1
|
Ma J, Chiu YF, Kao CC, Chuang CN, Chen CY, Lai CH, Kuo ML. Fine particulate matter manipulates immune response to exacerbate microbial pathogenesis in the respiratory tract. Eur Respir Rev 2024; 33:230259. [PMID: 39231594 PMCID: PMC11372469 DOI: 10.1183/16000617.0259-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/18/2024] [Indexed: 09/06/2024] Open
Abstract
Particulate matter with a diameter ≤2.5 μm (PM2.5) poses a substantial global challenge, with a growing recognition of pathogens contributing to diseases associated with exposure to PM2.5 Recent studies have focused on PM2.5, which impairs the immune cells in response to microbial infections and potentially contributes to the development of severe diseases in the respiratory tract. Accordingly, changes in the respiratory immune function and microecology mediated by PM2.5 are important factors that enhance the risk of microbial pathogenesis. These factors have garnered significant interest. In this review, we summarise recent studies on the potential mechanisms involved in PM2.5-mediated immune system disruption and exacerbation of microbial pathogenesis in the respiratory tract. We also discuss crucial areas for future research to address the gaps in our understanding and develop effective strategies to combat the adverse health effects of PM2.5.
Collapse
Affiliation(s)
- Jason Ma
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Equal contribution to this work
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
- Equal contribution to this work
| | - Chih-Chen Kao
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ning Chuang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
- Equal contribution to this work
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
2
|
Cerceo E, Saxer K, Grossman L, Shapley-Quinn K, Feldman-Winter L. The Climate Crisis and Breastfeeding: Opportunities for Resilience. J Hum Lact 2024; 40:33-50. [PMID: 38158719 DOI: 10.1177/08903344231216726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The climate crisis is an emerging global challenge that poses potential risks to breastfeeding practices and outcomes. There are multifaceted effects of climate change affecting the breastfeeding dyad across environmental, societal, and human health dimensions. Breastfeeding support in the face of climate change will require solutions at the structural level-healthcare, community, and workplace settings-and at the mother-infant dyad level. Breastfeeding can additionally be an adaptive response to crisis situations and can mitigate some of the environmental challenges associated with climate change. Despite the undeniable significance of climate change on breastfeeding (and vice versa), our perspective as experts in the field is that this topic has not been systematically addressed. Although we highlight some of the challenges, potential solutions, and co-benefits of breastfeeding in the context of climate change, there are numerous issues that could be further explored and necessitate additional preparedness planning.
Collapse
Affiliation(s)
- Elizabeth Cerceo
- Cooper University Healthcare, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | | - Lauren Grossman
- General Internal Medicine and Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Lori Feldman-Winter
- Cooper University Healthcare, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
3
|
Mao JJ, Chen HL, Li CH, Lu JW, Gu YY, Feng J, Zhang B, Ma JF, Qin G. Population impact of fine particulate matter on tuberculosis risk in China: a causal inference. BMC Public Health 2023; 23:2285. [PMID: 37980514 PMCID: PMC10657490 DOI: 10.1186/s12889-023-16934-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/08/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Previous studies have suggested the potential association between air pollution and tuberculosis incidence, but this association remains inconclusive and evidence to assess causality is particularly lacking. We aimed to draw causal inference between fine particulate matter less than 2.5 μm in diameter (PM2.5) and tuberculosis in China. METHODS Granger causality (GC) inference was performed within vector autoregressive models at levels and/or first-differences using annual national aggregated data during 1982-2019, annual provincial aggregated data during 1982-2019 and monthly provincial aggregated data during 2004-2018. Convergent cross-mapping (CCM) approach was used to determine the backbone nonlinear causal association based on the monthly provincial aggregated data during 2004-2018. Moreover, distributed lag nonlinear model (DLNM) was applied to quantify the causal effects. RESULTS GC tests identified PM2.5 driving tuberculosis dynamics at national and provincial levels in Granger sense. Empirical dynamic modeling provided the CCM causal intensity of PM2.5 effect on tuberculosis at provincial level and demonstrated that PM2.5 had a positive effect on tuberculosis incidence. Then, DLNM estimation demonstrated that the PM2.5 exposure driven tuberculosis risk was concentration- and time-dependent in a nonlinear manner. This result still held in the multi-pollutant model. CONCLUSIONS Causal inference showed that PM2.5 exposure driving tuberculosis, which showing a concentration gradient change. Air pollutant control may have potential public health benefit of decreasing tuberculosis burden.
Collapse
Affiliation(s)
- Jun-Jie Mao
- Joint Division of Clinical Epidemiology, Affiliated Hospital of Nantong University, School of Public Health of Nantong University, Nantong, China
- Jiangyin Center for Disease Control and Prevention, Wuxi, China
| | - Hong-Lin Chen
- Department of Epidemiology and Biostatistics, School of Public Health of Nantong University, Nantong, China
| | - Chun-Hu Li
- Department of Epidemiology and Biostatistics, School of Public Health of Nantong University, Nantong, China
| | - Jia-Wang Lu
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuan-Yuan Gu
- Centre for the Health Economy, Macquarie University, Sydney, NSW, Australia
| | - Jian Feng
- National Key Clinical Construction Specialty - Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, China.
| | - Jun-Feng Ma
- Nantong Center for Disease Control and Prevention, Nantong, China.
| | - Gang Qin
- Joint Division of Clinical Epidemiology, Affiliated Hospital of Nantong University, School of Public Health of Nantong University, Nantong, China.
- Department of Epidemiology and Biostatistics, School of Public Health of Nantong University, Nantong, China.
- National Key Clinical Construction Specialty - Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
4
|
Zhang S, Hu J, Xiao G, Chen S, Wang H. Urban particulate air pollution linked to dyslipidemia by modification innate immune cells. CHEMOSPHERE 2023; 319:138040. [PMID: 36739990 DOI: 10.1016/j.chemosphere.2023.138040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Air particulate matter (PM) is an essential risk factor for lipid metabolism disorders. However, the underlying mechanism remains unclear. In this cross-sectional study, 216 healthcare workers were recruited to estimate the associations among the daily exposure dose (DED) of air PM, innate immune cells, and plasma lipid levels. All participants were divided into two groups according to the air particulate combined DED (DED-PMC). The peripheral white blood cell counts, lymphocyte counts, and monocyte counts and percentages were higher in the higher-exposure group (HEG) than in the lower-exposure group (LEG), whereas the percentage of natural-killer cells was lower in the HEG than in the LEG. The plasma concentrations of the total cholesterol, triglycerides, LDL-C, and apolipoprotein B were higher in the HEG than in the LEG, whereas the HDL-C and apolipoprotein A1 were lower in the HEG than in the LEG. A dose-effect analysis indicated that when the DED of the air PM increased, there were increased peripheral monocyte counts and percentages, a decreased NK cell percentage, elevated plasma concentrations of total cholesterol, triglycerides, LDL-C, and apolipoprotein B, and reduced plasma levels of HDL-C and apolipoprotein A1. In addition, the modification of the innate immune cells was accompanied by alterations in the plasma lipid levels in a dose-dependent manner. Mediation effect analysis suggested innate immune cells were the potential mediators for the associations among air PM exposure on abnormal lipid metabolism. These results indicated that chronic exposure to air PM may disturb lipid metabolism by altering the distribution of innate immune cells in the peripheral blood, ultimately advancing cardiovascular disease risk.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Guangjun Xiao
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Shu Chen
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Huanhuan Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
5
|
Zhang S, Chen X, Dai C, Wang J, Wang H. Associations between air pollutants and risk of respiratory infection: patient-based bacterial culture in sputum. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4007-4016. [PMID: 34806153 DOI: 10.1007/s10653-021-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023]
Abstract
Air pollution is a crucial risk factor for respiratory infection. However, the relationships between air pollution and respiratory infection based on pathogen detection are scarcely explored in the available literature. We detected respiratory infections through patient-based bacterial culture in sputum, obtained hourly data of all six pollutants (PM2.5, PM10, SO2, NO, CO, and O3) from four air quality monitoring stations, and assessed the relationships of air pollutants and respiratory bacterial infection and multi-drug-resistant bacteria. Air pollution remains a challenge for Mianyang, China, especially PM2.5 and PM10, and there are seasonal differences; pollution is the heaviest in winter and the lowest in summer. A total of 4237 pathogenic bacteria were detected, and the positive rate of multi-drug-resistant bacteria was 0.38%. Similar seasonal differences were found with respect to respiratory infection. In a single-pollutant model, all pollutants were significantly associated with respiratory bacterial infection, but only O3 was significantly associated with multi-drug-resistant bacteria. In multi-pollutant models (adjusted for one pollutant), the relationships of air pollutants with respiratory bacterial infection remained significant, while PM2.5, PM10, and O3 were significantly associated with the risk of infection with multi-drug-resistant bacteria. When adjusted for other five pollutants, only O3 was significantly associated with respiratory bacterial infection and the risk of infection with multi-drug-resistant bacteria, showing that O3 is an independent risk factor for respiratory bacterial infection and infection with multi-drug-resistant bacteria. In summary, this study highlights the adverse effects of air pollution on respiratory infection and the risk of infection with multi-drug-resistant bacteria, which may provide a basis for the formulation of environmental policy to prevent respiratory infections.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, China
| | - Xi Chen
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Chunmei Dai
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Huanhuan Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China.
| |
Collapse
|
6
|
Marian B, Yan Y, Chen Z, Lurmann F, Li K, Gilliland F, Eckel SP, Garcia E. Independent associations of short- and long-term air pollution exposure with COVID-19 mortality among Californians. ENVIRONMENTAL ADVANCES 2022; 9:100280. [PMID: 35966412 PMCID: PMC9361629 DOI: 10.1016/j.envadv.2022.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The growing literature demonstrating air pollution associations on COVID-19 mortality contains studies predominantly examining long-term exposure, with few on short-term exposure, and rarely both together to estimate independent associations. Because mechanisms by which air pollution may impact COVID-19 mortality risk function over timescales ranging from years to days, and given correlation among exposure time windows, consideration of both short- and long-term exposure is of importance. We assessed the independent associations between COVID-19 mortality rates with short- and long-term air pollution exposure by modeling both concurrently. Using California death certificate data COVID-19-related deaths were identified, and decedent residential information used to assess short- (4-week mean) and long-term (6-year mean) exposure to particulate matter <2.5µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3). Negative binomial mixed models were fitted on weekly census tract COVID-19 mortality adjusting for potential confounders with random effects for county and census tract and an offset for population. Data were evaluated separately for two time periods March 16, 2020-October 18, 2020 and October 19, 2020-April 25, 2021, representing the Spring/Summer surges and Winter surge. Independent positive associations with COVID-19 mortality were observed for short- and long-term PM2.5 in both study periods, with strongest associations observed in the first study period: COVID-19 mortality rate ratio for a 2-μg/m3 increase in long-term PM2.5 was 1.13 (95%CI:1.09,1.17) and for a 4.7-μg/m3 increase in short-term PM2.5 was 1.05 (95%CI:1.02,1.08). Statistically significant positive associations were seen for both short- and long-term NO2 in study period 1, but short-term NO2 was not statistically significant in study period 2. Results for long-term O3 indicate positive associations, however, only marginal significance is achieved in study period 1. These findings support an adverse effect of long-term PM2.5 and NO2 exposure on COVID-19 mortality risk, independent of short-term exposure, and a possible independent effect of short-term PM2.5.
Collapse
Affiliation(s)
- Brittney Marian
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Ying Yan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Fred Lurmann
- Sonoma Technology, Inc, Petaluma, CA, United States of America
| | - Kenan Li
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, United States of America
| | - Frank Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Erika Garcia
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
7
|
Zhang S, Chen S, Xiao G, Zhao M, Li J, Dong W, Hu J, Yuan T, Li Y, Liu L. The associations between air pollutant exposure and neutralizing antibody titers of an inactivated SARS-CoV-2 vaccine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13720-13728. [PMID: 34599446 PMCID: PMC8486374 DOI: 10.1007/s11356-021-16786-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Air pollution is a critical risk factor for the prevalence of COVID-19. However, few studies have focused on whether air pollution affects the efficacy of the SARS-CoV-2 vaccine. To better guide the knowledge surrounding this vaccination, we conducted a cross-section study to identify the relationships between air pollutant exposure and plasma neutralizing antibody (NAb) titers of an inactivated SARS-CoV-2 vaccine (Vero cell, CoronaVac, SINOVΛC, China). We recruited 239 healthcare workers aged 21-50 years who worked at Suining Central Hospital. Of these, 207 were included in this study, depending on vaccination date. The data regarding air pollutants were collected to calculate individual daily exposure dose (DED). The geometric mean of all six pollutant DEDs was applied to estimate the combined toxic effects (DEDcomplex). Then, the participants were divided into two groups based on the mean value of DEDcomplex. The median plasma NAb titer was 12.81 AU/mL, with 85.99% vaccine efficacy in healthcare workers against SARS-CoV-2. In exposure group, observations included lower plasma NAb titers (median: 11.13 AU/mL vs. 14.56 AU/mL), more peripheral counts of white blood cells and monocytes (mean: 6.71 × 109/L vs. 6.29 × 109/L and 0.49 × 109/L vs. 0.40 × 109/L, respectively), and a higher peripheral monocyte ratio (7.38% vs. 6.50%) as compared to the reference group. In addition, elevated air pollutant DEDs were associated with decreased plasma NAb titers. To our knowledge, this study is the first to report the relationship between air pollutant exposure and plasma NAb titers of the SARS-CoV-2 vaccine. This suggests that long-term exposure to air pollutants may inhibit plasma NAb expression by inducing chronic inflammation. Therefore, to achieve early herd immunity and hopefully curb the COVID-19 epidemic, vaccinations should be administered promptly to those eligible, and environmental factors should be considered as well.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China.
| | - Shu Chen
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Guangjun Xiao
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Mingcai Zhao
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Jia Li
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Wenjuan Dong
- Department of Public Health Administration and Health Education, Suining Central Hospital, Suining, 629000, Sichuan, People's Republic of China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Tianqi Yuan
- Maccura Biotechnology Co. Ltd., Chengdu, 611731, Sichuan, People's Republic of China
| | - Yong Li
- Maccura Biotechnology Co. Ltd., Chengdu, 611731, Sichuan, People's Republic of China
| | - Lianghua Liu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| |
Collapse
|
8
|
Sun XW, Lin YN, Ding YJ, Li SQ, Li HP, Zhou JP, Zhang L, Shen JM, Li QY. Surfaxin attenuates PM2.5-induced airway inflammation via restoring surfactant proteins in rats exposed to cigarette smoke. ENVIRONMENTAL RESEARCH 2022; 203:111864. [PMID: 34389351 DOI: 10.1016/j.envres.2021.111864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/27/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Epidemiologic studies have shown that the fine particulate matter 2.5 (PM2.5) exaggerates chronic airway inflammation involving in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Surfactant proteins (SPs) decreases significantly related to airflow limitation and airway inflammation. However, how to restore the reduction of SPs levels in airway inflammation exposed to PM2.5 has not been well understood. In the present study, the SPs including SPA, SPB, SPC and SPD levels in bronchoalveolar lavage fluid (BALF) were detected from patients with stable COPD. Rats were exposed to cigarette smoke and PM2.5. After given with Surfaxin, the expression of SPs, protein kinase C (PKC) and tight junction protein (ZO-1) in lung tissue and the levels of C-reactive protein (CRP) and fibrinogen (FIB) in plasma was observed. The results showed that SPA, SPB and SPD were significantly lower than those of the control group (p < 0.01). PM2.5 aggravated smoking-induced airway inflammation and oxidative stress demonstrated by pathological changes of lung tissue and increased levels of CRP and PKC in vivo. PM2.5 decreased the expression of all the SPs and ZO-1, which could be significantly restored by Surfaxin. These findings indicate that Surfaxin protects the alveolar epithelium from PM2.5 in airway inflammation through increasing SPs.
Collapse
Affiliation(s)
- Xian Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Jie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Ping Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Min Shen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Trushna T, Tripathi AK, Rana S, Tiwari RR. Nutraceuticals with anti-inflammatory and anti-oxidant properties as intervention for reducing the health effects of fine particulate matter: Potential and Prospects. Comb Chem High Throughput Screen 2021; 25:1639-1660. [PMID: 33845731 DOI: 10.2174/1386207324666210412121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022]
Abstract
Air pollution, especially particulate matter pollution adversely affects human health. A growing pool of evidence has emerged which underscores the potential of individual-level nutritional interventions in attenuating the adverse health impact of exposure to PM2.5. Although controlling emission and reducing the overall levels of air pollution remains the ultimate objective globally, the sustainable achievement of such a target and thus consequent protection of human health will require a substantial amount of time and concerted efforts worldwide. In the meantime, smaller-scale individual-level interventions that can counter the inflammatory or oxidative stress effects triggered by exposure to particulate matter may be utilized to ameliorate the health effects of PM2.5 pollution. One such intervention is incorporation of nutraceuticals in the diet. Here, we present a review of the evidence generated from various in vitro, in vivo and human studies regarding the effects of different anti-inflammatory and antioxidant nutraceuticals in ameliorating the health effects of particulate matter air pollution. The studies discussed in this review suggest that these nutraceuticals when consumed as a part of the diet, or as additional supplementation, can potentially negate the cellular level adverse effects of exposure to particulate pollution. The potential benefits of adopting a non-pharmacological diet-based approach to air pollution-induced disease management have also been discussed. We argue that before a nutraceuticals-based approach can be used for widespread public adoption, further research, especially human clinical trials, is essential to confirm the beneficial action of relevant nutraceuticals and to explore the safe limits of human supplementation and the risk of side effects. Future research should focus on systematically translating bench-based knowledge regarding nutraceuticals gained from in-vitro and in-vivo studies into clinically usable nutritional guidelines.
Collapse
Affiliation(s)
- Tanwi Trushna
- Department of Environmental Health and Epidemiology, ICMR- National Institute for Research in Environmental Health, Bhopal- 462030. India
| | - Amit K Tripathi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal- 462030. India
| | - Sindhuprava Rana
- Department of Bioinformatics, ICMR-National Institute for Research in Environmental Health, Bhopal- 462030. India
| | - Rajnarayan R Tiwari
- ICMR- National Institute for Research in Environmental Health (NIREH), Bhopal-462030, Madhya Pradesh. India
| |
Collapse
|
10
|
Bourdrel T, Annesi-Maesano I, Alahmad B, Maesano CN, Bind MA. The impact of outdoor air pollution on COVID-19: a review of evidence from in vitro, animal, and human studies. Eur Respir Rev 2021; 30:200242. [PMID: 33568525 PMCID: PMC7879496 DOI: 10.1183/16000617.0242-2020] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Studies have pointed out that air pollution may be a contributing factor to the coronavirus disease 2019 (COVID-19) pandemic. However, the specific links between air pollution and severe acute respiratory syndrome-coronavirus-2 infection remain unclear. Here we provide evidence from in vitro, animal and human studies from the existing literature. Epidemiological investigations have related various air pollutants to COVID-19 morbidity and mortality at the population level, however, those studies suffer from several limitations. Air pollution may be linked to an increase in COVID-19 severity and lethality through its impact on chronic diseases, such as cardiopulmonary diseases and diabetes. Experimental studies have shown that exposure to air pollution leads to a decreased immune response, thus facilitating viral penetration and replication. Viruses may persist in air through complex interactions with particles and gases depending on: 1) chemical composition; 2) electric charges of particles; and 3) meteorological conditions such as relative humidity, ultraviolet (UV) radiation and temperature. In addition, by reducing UV radiation, air pollutants may promote viral persistence in air and reduce vitamin D synthesis. Further epidemiological studies are needed to better estimate the impact of air pollution on COVID-19. In vitro and in vivo studies are also strongly needed, in particular to more precisely explore the particle-virus interaction in air.
Collapse
Affiliation(s)
- Thomas Bourdrel
- Memory Resource and Research Center, Geriatrics Dept, University Hospital of Strasbourg, Strasbourg, France
| | - Isabella Annesi-Maesano
- Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Epidemiology of Allergic and Respiratory Diseases Dept (EPAR), Saint-Antoine Medical School, Paris, France
| | - Barrak Alahmad
- Dept of Environmental Health, Harvard T.H Chan School of Public Health, Boston, MA, USA
| | - Cara N Maesano
- Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Epidemiology of Allergic and Respiratory Diseases Dept (EPAR), Saint-Antoine Medical School, Paris, France
| | - Marie-Abèle Bind
- Dept of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Bourdrel T, Annesi-Maesano I, Alahmad B, Maesano CN, Bind MA. The impact of outdoor air pollution on COVID-19: a review of evidence from in vitro, animal, and human studies. Eur Respir Rev 2021; 30:30/159/200242. [PMID: 33568525 DOI: 10.1183/16000617.0242-202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/11/2020] [Indexed: 05/24/2023] Open
Abstract
Studies have pointed out that air pollution may be a contributing factor to the coronavirus disease 2019 (COVID-19) pandemic. However, the specific links between air pollution and severe acute respiratory syndrome-coronavirus-2 infection remain unclear. Here we provide evidence from in vitro, animal and human studies from the existing literature. Epidemiological investigations have related various air pollutants to COVID-19 morbidity and mortality at the population level, however, those studies suffer from several limitations. Air pollution may be linked to an increase in COVID-19 severity and lethality through its impact on chronic diseases, such as cardiopulmonary diseases and diabetes. Experimental studies have shown that exposure to air pollution leads to a decreased immune response, thus facilitating viral penetration and replication. Viruses may persist in air through complex interactions with particles and gases depending on: 1) chemical composition; 2) electric charges of particles; and 3) meteorological conditions such as relative humidity, ultraviolet (UV) radiation and temperature. In addition, by reducing UV radiation, air pollutants may promote viral persistence in air and reduce vitamin D synthesis. Further epidemiological studies are needed to better estimate the impact of air pollution on COVID-19. In vitro and in vivo studies are also strongly needed, in particular to more precisely explore the particle-virus interaction in air.
Collapse
Affiliation(s)
- Thomas Bourdrel
- Memory Resource and Research Center, Geriatrics Dept, University Hospital of Strasbourg, Strasbourg, France
| | - Isabella Annesi-Maesano
- Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Epidemiology of Allergic and Respiratory Diseases Dept (EPAR), Saint-Antoine Medical School, Paris, France
| | - Barrak Alahmad
- Dept of Environmental Health, Harvard T.H Chan School of Public Health, Boston, MA, USA
| | - Cara N Maesano
- Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Epidemiology of Allergic and Respiratory Diseases Dept (EPAR), Saint-Antoine Medical School, Paris, France
| | - Marie-Abèle Bind
- Dept of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
12
|
Zhang S, Chen X, Wang J, Dai C, Gou Y, Wang H. Particulate air pollution and respiratory Haemophilus influenzae infection in Mianyang, southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13103-5. [PMID: 33638077 DOI: 10.1007/s11356-021-13103-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023]
Abstract
Particulate air pollution is correlated with many respiratory diseases. However, few studies have focused on the relationship between air particulate exposure and respiratory Heamophilus influenzae infection. Therefore, we detected respiratory Heamophilus influenzae infection by bacterial culture of sputum of patients, and we collected particulate air pollution data (including PM2.5 and PM10) from a national real-time urban air quality platform to analyze the relationship between particulate air pollution and respiratory Heamophilus influenzae infection. The mean concentrations of PM2.5 and PM10 were 37.58 μg/m3 and 58.44 μg/m3, respectively, showing particulate air pollution remains a severe issue in Mianyang. A total of 828 strains of Heamophilus influenzae were detected in sputum by bacterial culture. Multiple correspondence analysis suggested the heaviest particulate air pollution and the highest Heamophilus influenzae infection rates were all in winter, while the lowest particulate air pollution and the lowest Heamophilus influenzae infection rates were all in summer. In a single-pollutant model, each elevation of 10 μg/m3 of PM2.5, PM10, and PM2.5/10 (combined exposure level) increased the risk of respiratory Heamophilus influenzae infection by 34%, 23%, and 29%, respectively. Additionally, in the multiple-pollutant model, only PM2.5 was significantly associated with respiratory Heamophilus influenzae infection (B, 0.46; 95% confidence interval, 0.05-0.87), showing PM2.5 is an independent risk factor for respiratory Heamophilus influenzae infection. In summary, this study highlights air particulate exposure could increase the risk of respiratory Heamophilus influenzae infection, implying that stronger measures need to be taken to protect against respiratory infection induced by particulate air pollution.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Xi Chen
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, 12 Changjia Lane, Jingzhong St, Mianyang, 621000, Sichuan, China.
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, 12 Changjia Lane, Jingzhong St, Mianyang, 621000, Sichuan, China
| | - Chunmei Dai
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, 12 Changjia Lane, Jingzhong St, Mianyang, 621000, Sichuan, China
| | - Yeran Gou
- Department of Respiratory and Critical Care Medicine, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Huanhuan Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
| |
Collapse
|
13
|
Zhang S, Huo X, Li M, Hou R, Cong X, Xu X. Oral antimicrobial activity weakened in children with electronic waste lead exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14763-14770. [PMID: 32056098 DOI: 10.1007/s11356-020-08037-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/10/2020] [Indexed: 02/05/2023]
Abstract
Environmental lead (Pb) exposure can induce dysbacteriosis, impair oral health, and is associated with the development of dental caries. However, the mechanism is unclear. The aim of this study was to explore the effects of Pb toxicity on oral antimicrobial activity in children in an e-waste area. Results showed higher blood Pb levels in e-waste-exposed group children, accompanied by decreased saliva SAG (salivary agglutinin) concentrations, increased peripheral WBC (white blood cell) counts and monocyte counts, and elevated peripheral monocyte percentage. LnPb (natural logarithmic transformation of blood Pb level) was negatively correlated with saliva SAG concentration, while positively correlated with peripheral monocyte percentage. Saliva SAG concentration played a complete mediating role in the correlation of LnPb to peripheral monocyte percentage. To our knowledge, this is the first study on the relationship of environmental Pb exposure and oral antimicrobial activity in children, showing that environmental Pb exposure may weaken oral antimicrobial activity through reducing saliva SAG concentration, which may raise the risk of oral dysbacteriosis and ultimately pathogen infection.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Ruikun Hou
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
14
|
Wang HH, Zhang SC, Wang J, Chen X, Yin H, Huang DY. Combined toxicity of outdoor air pollution on kidney function among adult women in Mianyang City, southwest China. CHEMOSPHERE 2020; 238:124603. [PMID: 31442773 DOI: 10.1016/j.chemosphere.2019.124603] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/26/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a risk factor for kidney dysfunction. However, the combined toxicity of air pollutants on kidney function is scarce. We estimated the relationship between combined toxicity of air pollutants and kidney function among adult women (n = 7071, 18-65 years old) in Mianyang City, Southwest China. We measured serum concentrations of uric acid, urea, creatinine, and cystatin C, and we calculated the individual estimated glomerular filtration rate (eGFR) using a cystatin C-based equation developed specifically for Chinese patients with CKD equation. Air pollution data were collected to calculate the individual average daily dose (ADD) of pollutants based on the air quality complex index (AQCI). Mean AQCI was higher in winter and lower in summer, and followed the monthly and seasonal trends of air pollutants. Concomitantly, individual ADD was also higher in winter and lower in summer, and the seasonal differences were reflected in the levels of kidney biomarkers (including uric acid, urea, creatinine, cystatin C, and eGFR). With an interquartile range (IQR: 1.04-1.50 m3/day/kg) increases of ADD, the serum concentrations of uric acid, urea, creatinine, and cystatin C increase [B (95%CI): 1.774 (0.318, 3.231) umol/L, 0.218 (0.1888, 0.247) mmol/L, 1.501 (1.016, 1.986) umol/L, and 0.006 (0.003, 0.009) mg/L, respectively], whereas eGFR decreases [B (95%CI): -0.776 (-1.106, -0.446) mL/min/1.73 m2]. Totally, the relationship between combined toxicity of air pollutants and kidney function in Chinese adult women suggests that the toxicity of combined air pollutants inversely affects kidney function, which might accelerate the risk of CKD.
Collapse
Affiliation(s)
- Huan-Huan Wang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Shao-Cheng Zhang
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Xi Chen
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Heng Yin
- Department of Nephrology, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Dong-Yang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
15
|
Lee GKC, Tessier L, Bienzle D. Salivary Scavenger and Agglutinin (SALSA) Is Expressed in Mucosal Epithelial Cells and Decreased in Bronchial Epithelium of Asthmatic Horses. Front Vet Sci 2019; 6:418. [PMID: 31850379 PMCID: PMC6896824 DOI: 10.3389/fvets.2019.00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
The Salivary Scavenger and Agglutinin (SALSA) protein is an innate immune protein with various alleged functions, including the regulation of inflammation and tissue remodeling. Transcriptomic studies of severe equine asthma (SEA) showed downregulation of the gene encoding SALSA in bronchial epithelium of asthmatic compared to non-asthmatic horses. This study aimed to characterize expression of SALSA in equine tissues by immunohistochemistry (IHC), corroborate potential differences in epithelial gene expression between asthmatic and non-asthmatic horses, and assess the structure of equine SALSA. An antibody against SALSA was validated through immunoprecipitation followed by mass spectrometry and Western blotting to recognize the equine protein. This antibody was applied to tissue microarrays (TMAs) containing 22 tissues each from four horses. A quantitative PCR assay was designed to compare gene expression for SALSA between six asthmatic and six non-asthmatic horses, before and after an asthmatic challenge, using cDNA from endoscopic bronchial biopsies as source material. The SALSA gene from bronchial cDNA samples of 10 horses, was amplified and sequenced, and translated to characterize the protein structure. Immunostaining for SALSA was detected in the mucosal surfaces of the trachea, bronchi, bronchioles, stomach, small intestine and bladder, in pancreatic and salivary gland ducts, and in uterine gland epithelium. Staining was strongest in the duodenum, and the intercalated ducts and Demilune cells of the salivary gland. SALSA was concentrated in the apical regions of the epithelial cell cytoplasm, suggestive of a secreted protein. Gene expression was significantly lower (p = 0.031) in asthmatic compared to non-asthmatic horses. Equine SALSA consisted of three to five scavenger receptor cysteine-rich (SRCR) domains, two CUB (C1r/C1s, uegf, bmp-1) domains and one Zona Pellucida domain. These domains mediate the binding of ligands involved in innate immunity. Varying numbers of SRCR domains were identified in different horses, indicating different isoforms. In summary, equine SALSA has a predilection for mucosal sites, has multiple isoforms, and has decreased expression in asthmatic horses, suggesting alterations in innate immunity in equine asthma.
Collapse
Affiliation(s)
| | - Laurence Tessier
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
16
|
Zielinska MA, Hamulka J. Protective Effect of Breastfeeding on the Adverse Health Effects Induced by Air Pollution: Current Evidence and Possible Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4181. [PMID: 31671856 PMCID: PMC6862650 DOI: 10.3390/ijerph16214181] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023]
Abstract
Air pollution is a major social, economic, and health problem around the world. Children are particularly susceptible to the negative effects of air pollution due to their immaturity and excessive growth and development. The aims of this narrative review were to: (1) summarize evidence about the protective effects of breastfeeding on the adverse health effects of air pollution exposure, (2) define and describe the potential mechanisms underlying the protective effects of breastfeeding, and (3) examine the potential effects of air pollution on breastmilk composition and lactation. A literature search was conducted using electronic databases. Existing evidence suggests that breastfeeding has a protective effect on adverse outcomes of indoor and outdoor air pollution exposure in respiratory (infections, lung function, asthma symptoms) and immune (allergic, nervous and cardiovascular) systems, as well as under-five mortality in both developing and developed countries. However, some studies reported no protective effect of breastfeeding or even negative effects of breastfeeding for under-five mortality. Several possible mechanisms of the breastfeeding protective effect were proposed, including the beneficial influence of breastfeeding on immune, respiratory, and nervous systems, which are related to the immunomodulatory, anti-inflammatory, anti-oxidant, and neuroprotective properties of breastmilk. Breastmilk components responsible for its protective effect against air pollutants exposure may be long chain polyunsaturated fatty acids (LC PUFA), antioxidant vitamins, carotenoids, flavonoids, immunoglobins, and cytokines, some of which have concentrations that are diet-dependent. However, maternal exposure to air pollution is related to increased breastmilk concentrations of pollutants (e.g., Polycyclic aromatic hydrocarbons (PAHs) or heavy metals in particulate matter (PM)). Nonetheless, environmental studies have confirmed that breastmilk's protective effects outweigh its potential health risk to the infant. Mothers should be encouraged and supported to breastfeed their infants due to its unique health benefits, as well as its limited ecological footprint, which is associated with decreased waste production and the emission of pollutants.
Collapse
Affiliation(s)
- Monika A Zielinska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland.
| | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland.
| |
Collapse
|