1
|
Auclair J, Turcotte P, Gagnon C, Peyrot C, Wilkinson KJ, Gagné F. Investigation on the Toxicity of Nanoparticle Mixture in Rainbow Trout Juveniles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:311. [PMID: 36678064 PMCID: PMC9861584 DOI: 10.3390/nano13020311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The environmental impacts of nanoparticle mixtures in the aquatic environment is not well understood. The purpose of this study examined the sub-lethal toxicity of low concentrations (ug/L range) of selected nanoparticles alone and in mixtures in juvenile trout. Fish were exposed to to individual and two environmentally relevant mixtures of silver (nAg), copper oxide (nCuO) and cerium oxide (nCeO) nanoparticles for 96 h at 15 °C. After the exposure period, fish were depurated overnight and tissue levels in Ag, Ce, Cu and Zn were determined along with a suite of effects biomarkers such as oxidative stress/inflammation, denatured protein tagging (ubiquitin), DNA strand breaks (genotoxicity) and acetylcholinesterase (AChE) activity. The data showed that these nanoparticles behaved as suspended matter but were nevertheless bioavailable for fish with bioconcentration factors of 6, 8 and 2 for nAg, nCeO and nCuO respectively. Only nCuO alone increased malonaldehyde (lipid peroxidation) contents but all nanoparticles increased DNA damage, protein-ubiquitin labeling, and decreased AChE activity. Globally, the toxicity of nCeO and nCuO was generally stronger than nAg, and antagonist effects were found in the mixtures. The interactions involved in these antagonisms are not well understood but do not involve the liberation of free ions and labile zinc in tissues. In conclusion, the bioavailability and toxicity of these nanoparticles are influenced by mixtures of nanoparticles, which is likely to occur in contaminated environments.
Collapse
|
2
|
Thiagarajan V, Seenivasan R, Jenkins D, Chandrasekaran N, Mukherjee A. Mixture toxicity of TiO 2 NPs and tetracycline at two trophic levels in the marine ecosystem: Chlorella sp. and Artemia salina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152241. [PMID: 34921881 DOI: 10.1016/j.scitotenv.2021.152241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Increasing usage of both nanomaterials and pharmaceuticals and their unabated release to the marine ecosystem pose a serious concern nowadays. The toxicity of the mixture of TiO2 NPs and tetracycline (TC) in the marine species are not very well covered in prior literature. The current study explores the joint toxic effects of TiO2 NPs and TC in a simulated marine food chain: Chlorella sp. and Artemia salina. Chlorella sp. was interacted with pristine TiO2 NPs (0.05, 05, and 5 mg/L), TC (0.5 mg/L), and their combinations for 48 h. The toxicity induced in Chlorella sp. by pristine TiO2 NPs through oxidative stress and chloroplast damage was not significantly changed in the presence of TC. Principal component analysis for the toxicity parameters revealed a strong association between growth inhibition and adsorption/internalization. In the second trophic level (A. salina), the waterborne exposure of TC additively increased the toxicity of TiO2 NPs. Both adsorption and degradation played a major role in the removal of TC from the suspension, resulting in additive toxic effects in both Chlorella sp. and A. salina. Compared to the waterborne exposure, the foodborne exposure of TiO2 NPs and TC induced lesser toxic effects owing to reduced uptake and accumulation in A. salina. Biomagnification results indicate that the dietary transfer of TiO2 NPs and TC does not pose a serious environmental threat in this two-level marine food chain.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, India
| | - R Seenivasan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, UK
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, India.
| |
Collapse
|
3
|
Abstract
Many important discoveries have been made in the field of nanotechnology in the last 40 years. Since then, nanoparticles became nearly ubiquitous. With their spreading use, safety concerns have warranted extensive research of nanotoxicity. This paper offers information about the occurrence, transport, and behaviour of metallic nanoparticles in the aquatic environment. It further summarizes details about parameters that dictate the toxicity of nanoparticles and discusses the general/common mechanisms of their toxicity. This review also focuses on fish exposure to nanoparticles, including the possibility of trophic transport through the food chain. Information on some of the most frequently used metallic nanoparticles, such as silver, gold, and titanium dioxide, is further elaborated on.
Collapse
|
4
|
Carata E, Tenuzzo BA, Mariano S, Setini A, Fidaleo M, Dini L. RETRACTED ARTICLE: Genotoxicity and alteration of the Gene Regulatory Network expression during Paracentrotus lividus development in the presence of carbon nanoparticles. Toxicol Res 2021; 38:257. [PMID: 35415079 PMCID: PMC8960529 DOI: 10.1007/s43188-020-00081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 10/25/2022] Open
|
5
|
Wang B, Wang H, Han D, Chen J, Yin Y. Studying the mixture effects of brominated flame retardants and metal ions by comet assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115677. [PMID: 33254668 DOI: 10.1016/j.envpol.2020.115677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/12/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
This study was designed to evaluate the sensitivities of diverse cell lines on DNA damage effects and genotoxic effects of three brominated flame retardants (BFRs) and three metal ions (Cu2+, Cd2+, Hg2+) by comet assay. First, THP-1 was identified as the most sensitive cell line in terms of DNA damage among 11 kinds of cells screened. Accordingly, the THP-1 cell line was used as a model in subsequent single/combined genotoxicity tests. Single exposure tests to BFRs or metal ions revealed that the DNA damage effects increased with increasing exposure concentration. In combined exposure tests, BFRs (at concentrations of 1/2 EC50) were deployed in combination with different concentrations of Cu2+, Cd2+, or Hg2+. The results showed that the % tail DNA values were significantly increased by most mixtures. Our findings on combined toxic effects by comet assay provide valuable information for setting valid environmental safety evaluation standards.
Collapse
Affiliation(s)
- Biyan Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Haiyan Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Daxiong Han
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Jinming Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yan Yin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| |
Collapse
|
6
|
Barreto A, Carvalho A, Silva D, Pinto E, Almeida A, Paíga P, Correira-Sá L, Delerue-Matos C, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Effects of single and combined exposures of gold (nano versus ionic form) and gemfibrozil in a liver organ culture of Sparus aurata. MARINE POLLUTION BULLETIN 2020; 160:111665. [PMID: 33181940 DOI: 10.1016/j.marpolbul.2020.111665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
In vitro methods have gained rising importance in ecotoxicology due to ethical concerns. The aim of this study was to assess the single and combined in vitro effects of gold, as nanoparticle (AuNPs) and ionic (Au+) form, and the pharmaceutical gemfibrozil (GEM). Sparus aurata liver organ culture was exposed to gold (4 to 7200 μg·L-1), GEM (1.5 to 15,000 μg·L-1) and combination 80 μg·L-1 gold +150 μg·L-1 GEM for 24 h. Endpoints related with antioxidant status, peroxidative/genetic damage were assessed. AuNPs caused more effects than Au+, increasing catalase and glutathione reductase activities and damaging DNA and cellular membranes. Effects were dependent on AuNPs size, coating and concentration. GEM damaged DNA at an environmentally relevant concentration, 1.5 μg·L-1. Overall, the effects of the combined exposures were higher than the predicted, based on single exposures. This study showed that liver culture can be a useful model to study contaminants effects.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - A Carvalho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - D Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- Departamento de Saúde Ambiental, Escola Superior de Saúde, P. Porto. CISA/Centro de Investigação em saúde e Ambiente, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - A Almeida
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - L Correira-Sá
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO - Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Hlavkova D, Caloudova H, Palikova P, Kopel P, Plhalova L, Beklova M, Havelkova B. Effect of Gold Nanoparticles and Ions Exposure on the Aquatic Organisms. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:530-537. [PMID: 32940716 DOI: 10.1007/s00128-020-02988-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
An increase in the production and usage of gold nanoparticles (AuNPs) triggers the necessity to focus on their impact on ecosystems. Therefore, the purpose of this study was to investigate the acute toxicity of AuNPs and ionic gold (Au (III)) to organisms representing all trophic levels of the aquatic ecosystem, namely producers (duckweed Lemna minor), consumers (crustacean Daphnia magna, embryos of Danio rerio) and decomposers (bacteria Vibrio fischeri). The organisms were exposed according to a standardized protocol for each species and endpoints. The AuNPs (1.16 and 11.6 d.nm) were synthesized using citrate (CIT) and polyvinylpyrrolidone (PVP) as capping agents, respectively. It was found, that Au (III) was significantly more toxic than AuNPs PVP and AuNPs CIT. AuNPs showed significant toxicity only at high concentrations (mg/L), which are not environmentally relevant in the present time, but a cautious approach is advised, due to the possibility of interactions with other contaminants.
Collapse
Affiliation(s)
- Daniela Hlavkova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic.
| | - Hana Caloudova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavla Palikova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Lucie Plhalova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Miroslava Beklova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Barbora Havelkova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
8
|
Jia D, Li X, Du S, Xu N, Zhang W, Yang R, Zhang Y, He Y, Zhang Y. Single and combined effects of carbamazepine and copper on nervous and antioxidant systems of zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2020; 35:1091-1099. [PMID: 32485069 DOI: 10.1002/tox.22945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Various pollutants co-exist in the aquatic environment such as carbamazepine (CBZ) and copper (Cu), which can cause complex effects on inhabiting organisms. The toxic impacts of the single substance have been studied extensively. However, the studies about their combined adverse impacts are not enough. In the present study, zebrafish were exposed to environmental relevant concentrations of CBZ (1, 10, and 100 μg/L), Cu (0.5, 5, and 10 μg/L) and the mixtures (1 μg/L CBZ + 0.5 μg/L Cu, 10 μg/L CBZ + 5 μg/L Cu, 100 μg/L CBZ + 10 μg/L Cu) for 45 days, the effects on nervous and antioxidant systems of zebrafish were investigated. The results demonstrated that, in comparison with single exposure group, the combined presence of CBZ and Cu exacerbated the effect of antioxidant system (the ability of inhibition of hydroxyl radicals (IHR), superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST)) but not nervous system (Acetylcholinesterase [AChE]). The qPCR results supported the changes of corresponding enzymes activities. Hepatic histopathological analysis verified the results of biomarkers. Our work illustrated that the toxicity of mixed pollutants is very complicated, which cannot simply be inferred from the toxicity of single pollutant, and calls for more co-exposure experiments to better understanding of the co-effects of pollutants on aquatic organisms.
Collapse
Affiliation(s)
- Dantong Jia
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Xiuwen Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Sen Du
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Ning Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Wenming Zhang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Ruyi Yang
- Math Department, Colorado College, Colorado Springs, Colarado, USA
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, PR China
| |
Collapse
|
9
|
CHAO JB, WANG JR, ZHANG JQ. Accurate Determination and Characterization of Gold Nanoparticles Based on Single Particle-Inductively Coupled Plasma-Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60032-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Barreto A, Dias A, Duarte B, Pinto E, Almeida A, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Biological effects and bioaccumulation of gold in gilthead seabream (Sparus aurata) - Nano versus ionic form. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137026. [PMID: 32036137 DOI: 10.1016/j.scitotenv.2020.137026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The question of whether gold (Au) is more toxic as nanoparticles or in its ionic form remains unclear and controversial. The present work aimed to clarify the effects of 96 h exposure to 4, 80 and 1600 μg·L-1 of 7 nm gold nanoparticles (AuNPs) - (citrate coated (cAuNPs) or polyvinylpyrrolidone coated (PVP-AuNPs)) - and ionic Au (iAu) on gilthead seabream (Sparus aurata). Effects at different levels of biological organization (behaviour, neurotransmission, biotransformation, oxidative stress/damage and genotoxicity) were assessed. cAuNPs induced oxidative stress and damage (lipid peroxidation increase), even at 4 μg·L-1, and reduced the ability of S. aurata to swim against a water flow at 1600 μg·L-1. Exposure to cAuNPs induced more adverse effects than exposure to PVP-AuNPs. All tested concentrations of Au (nano or ionic form) induced DNA breaks and cytogenetic damage in erythrocytes of S. aurata. Generally, iAu induced significantly more effects in fish than the nano form, probably associated with the significantly higher accumulation in the fish tissues. No fish mortality was observed following exposure to AuNPs, but mortality was observed in the group exposed to 1600 μg·L-1 of iAu.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - A Dias
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - B Duarte
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; Department of Environmental Health, School of Health, P.Porto. CISA/Research Center in Environment and Health, 4200-072 Porto, Portugal
| | - A Almeida
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO, Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Bobori D, Dimitriadi A, Karasiali S, Tsoumaki-Tsouroufli P, Mastora M, Kastrinaki G, Feidantsis K, Printzi A, Koumoundouros G, Kaloyianni M. Common mechanisms activated in the tissues of aquatic and terrestrial animal models after TiO 2 nanoparticles exposure. ENVIRONMENT INTERNATIONAL 2020; 138:105611. [PMID: 32126387 DOI: 10.1016/j.envint.2020.105611] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are among the most popular manufactured and widely used nanoparticles. They are released into the environment, affecting terrestrial and aquatic ecosystems, with unexpected consequences to organisms and human health. The present study investigates the mediated toxicity imposed to the freshwater fish species, zebrafish (Danio rerio) and the prussian carp (Carassius gibelio), and to the terrestrial land snail Cornu aspersum, after their exposure to sublethal concentrations of TiO2-NPs. Oxidative, proteolytic, genotoxic and apoptotic parameters in fish liver and gills, as well as on snail hemocytes were studied and the swimming performance was estimated in order to (a) estimate and suggest the most susceptible animal, and (b) propose a common battery of biomarkers as the most suitable indicator for biomonitoring studies against TiO2-NPs. Our in vivo experiments demonstrated that NPs induced detrimental effects on animal physiology and swimming behavior, while no general pattern was observed in species and tissues responsiveness. Generally, TiO2-NPs seemed to activate a group of molecules that are common for aquatic as well as terrestrial animals, implying the existence of a conserved mechanism. It seems that after exposure to TiO2-NPs, a common mechanism is activated that involves the stimulation of immune system with the production of ROS, damage of lysosomal membrane, protein carbonylation, lipid peroxidation, DNA damage, following proteolysis by ubiquitin and finally apoptosis. Thus, the simultaneous use of the latter biomarkers could be suggested as a reliable multi parameter approach for biomonitoring of aquatic and terrestrial ecosystems against TiO2-NPs.
Collapse
Affiliation(s)
- Dimitra Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stavri Karasiali
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskevi Tsoumaki-Tsouroufli
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marina Mastora
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Kastrinaki
- Aerosol & Particle Technology Laboratory, CERTH/CPERI, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alice Printzi
- Biology Department, University of Crete, Herakleion, Crete, Greece
| | | | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
12
|
Barreto A, Carvalho A, Campos A, Osório H, Pinto E, Almeida A, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Effects of gold nanoparticles in gilthead seabream-A proteomic approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105445. [PMID: 32078886 DOI: 10.1016/j.aquatox.2020.105445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Despite the widespread use of nanoparticles (NPs), there are still major gaps of knowledge regarding the impact of nanomaterials in the environment and aquatic animals. The present work aimed to study the effects of 7 and 40 nm gold nanoparticles (AuNPs) - citrate and polyvinylpyrrolidone (PVP) coated - on the liver proteome of the estuarine/marine fish gilthead seabream (Sparus aurata). After 96 h, exposure to AuNP elicited alterations on the abundance of 26 proteins, when compared to the control group. AuNPs differentially affected several metabolic pathways in S. aurata liver cells. Among the affected proteins were those related to cytoskeleton and cell structure, gluconeogenesis, amino acids metabolism and several processes related to protein activity (protein synthesis, catabolism, folding and transport). The increased abundance of proteins associated with energy metabolism (ATP synthase subunit beta), stress response (94 kDa glucose-regulated protein) and cytoskeleton structure (actins and tubulins) may represent the first signs of cellular oxidative stress induced by AuNPs. Although higher gold accumulation was found in the liver of S. aurata exposed to 7 nm PVP-AuNPs, the 7 nm cAuNPs were more bioactive, inducing more effects in liver proteome. Gold accumulated more in the spleen than in the other assessed tissues of S. aurata exposed to AuNPs, highlighting its potential role on the elimination of these NPs.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - A Carvalho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - A Campos
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208, Matosinhos, Portugal
| | - H Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto, IPATIMUP, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Portugal
| | - E Pinto
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Departamento de Saúde Ambiental, Escola Superior de Saúde, P. Porto. CISA/Centro de Investigação em Saúde e Ambiente, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - A Almeida
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO - Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316, Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
13
|
Wang Y, Zhang H, Shi L, Xu J, Duan G, Yang H. A focus on the genotoxicity of gold nanoparticles. Nanomedicine (Lond) 2020; 15:319-323. [DOI: 10.2217/nnm-2019-0364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control & Prevention, Zhengzhou, 450016, PR China
| | - Hongsheng Zhang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| |
Collapse
|
14
|
Cazenave J, Ale A, Bacchetta C, Rossi AS. Nanoparticles Toxicity in Fish Models. Curr Pharm Des 2019; 25:3927-3942. [DOI: 10.2174/1381612825666190912165413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
The increasing production and use of nanoparticles (NP) have raised concerns regarding the potential
toxicity to human and environmental health. In this review, we address the up to date information on nanotoxicity
using fish as models. Firstly, we carried out a systematic literature search (articles published up to February 2019
in the Scopus database) in order to quantitatively assess the scientific research on nanoparticles, nanotoxicity and
fish. Next, we carried out a narrative synthesis on the main factors and mechanisms involved in NP toxicity in
fish. According to the bibliometric analysis, there is a low contribution of scientific research on nanotoxicity
compared with the general nanoparticles scientific production. The literature search also showed that silver and
titanium NP are the most studied nanomaterials and Danio rerio is the fish species most used. In comparison with
freshwater fish, the effects of nanomaterials on marine fish have been little studied. After a non-systematic literature
analysis, we identified several factors involved in nanotoxicity, as well as the effects and main toxicity
mechanisms of NP on fish. Finally, we highlighted the knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Analía Ale
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Andrea Silvana Rossi
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| |
Collapse
|
15
|
Monteiro C, Daniel-da-Silva AL, Venâncio C, Soares SF, Soares AMVM, Trindade T, Lopes I. Effects of long-term exposure to colloidal gold nanorods on freshwater microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:70-79. [PMID: 31108270 DOI: 10.1016/j.scitotenv.2019.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
Gold nanorods have shown to pose adverse effects to biota. Whether these effects may be potentiated through prolonged exposure has been rarely studied. Therefore, this work aimed at evaluating the effects of long-term exposure to sublethal levels of cetyltrimethylammonium bromide (CTAB) coated gold nanorods (Au-NR) on two freshwater microalgae: Chlorella vulgaris and Raphidocelis subcapitata. These algae were exposed to several concentrations of Au-NR for 72 h and, afterwards, to the corresponding EC5,72h, for growth, during 16 days. The sensitivity of the two algae to Au-NR was assessed at days 0, 4, 8, 12 and 16 (D0, D4, D8, D12 and D16, respectively) after a 72-h exposure to several concentrations of Au-NR. At the end of the assays, effects on yield and population growth rate were evaluated. Raphidocelis subcapitata was slightly more sensitive to Au-NR than C. vulgaris: EC50,72h,D0 for yield were 48.1 (35.3-60.9) and 70.5 (52.4-88.6) μg/L Au-NR, respectively while for population growth rate were above the highest tested concentrations (53 and 90 μg/L, respectively). For R. subcapitata the long-term exposure to Au-NR increased its sensitivity to this type of nanostructures. For C. vulgaris, a decrease on the effects caused by Au-NR occurred over time, with no significant effects being observed for yield or population growth rate at D12 and D16. The capping agent CTAB caused reductions in yield above 30% (D0) for both algae at the concentration matching the one at the highest Au-NR tested concentration. When exposed to CTAB, the highest inhibition values were 69% (D4) and 21.3% (D8) for R. subcapitata, and 64% (D12) and 21% (D16) to C. vulgaris, for yield and population growth rate, respectively. These results suggested long-term exposures should be included in ecological risk assessments since short-term standard toxicity may either under- or overestimate the risk posed by Au-NR.
Collapse
Affiliation(s)
- Cátia Monteiro
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Cátia Venâncio
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sofia F Soares
- Department of Chemistry and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|