in the total body and fraction C compared with the SMX-only treated earthworms. Additionally, Eisenia fetida subjected to the combined treatment showed markedly increased activities of SOD, CAT, and MDA compared to those treated with Cd alone. The effect addition indices (EAIs), ranging from 1.00 to 2.23, unequivocally demonstrated a synergistic effect of the combined treatments. Interestingly, relocating the earthworms to clean soil did not mitigate the observed adverse effects. These findings underscore the increased risk posed by the Cd-SMX complex to terrestrial invertebrates in agricultural areas.
Collapse
Affiliation(s)
- Sheng-Nan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yi-Tong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun Xia
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu-Meng Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun-Wei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li-Kun Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Shan-Shan Bai
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Cheng-Han Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ming-Rong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
6
|
Stickler A, Hawkey AB, Gondal A, Natarajan S, Mead M, Levin ED. Embryonic exposures to cadmium and PAHs cause long-term and interacting neurobehavioral effects in zebrafish. Neurotoxicol Teratol 2024; 102:107339. [PMID: 38452988 PMCID: PMC10990771 DOI: 10.1016/j.ntt.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Developmental exposure to either polycyclic aromatic hydrocarbons (PAHs) or heavy metals has been shown to cause persisting and overlapping neurobehavioral effects in animal models. However, interactions between these compounds have not been well characterized, despite their co-occurrence in a variety of environmental media. In two companion studies, we examined the effects of developmental exposure to cadmium (Cd) with or without co-exposure to prototypic PAHs benzo[a]pyrene (BaP, Exp. 1) or fluoranthene (FA, Exp. 2) using a developing zebrafish model. Zebrafish embryos were exposed to Cd (0-0.3 μM), BaP (0-3 μM), FA (0-1.0 μM), or binary Cd-PAH mixtures from 5 to 122 h post fertilization (hpf). In Exp. 1, Cd and BaP produced independent effects on an array of outcomes and interacting effects on specific outcomes. Notably, Cd-induced deficits in dark-induced locomotor stimulation were attenuated by BaP co-exposure in the larval motility test and BaP-induced hyperactivity was attenuated by Cd co-exposure in the adolescent novel tank test. Likewise, in Exp. 2, Cd and FA produced both independent and interacting effects. FA-induced increases on adult post-tap activity in the tap startle test were attenuated by co-exposure with Cd. On the predator avoidance test, FA- and 0.3 μM Cd-induced hyperactivity effects were attenuated by their co-exposure. Taken together, these data indicate that while the effects of Cd and these representative PAHs on zebrafish behavior were largely independent of one another, binary mixtures can produce sub-additive effects for some neurobehavioral outcomes and at certain ages. This research emphasizes the need for detailed risk assessments of mixtures containing contaminants of differing classes, and for clarity on the mechanisms which allow cross-class toxicant interactions to occur.
Collapse
Affiliation(s)
- Alexandra Stickler
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Sciences, Midwestern University, Downers Grove, IL 60515, USA
| | - Anas Gondal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarabesh Natarajan
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Mikayla Mead
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
7
|
He F, Liu R. Mechanistic insights into phenanthrene-triggered oxidative stress-associated neurotoxicity, genotoxicity, and behavioral disturbances toward the brandling worm (Eisenia fetida) brain: The need for an ecotoxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131072. [PMID: 36857826 DOI: 10.1016/j.jhazmat.2023.131072] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, earthworm (Eisenia fetida) brain was chosen as targeted receptors to probe the mechanisms of oxidative stress-related neurotoxicity, genotoxicity, and behavioral disturbances triggered by PHE. Results showed that PHE stress can initiate significant amounts of ROS, thus triggering oxidative stress in E. fetida brain. These effects were accompanied by a significant increase of damage to macromolecules DNA and lipids, resulting in severe oxidative effects. PHE exposure can induce AChE inhibition by ROS-induced injury and the accumulation of excess ACh at the nicotinic post-synaptic membrane, thus inducing aggravated neurological dysfunction and neurotoxicity of E. fetida through an oxidative stress pathway. Moreover, the burrowing behavior of earthworms was disturbed by oxidative stress-induced neurotoxicity after exposure to PHE. Furthermore, the abnormal mRNA expression profiles of oxidative stress- and neurotoxicity-related genes in worm brain were induced by PHE stress. The IBR results suggested that E. fetida brain was suffered more serious damage caused by PHE under higher doses and long-term exposure. Taken together, PHE exposure can trigger oxidative stress-mediated neurotoxicity and genotoxicity in worm brain and behavioral disorder through ROS-induced damage. This study is of great significance to evaluate the harmful effects of PHE and its mechanisms on soil ecological health.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
8
|
He F, Liu R, Tian G, Qi Y, Wang T. Ecotoxicological evaluation of oxidative stress-mediated neurotoxic effects, genetic toxicity, behavioral disorders, and the corresponding mechanisms induced by fluorene-contaminated soil targeted to earthworm (Eisenia fetida) brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162014. [PMID: 36740067 DOI: 10.1016/j.scitotenv.2023.162014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Fluorene is a commonly identified PAH pollutant in soil and exhibits various worrisome hazardous effects to soil organisms. Currently, the toxicity profiles of fluorene on earthworm brain are rare, and the mechanisms and their corresponding pathways involved in fluorene-triggered neurotoxicity, genotoxicity, and behavior changes have not been reported hitherto. Herein, earthworm (Eisenia fetida) brain was chosen as targeted receptor to explore the neurotoxic effects, genetic toxicity, behavioral disorders, and related mechanisms caused by fluorene-induced oxidative stress pathways. The results showed excess fluorene initiated the release of excessive quantities of ROS in earthworm brain, which have caused oxidative stress and accompanied by serious oxidative effects, including LPO (lipid peroxidation) and DNA injury. To minimize the damage effects, the antioxidant defense mechanisms (antioxidant enzymes and non-enzymatic antioxidants) were activated, and entailed a decrease of the antioxidant capacity in E. fetida brain, which, in turn, causes further ROS-induced ROS release. Exposure of fluorene induced the abnormal mRNA expression of genes relevant to oxidative stress (e.g., GST, SOD, CAT, GPx, MT, and Hsp70) and neurotoxicity (e.g., H02, C04, D06, and E08) in E. fetida brain. Specifically, fluorene can bind directly to AChE, destroying the conformation of this protein, and even affecting its physiological functions. This occurrence caused the inhibition of AChE activity and excess ACh accumulation at the nicotinic post-synaptic membrane, finally triggering neurotoxicity by activation of pathways related to oxidative stress. Moreover, the avoidance responses and burrowing behavior were obviously disturbed by oxidative stress-induced neurotoxicity after exposure to fluorene. The results form IBR suggested more severe poisoning effects to E. fetida brain initiated by high-dose and long-term exposure of fluorene. Among, oxidative stress injury and genotoxic potential are more sensitive endpoint than others. Collectively, fluorene stress can provoke potential neurotoxicity, genotoxicity, and behavioral disturbances targeted to E. fetida brain through the ROS-mediated pathways involving oxidative stress. These findings are of great significance to estimate the detrimental effects of fluorene and the corresponding mechanisms on soil eco-safety.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
9
|
Lei L, Cui X, Li C, Dong M, Huang R, Li Y, Li Y, Li Z, Wu J. The cadmium decontamination and disposal of the harvested cadmium accumulator Amaranthus hypochondriacus L. CHEMOSPHERE 2022; 286:131684. [PMID: 34346323 DOI: 10.1016/j.chemosphere.2021.131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The heavy metal accumulated biomass after phytoremediation needs to be decontaminated before disposal. Liquid extraction is commonly used to remove and recycle toxic heavy metals from contaminated biomass. In this study, we examined the cadmium (Cd) removal efficiency using different chemical reagents (hydrochloric acid, nitric acid, sulfuric acid, and ethylenediaminetetraacetic acid disodium) of the post-harvest Amaranthus hypochondriacus L. biomass. The purifications for the extracted liquids and ecological risk assessments for the extracted residues were also investigated. We have found that 77.8% of Cd in stems and 62.1% of Cd in leaves were removed by 0.25 M HCl after 24 h. In addition, K2CO3, KOH, and 4 Å molecular sieve could remove ≥89.0% of Cd in the extracted liquids. Finally, after we returned the extracted residues to the earthworm-incubated soil, the extracted biomass negatively affected the growth (weight loss ≥ 11.0%) and survival (mortality ≥ 33.3%) of Eisenia fetida. It should be noted that earthworms decreased soil available Cd concentrations from 0.14-0.05 mg kg-1 to 0.11-0.04 mg kg-1 and offset the negative effects of the Cd-contaminated biomass on soil microbes. Overall, given the cost of reagents, the Cd removal efficiency, and the ecological risks of the extracted biomass, using 0.25 M HCl for liquid extraction and K2CO3 for purification should be recommended. This work highlights the potential of liquid extraction for immediately and directly removing the Cd from fresh contaminated accumulator biomass and the resource cycling potential of the extracted liquids and biomass after purification.
Collapse
Affiliation(s)
- Long Lei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Cui
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Li
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an, 710072, China
| | - Meiliang Dong
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxing Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yingwen Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jingtao Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
10
|
Gu H, Yuan Y, Cai M, Wang D, Lv W. Toxicity of isoprocarb to earthworms (Eisenia fetida): Oxidative stress, neurotoxicity, biochemical responses and detoxification mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118038. [PMID: 34523524 DOI: 10.1016/j.envpol.2021.118038] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/05/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Isoprocarb (IPC) is a conventional carbamate with high insecticidal activity, however, generalized use of it may cause soil contamination and adversely implicate non-target biota. Following OECD standardized toxicological protocols, the toxic effects of IPC on Eisenia fetida at lethal and sublethal concentrations were examined to elucidate its toxic modes of action as well as biochemical and detoxification responses of E. fetida. Acute toxicity tests showed that IPC induced a concentration-dependent rise of mortality, with LC50 of 8.20 μg/cm2 (48 h) in FPCT and 3.37 mg/kg (14 d) in AST, respectively. The ecotoxicological effects of IPC chronic exposure were measured by physiochemical, qRT-PCR and western blot analysis. Specifically, ROS, MDA and 8-OHdG contents were enhanced and T-AOC, SOD, CAT and POD activities diminished with increasing concentrations. While activities of CYP3A4 and CarE as well as expressions of Hsp70, GPx and GST were elevated upon IPC treatments, responsible for detoxifying mechanisms as implied by principal component analysis (PCA). Meanwhile, IPC diminished NRRT and inhibited AChE activities along with expressions of AChE-related genes. All these striking alterations between IPC-exposed earthworms and controls were illustrated in PCA model. More importantly, growth, reproductive and regenerative toxicity of IPC were observed with reduced cast production and soluble protein content, suppressed ANN protein and gene expressions, reversely modulated TCTP and Sox2 gene and protein, respectively. Taken together, deleterious perturbations could be induced by IPC in biophysiological homeostasis of E. fetida primarily through oxidative stress and neural dysfunction. This study not only highlighted potential hazard of IPC to earthworms in the terrestrial ecosystem, but also expounded upon mechanisms underlying toxic modes of action for IPC and detoxification of earthworms.
Collapse
Affiliation(s)
- Haotian Gu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yongda Yuan
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dongsheng Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| |
Collapse
|
11
|
Xu K, Wang H, Li P. The cadmium toxicity in gills of Mytilus coruscus was accentuated by benzo(a)pyrene of higher dose but not lower dose. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109128. [PMID: 34237427 DOI: 10.1016/j.cbpc.2021.109128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
In natural environment, the existence of interactions of toxic mixtures could induce diverse biochemical pathways and consequently exert different toxicological responses in aquatic organisms. However, little information is available on the effects of combined xenobiotics on lower aquatic invertebrates. Here, we assessed the effects of cadmium (Cd, 0.31 mg/L) as well as the mixture of Cd (0.31 mg/L) and benzo(a)pyrene (Bap, 5 or 50 μg/L) on bioaccumulation, antioxidant, lipid peroxidation (LPO) and metallothionein (MT) responses in gills of thick shell mussel Mytilus coruscus. Upon exposed to single Cd, the metal bioaccumulation, antioxidant enzymes activities, LPO and MT level significantly increased in the gills, suggesting an apparent toxicity to mussels. The interaction of Cd + 5 μg/L Bap did not significantly alter these endpoints compared to single Cd. However, once the dose of Bap elevated to 50 μg/L, the induction of bioaccumulation, antioxidant system and LPO was even more pronounced while the induction of MT was remarkably inhibited, implying an accentuated toxicity. Collectively, the current results demonstrated that 0.31 mg/L Cd exposure resulted in severe toxicity to mussels despite of the induction of MT system to alleviate the metal toxicity. Once the Cd exposure combined with Bap, the lower dose of Bap could not change the Cd toxicity while the higher dose of Bap accentuated the toxicity by inhibiting metallothionein synthesis. These findings might provide some useful clues for elucidation the mechanism of the interaction of combined xenobiotics in molluscs.
Collapse
Affiliation(s)
- Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China.
| | - Haoxue Wang
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China
| | - Pengfei Li
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China
| |
Collapse
|
12
|
Jia D, Li X, Du S, Xu N, Zhang W, Yang R, Zhang Y, He Y, Zhang Y. Single and combined effects of carbamazepine and copper on nervous and antioxidant systems of zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2020; 35:1091-1099. [PMID: 32485069 DOI: 10.1002/tox.22945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Various pollutants co-exist in the aquatic environment such as carbamazepine (CBZ) and copper (Cu), which can cause complex effects on inhabiting organisms. The toxic impacts of the single substance have been studied extensively. However, the studies about their combined adverse impacts are not enough. In the present study, zebrafish were exposed to environmental relevant concentrations of CBZ (1, 10, and 100 μg/L), Cu (0.5, 5, and 10 μg/L) and the mixtures (1 μg/L CBZ + 0.5 μg/L Cu, 10 μg/L CBZ + 5 μg/L Cu, 100 μg/L CBZ + 10 μg/L Cu) for 45 days, the effects on nervous and antioxidant systems of zebrafish were investigated. The results demonstrated that, in comparison with single exposure group, the combined presence of CBZ and Cu exacerbated the effect of antioxidant system (the ability of inhibition of hydroxyl radicals (IHR), superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST)) but not nervous system (Acetylcholinesterase [AChE]). The qPCR results supported the changes of corresponding enzymes activities. Hepatic histopathological analysis verified the results of biomarkers. Our work illustrated that the toxicity of mixed pollutants is very complicated, which cannot simply be inferred from the toxicity of single pollutant, and calls for more co-exposure experiments to better understanding of the co-effects of pollutants on aquatic organisms.
Collapse
Affiliation(s)
- Dantong Jia
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Xiuwen Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Sen Du
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Ning Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Wenming Zhang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Ruyi Yang
- Math Department, Colorado College, Colorado Springs, Colarado, USA
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| |
Collapse
|
13
|
Chen Y, Liu X, Leng Y, Wang J. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109788. [PMID: 31648073 DOI: 10.1016/j.ecoenv.2019.109788] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The potential threats of microplastics to global health are a new problem. However, little is known about the influence of microplastics on soil organisms. Here, we investigated the effects of low-density polyethylene (LDPE, < 400 μm) on earthworms (Eisenia fetida) under different concentrations (0.1, 0.25, 0.5, 1.0, 1.5 g/kg dry) with three replicates in artificial soil. Results showed that surface damage of earthworms was observed at the concentration of 1.5 g/kg LDPE after exposure 28 days. The microplastics were ingested in a dose-response manner. Smaller sizes of LDPE microplastics were found in the casts of E. fetida, and approximately 30% of the microplastics egested (size < 100 μm) were increased compared with initial microplastics in the soil. The catalase activity and malondialdehyde content increased significantly at the concentration of 1.0 g/kg LDPE after exposure 28 days, and acetylcholine esterase was significantly stimulated at concentrations of 1.5 and 1.0 g/kg LDPE on days 21 and 28, respectively. The results of this study demonstrate the potential risk of LDPE microplastics to E. fetida and may provide a reference for the impact of microplastics on terrestrial creatures.
Collapse
Affiliation(s)
- Yuling Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoning Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yifei Leng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|