1
|
Chen L, Lu H, Jiang X, Qu N, Hasi Q, Zhang Y, Zhang B, Jiang S. Microorganisms immobilized hydroxyethyl cellulose/luffa composite sponge for selective adsorption and biodegradation of oils in wastewater. Int J Biol Macromol 2024; 277:133477. [PMID: 38942413 DOI: 10.1016/j.ijbiomac.2024.133477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The highly efficient removal of oils such as oils or dyes from wastewater has aroused wide concern and is of great significance for clean production and environmental remediation. The synthesis of a novel aerogel (designated as HEC/LS) is reported herein, achieved through a sol-gel method followed by freeze-drying utilizing loofa and hydroxyethyl cellulose as the raw materials. The new HEC/LS aerogel exhibits excellent porosity and specific surface area, with a porosity of 88.70 %, a total pore area of 0.607 m2 g-1, and a specific surface area of 230 m2 g-1. The prepared HEC/LS aerogel exhibits exceptional hydrophilicity and self-floatability, facilitating its rapid absorption of water up to 21 times its own weight within a mere 3 s. Additionally, it demonstrates good adsorption performance for methylene blue (MB), with a maximum adsorption capacity of 83.30 mg g-1. Subsequently, a new hydrophobic microorganisms-loaded composite aerogel (namely, Bn-HEC/LS) was obtained by doping microorganisms into the as-prepared HEC/LS in multiple enrichment followed by a hydrophobic and oleophilic surface modification. Based on its rich porous structure and oleophilic wettability, the as-synthesized Bn-HEC/LS exhibits excellent selective adsorption and degradation properties for the oil contamination, the diesel oil could be selectively absorbed in the Bn-HEC/LS and degraded by the loaded microorganisms. Among them, B5-HEC/LS displays the highest removal efficiency of 94.50 % within 180 h, while free microorganisms and HEC/LS aerogels show degradation efficiencies of only 21.70 % and 48.10 %, respectively. The fixation of microorganisms in the aerogel increases their number within the material and enhances the relative microorganisms removal capacity. The hydrophobic and lipophilic modifications improve the selective adsorption performance of the aerogel on diesel oil, resulting in a significantly high removal rate of Bn-HEC/LS for diesel oil. The results indicate that the immobilization of microorganisms into aerogel improves the activity of microorganisms, and the hydrophobic and oleophilic modification enhances the selective adsorption performance of aerogel to diesel oil, thus resulting in a very high removal rate of Bn-HEC/LS for diesel oil. This study is expected to provide a now possibility for the green and efficient bioremediation of oils.
Collapse
Affiliation(s)
- Lihua Chen
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, PR China.
| | - HaiJing Lu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, PR China
| | - XiaoQian Jiang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Nannan Qu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Qimeige Hasi
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Yuhan Zhang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Bin Zhang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Shuai Jiang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, PR China
| |
Collapse
|
2
|
Xiao J, Guo S, Wang D, An Q. Fenton-Like Reaction: Recent Advances and New Trends. Chemistry 2024; 30:e202304337. [PMID: 38373023 DOI: 10.1002/chem.202304337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The Fenton reaction refers to the reaction in which ferrous ions (Fe2+) produce hydroxyl radicals and other reactive oxidizing substances by decomposing hydrogen peroxide (H2O2). This paper reviews the mechanism, application system, and materials employed in the Fenton reaction including conventional homogeneous and non-homogeneous Fenton reactions as well as photo-, electrically-, ultrasonically-, and piezoelectrically-triggered Fenton reactions, and summarizes the applications in the degradation of soil oil pollutions, landfill leachate, textile wastewater, and antibiotics from a practical point of view. The mineralization paths of typical pollutant are elucidated with relevant case studies. The paper concludes with a summary and outlook of the further development of Fenton-like reactions.
Collapse
Affiliation(s)
- Jiaying Xiao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing), 100083, China
| | - Sufang Guo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing), 100083, China
| | - Dong Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd
| | - Qi An
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing), 100083, China
| |
Collapse
|
3
|
Ho WS, Lin WH, Verpoort F, Hong KL, Ou JH, Kao CM. Application of novel nanobubble-contained electrolyzed catalytic water to cleanup petroleum-hydrocarbon contaminated soils and groundwater: A pilot-scale and performance evaluation study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119058. [PMID: 37757689 DOI: 10.1016/j.jenvman.2023.119058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Soil and groundwater contamination caused by petroleum hydrocarbons is a severe environmental problem. In this study, a novel electrolyzed catalytic system (ECS) was developed to produce nanobubble-contained electrolyzed catalytic (NEC) water for the remediation of petroleum-hydrocarbon-contaminated soils and groundwater. The developed ECS applied high voltage (220 V) with direct current, and titanium electrodes coated with iridium dioxide were used in the system. The developed ECS prototype contained 21 electrode pairs (with a current density of 20 mA/cm2), which were connected in series to significantly enhance the hydroxyl radical production rate. Iron-copper hybrid oxide catalysts were laid between each electrode pair to improve the radical generation efficiency. The electron paramagnetic resonance (EPR) and Rhodamine B (RhB) methods were applied for the generated radical species and concentration determination. During the operation of the ECS, high concentrations of nanobubbles (nanobubble density = 3.7 × 109 particles/mL) were produced due to the occurrence of the cavitation mechanism. Because of the negative zeta potential and nano-scale characteristics of nanobubbles (mean diameter = 28 nm), the repelling force would prevent the occurrence of bubble aggregations and extend their lifetime in NEC water. The radicals produced after the bursting of the nanobubbles would be beneficial for the increase of the radical concentration and subsequent petroleum hydrocarbon oxidation. The highly oxidized NEC water (oxidation-reduction potential = 887 mV) could be produced with a radical concentration of 9.5 × 10-9 M. In the pilot-scale study, the prototype system was applied to clean up petroleum-hydrocarbon polluted soils at a diesel-oil spill site via an on-site slurry-phase soil washing process. The total petroleum hydrocarbon (TPH)-contaminated soils were excavated and treated with the NEC water in a slurry-phase reactor. Results show that up to 74.4% of TPH (initial concentration = 2846 mg/kg) could be removed from soils after four rounds of NEC water treatment (soil and NEC water ratio for each batch = 10 kg: 40 L and reaction time = 10 min). Within the petroleum-hydrocarbon plume, one remediation well (RW) and two monitor wells (located 1 m and 3 m downgradient of the RW) were installed along the groundwater flow direction. The produced NEC water was injected into the RW and the TPH concentrations in groundwater (initial concentrations = 12.3-15.2 mg/L) were assessed in these three wells. Compared to the control well, TPH concentrations in RW and MW1 dropped to below 0.4 and 2.1 mg/L after 6 m3 of NEC water injection in RW, respectively. Results from the pilot-scale study indicate that the NEC water could effectively remediate TPH-contaminated soils and groundwater without secondary pollution production. The main treatment mechanisms included (1) in situ chemical oxidation via produced radicals, (2) desorption of petroleum hydrocarbons from soil particles due to the dispersion of nanobubbles into soil pores, and (3) enhanced TPH oxidation due to produced radicals and energy after nanobubble bursting.
Collapse
Affiliation(s)
- Wing-Sze Ho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Han Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China
| | - Kun-Liang Hong
- Suzhou Dingdedian Environmental Protection Technology Co. Ltd., Suzhou, PR China
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Xu J, Li F, Luo S, Shi Q, Cao Z, Liu L, Xue S. Study on the mechanism promoting oxidation of long-chain alkanes by self-produced surfactant-like substance at the solid-liquid interface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117676-117687. [PMID: 37872338 DOI: 10.1007/s11356-023-29991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/16/2023] [Indexed: 10/25/2023]
Abstract
The Fenton method to remediate oil-contaminated soils has long suffered from low utilization of ·OH, resulting in waste of costs during practical application. This study investigated the efficient utilization of ·OH in oxidation using three different soils contaminated with oil (S1, S2, and S3). The mechanisms of promoting oxidation of long-chain alkanes by self-produced surfactant-like substance at the solid-liquid interface were studied. These results (take S1 as an example) showed that the average ·OH utilization rate of oxidized long-chain alkanes (Ka) at the solid-liquid interface reached 88.34 (mg/kg∙(a.u.)), which was higher than the non-solid-liquid interface stage (I: 54.02 (mg/kg∙(a.u.)), II: 67.36 (mg/kg∙(a.u.))). Meanwhile, the average oxidation of long-chain alkanes could increase unit ·OH intensity added (Kb) in the solid-liquid interface (990.00 mg/kg), which was much higher than Kb of the non-solid-liquid interface stage (I: 228.34 mg/kg, II: -1.48 mg/kg). Furthermore, there was a significant correlation between the proportion of humic acid-like in soil organic matter and the oxidation of long-chain alkanes at the solid-liquid interface. Thus, the surfactant-like substance generated during oxidation promoted the oxidation of long-chain alkanes at the solid-liquid interface. Moreover, when the surfactant-like substance had a matching degree (φ) with the long-chain alkanes (S1 0.18, S2 0.15, and S3 0.25), the efficiency of the ·OH utilization reached the peak, and the direct oxidation of long-chain alkanes at the solid-liquid interface was finally achieved (S1: 1373.00 mg/kg, S2: 1473.18 mg/kg, and S3: 1034.37 mg/kg). The appropriate surfactant-like substance agents in the construction can reduce the dosing of H2O2 and the construction costs by improving the efficient utilization of ·OH. Study on the mechanism promoting oxidation of long-chain alkanes by self-produced surfactant-like substance at the solid-liquid interface.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China.
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China.
| | - Fengsen Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Shengyang Luo
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Qihang Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Zezhuang Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Lu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Shujun Xue
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| |
Collapse
|
5
|
Li X, Xu J, Yang Z. Insight on efficiently oriented oxidation of petroleum hydrocarbons by redistribution of oxidant through inactivation of soil organic matter coupled with passivation of manganese minerals. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130192. [PMID: 36270191 DOI: 10.1016/j.jhazmat.2022.130192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
While extensive works focused on the enhancement of the activity of heterogeneous Fenton catalysts, little was paid attention to the inhibition of soil organic matter (SOM) and Mn minerals in soil remediation. Here, the oxidation of petroleum hydrocarbons in soils (S1: 4.28 % SOM, S2: 6.04 % SOM, S3: 10.33 % SOM) with inactivated SOM and passivated Mn oxides regulating by calcium superphosphate (Ca(H2PO4)2) was carried out. Oily sludge pyrolysis residue was used as precursors to prepare an oleophilic iron-supported solid catalyst (Fe-N @ PR). For regulated systems, under the optimal conditions of 1.8 mmol/g H2O2 and 0.05 g/g Fe-N @ PR, 72 ∼ 91 % of total petroleum hydrocarbons (TPHs: 15,616.58 mg/kg) were oxidized, which was 38 ∼ 45 % higher than that of control systems. The mechanism of efficient oxidation was proposed that the passivated Mn minerals stabilized H2O2 redistributing more H2O2 to sustainably produce •OH, and the inactivated SOM improved the relative reactivity of •OH to TPHs. Additionally, the passivation of Mn oxides was mainly related to the binding of H2PO4-, and the inactivation of SOM was realized by Ca2+ combing with -OH and C-O-C to form stable complexes. This study brought us a new perspective on soil remediation through passivating Mn minerals and inactivating SOM.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Zhilin Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
6
|
Cai Y, Fan J, Liu Z. Enhanced degradation of tetracycline over FeS-based Fenton-like process: Autocatalytic decomposition of H 2O 2 and reduction of Fe(III). JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129092. [PMID: 35596995 DOI: 10.1016/j.jhazmat.2022.129092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
This study constructed a FeS-based Fenton-like process to explore the degradation of TTC in the presence of copper ions. The acidic condition of pH 3 was more favorable to the H2O2 decomposition and TTC degradation, and it was slightly enhanced by Cu(II). The production of •OH from H2O2 was revealed through radical scavenging and benzoic acid probe experiments, and the ratio of H2O2 decomposition to •OH production was about 1-1.5, which is comparatively consistent with the theoretical ratio. FeS-based Fenton process was proved to be a homogenous system, the slow release of Fe(II) source and the autocatalytic cycle of Fe(III) to Fe(II) resulting from the reductive species of TTC and dissolved S(-II) improved the production of •OH and the degradation of TTC, which was proved by comparing TTC degradation, TOC removal, H2O2 decomposition and Fe(II) concentration with different iron sources (FeS, Fe(II) and Fe(III)) and external addition of dissolved S(-II). The possible degradation pathways of TTC were subsequently inferred according to the detected products by LC-MS. Understanding these autocatalytic processes is essential to reveal the transformation of redox-active substances in environments and may have potential significance in applying FeS-based Fenton-like process for the treatment of wastewater containing reductive organic matters.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Jinhong Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Zhigang Liu
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Li X, Xu J, Yang Z. Efficient catalytic degradation of alkanes in soil by a novel heterogeneous Fenton catalyst of functionalized magnetic biochar. CHEMOSPHERE 2022; 301:134693. [PMID: 35483662 DOI: 10.1016/j.chemosphere.2022.134693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
In this study, sodium dodecyl sulfate (SDS) functionalized magnetic biochar (SDS-Fe@BC) was successfully prepared. Compared to other traditional heterogeneous Fenton catalysts, more total petroleum hydrocarbons (TPH) (3499.40 mg kg-1) was adsorbed from soil to the surface of SDS-Fe@BC through hydrophobic interaction between alkyls in alkanes and SDS-Fe@BC, which formed an efficient interface oxidation system. In SDS-Fe@BC-mediated heterogeneous Fenton system, 10,191.41 mg kg-1 (88.10%) TPH was degraded in the presence of 400 mM H2O2, which was 1.38-5.67 folds than that of H2O2 alone, Fe2+, zero valent iron (ZVI), Fe3O4, pristine biochar (BC), and Fe@BC. Moreover, all individual alkanes were efficiently degraded (>75%), and the higher the initial amount of individual alkane, the more the degradative amount in the SDS-Fe@BC/H2O2 system. Additionally, TPH degradation was highly related to the mass ratio of SDS/Fe@BC, H2O2 concentration, SDS-Fe@BC dosage, and initial pH in the SDS-Fe@BC/H2O2 system, and the optimal values were 1:5, 400 mM, 50 mg g-1, and pH 7, respectively. Radical quenching experiments revealed that hydroxyl radicals (•OH) generated on the surface of SDS-Fe@BC was the dominated reactive oxidative species (ROS) responsible for alkanes degradation. After five cycles, SDS-Fe@BC still remained a high catalytic activity for alkanes degradation (73.21%), showing its excellent reusability. This study proved that the SDS-Fe@BC can be used as a potential heterogeneous Fenton catalyst for petroleum-contaminated soil remediation.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Zhilin Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
8
|
Evaluation of Indirect-Heated Microwave Thermal Desorption Treatment on Engineering Properties of Lubricant-Contaminated Soil. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Soil pollution caused by oil leakage from various industrial facilities such as gas stations, oil plants, military bases, and railway depots has become a serious global environmental and geotechnical issue. The indirect-heated microwave thermal desorption technology has been developed in this study for economical and efficient remediation of oil or organic pollutants. The conclusions were made based on laboratory tests and analyses of the environmental (TPH; total petroleum hydrocarbons) and geotechnical (physical and mechanical) properties of the soil before and after treatments. (1) As the newly-developed equipment was operated for 3 h with the electric power of 32 kW to reach target temperature of 600 °C, more than 99.8% of TPH was removed. (2) In the aspect of geotechnical properties, the internal friction angle, maximum dry density and permeability coefficient of the soil were reduced by oil contamination and were finally restored to the almost initial level of the soil after treatment. Therefore, treated soil is expected to be reusable for geotechnical construction purposes such as construction fill materials. (3) It was also found that the developed technology reduces 75% of energy cost and 25% of CO2 emissions for the remediation of lubricant oil-contaminated soil comparing with conventional one.
Collapse
|
9
|
Gou Y, Ma J, Yang S, Song Y. Insights into the effects of Fenton oxidation on PAH removal and indigenous bacteria in aged subsurface soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118872. [PMID: 35063541 DOI: 10.1016/j.envpol.2022.118872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Combined chemical oxidation and bioremediation is a promising method of treating polycyclic aromatic hydrocarbon (PAH) contaminated soil, wherein indigenous soil bacteria play a critical role in the subsequent biodegradation of PAHs after the depletion of the oxidant. In this study, different Fenton conditions were applied by varying either the oxidation mode (conventional Fenton (CF), Fenton-like (LF), modified Fenton (MF), and graded modified Fenton (GMF)) or the H2O2 dosage (0%, 3%, 6%, and 10% (v/v)) to treat PAH contaminated soil. The results revealed that when equal dosages of H2O2 are applied, PAHs are significantly removed following oxidation treatment, and the removal percentages obeyed the following sequence: CF > GMF > MF > LF. In addition, higher dosages of H2O2 improved the PAH removal from soil treated with the same oxidation mode. The ranges of total PAHs removal efficiencies in the soil added 3%, 6%, and 10% of H2O2 (v/v) were 18.04%∼59.48%, 31.88%∼71.83%, and 47.56%∼78.16%, respectively. The PAH removal efficiency decreased with increasing ring numbers for the same oxidation treatment. However, the negative influences on soil bacterial abundance, community composition, and function were observed after Fenton treatment. After Fenton oxidation, the bacterial abundance in the soil received 3%, 6%, and 10% of H2O2 (v/v) decreased 1.96-2.69, 2.44-3.22, and 3.09-3.42 orders of magnitude compared to the untreated soil. The soil bacterial abundance tended to be impacted by the oxidation mode and H2O2 dosage simultaneously. While the main factor influencing the soil bacterial community composition was the H2O2 dosages. The results of this study showed that different oxidation mode and H2O2 dosage exhibited different effects on PAHs removal and soil bacteria (including abundance, community composition, and function), and there was a trade-off between the removal of PAHs and the adverse impact on soil bacteria.
Collapse
Affiliation(s)
- Yaling Gou
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, No 27 Xisanhuan North Road, Haidian District, Beijing, 100089, China
| | - Junsheng Ma
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, No 27 Xisanhuan North Road, Haidian District, Beijing, 100089, China
| | - Sucai Yang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, No 27 Xisanhuan North Road, Haidian District, Beijing, 100089, China.
| | - Yun Song
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, No 27 Xisanhuan North Road, Haidian District, Beijing, 100089, China
| |
Collapse
|
10
|
Solcova O, Krystynik P, Dytrych P, Bumba J, Kastanek F. Typical groundwater contamination in the vicinity of industrial brownfields and basic methods of their treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113325. [PMID: 35182798 DOI: 10.1016/j.ecoenv.2022.113325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The article deals with simple methods of decontamination of groundwater from the vicinity of brownfields contaminated with organic and inorganic substances. In the literature, thousands of articles on this issue at various sophisticated levels of knowledge can be found. The articles are mostly suitable as an extension of scientific knowledge; however, regarding potential costs and respectively scale-up problems, the applications are limited. It turns out that the vast majority of contaminated water can be effectively decontaminated by simple methods, in a coagulation-sedimentation sequence → simple oxidation and reduction methods for separated water (Fenton reaction, photocatalysis, ozonation, reductive dehalogenation with zero metals) → adsorption of remaining pollutants on simple sorbents, eg on biochar → (possibly bioremediation or advanced physical methods such as membrane filtration) → final purification on activated carbon. Due to the usually limited volume loads of soils with pollutants in the vicinity of brownfields, it is not economically advantageous to build demanding decontamination units for water purification. Usually, the simplest solution is the system to pump-and-treat around the source of contamination, with the main emphasis on highly effective removal of pollutants from water that returns underground. Groundwater was taken from boreholes leading to the saturated zone in the vicinity of several selected industrial brownfields. The solutions are shown on individual typical cases.
Collapse
Affiliation(s)
- Olga Solcova
- Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 02 Prague 6, Czech Republic
| | - Pavel Krystynik
- Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 02 Prague 6, Czech Republic; Faculty of Environment, University of J. E. Purkyne, Pasteurova 3632/15, 400 96 Usti nad Labem, Czech Republic.
| | - Pavel Dytrych
- Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 02 Prague 6, Czech Republic
| | - Jakub Bumba
- Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 02 Prague 6, Czech Republic
| | - Frantisek Kastanek
- Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 02 Prague 6, Czech Republic
| |
Collapse
|
11
|
Usman M, Jellali S, Anastopoulos I, Charabi Y, Hameed BH, Hanna K. Fenton oxidation for soil remediation: A critical review of observations in historically contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127670. [PMID: 34772554 DOI: 10.1016/j.jhazmat.2021.127670] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Fenton-based treatments have received tremendous attention in recent decades as viable strategies for soil decontamination. Historically contaminated soils are characterized by particular contamination types, pollution composition patterns, soil constituents, and complex soil-pollutant interactions arising due to long-term pollutant aging. These major pitfalls dictate the remediation efficiency in a significantly different way in soils with a history of contamination than that in a spiked soil. It becomes, therefore, highly challenging to treat historically contaminated soils. Despite the immense amount of collected research data in these soils, to our knowledge, no comprehensive review of this topic has been published. This article is intended to provide a critical review of the applications, limitations, and implications of various Fenton-based processes exclusively in these soils. These processes are differentiated on the basis of experimental conditions, reaction chemistry, efficiency, and impacts on soil biota. These processes are critically evaluated to illustrate the promising techniques with a brief description of related challenges and their potential solutions. Moreover, coupling Fenton oxidation with other remediation techniques such as bioremediation, chemical reduction, and soil washing has also been discussed. The last part of this review describes the effects of these processes onto soil quality and native biota, and how they can be addressed. It is also highly demanding to identify the processes which are not likely to evolve in practice either due to their poor efficiency, treatment cost, or environmental impacts. Future critical research directions have been identified to promote research for the upscaling of this technique for real field application.
Collapse
Affiliation(s)
- Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman.
| | - Salah Jellali
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47040 Arta, Greece
| | - Yassine Charabi
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Bassim H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Khalil Hanna
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, 35708 Rennes, France
| |
Collapse
|
12
|
Wen D, Guo X, Li Q, Fu R. Enhanced electrokinetically-delivered persulfate and alternating electric field induced thermal effect activated persulfate in situ for remediation of phenanthrene contaminated clay. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127199. [PMID: 34560487 DOI: 10.1016/j.jhazmat.2021.127199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Delivering persulfate (PS) efficiently into clay is an unsolved challenge. This study proposes a novel strategy with enhanced electrokinetically -delivery PS into clay by using PS for continuously flushing cathode to inhibit water electrolysis at cathode electrode. On this basis, a novel approach of heating soil by alternating current (AC) was used to thermally activate PS in situ. Results show that the mass transfer efficiency of PS by electroosmotic flow is about 20 times that by electromigration. Moreover, when PS was added in the anode chamber, using PS solution continuously flushing cathode created a relatively balanced the influent and effluent flow rates, significantly improving the mass transfer efficiency of PS. Compared to using NaNO3 solution flushing, a significant increase of 51.7% was achieved, reaching 78.8%, for the phenanthrene (PHE) average degradation rate in soil cell. In contrast, the best overall PHE removal rate was observed, reaching 87.8%, by a cycle strategy of enhanced electrokinetically -delivered PS followed by AC heating applied. Electron paramagnetic resonance spectroscopy analysis showed oxidative radicals (SO4∙-/•OH) were the major species responsible for enhanced PHE degradation. These results demonstrate that this cycle strategy is a viable method for remediation of polycyclic aromatic hydrocarbons in clay.
Collapse
Affiliation(s)
- Dongdong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaopin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts 2022. [DOI: 10.3390/catal12010064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Soil pollution has become a substantial environmental problem which is amplified by overpopulation in different regions. In this review, the state of the art regarding the use of Advanced Oxidation Processes (AOPs) for soil remediation is presented. This review aims to provide an outline of recent technologies developed for the decontamination of polluted soils by using AOPs. Depending on the decontamination process, these techniques have been presented in three categories: the Fenton process, sulfate radicals process, and coupled processes. The review presents the achievements of, and includes some reflections on, the status of these emerging technologies, the mechanisms, and influential factors. At the present, more investigation and development actions are still desirable to bring them to real full-scale implementation.
Collapse
|
14
|
|
15
|
Abstract
Persistent organic contaminants affecting soil and groundwater pose a significant threat to ecosystems and human health. Fenton oxidation is an efficient treatment for removing these pollutants in the aqueous phase at acidic pH. However, the in-situ application of this technology for soil remediation (where pHs around neutrality are required) presents important limitations, such as catalyst (iron) availability and oxidant (H2O2) stability. The addition of chelating agents (CAs), forming complexes with Fe and enabling Fenton reactions under these conditions, so-called chelate-modified Fenton process (MF), tries to overcome the challenges identified in conventional Fenton. Despite the growing interest in this technology, there is not yet a critical review compiling the information needed for its real application. The advantages and drawbacks of MF must be clarified, and the recent achievements should be shared with the scientific community. This review provides a general overview of the application of CAs to enhance the Fenton process for the remediation of soils polluted with the most common organic contaminants, especially for a deep understanding of the activation mechanisms and influential factors. The existing shortcomings and research needs have been highlighted. Finally, future research perspectives on the use of CAs in MF and recommendations have been provided.
Collapse
|
16
|
Gao Y, Tang X, Yin M, Cao H, Jian H, Wang J, Jia W, Wang C, Sun H. Effects of iron plaque and fatty acids on the transfer of BDE-209 from soil to rice under iron mineral Fenton-like oxidation condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145554. [PMID: 33770853 DOI: 10.1016/j.scitotenv.2021.145554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
To understand the effect mechanisms of iron plaque and fatty acids on the migration of PBDEs from soil to rice (Oryza sativa), pot experiments were conducted in the soil spiked with decabromodiphenyl ether (BDE-209) under the conditions of tourmaline and nano-goethite Fenton-like treatments. The results showed that iron mineral Fenton-like oxidation could effectively remove BDE-209 from rhizosphere soil, the highest removal rate obtained 89.29% with the addition of 0.4 mmol/L H2O2 and 8 g nano-goethite (G + 3H group). Iron mineral Fenton-like oxidation could produce iron plaque (IP) on rice roots and accumulate a part of contaminants on the surface of IP, further weakening BDE-209 uptake in the plants. Additionally, the occurrence of fatty acid variation induced by BDE-209 stress, iron mineral Fenton-like oxidation at high concentrations of H2O2 with 0.4 mmol/L affected the distribution of fatty acids in plant tissues, especially for C18:0 fatty acid. While the IP on rice roots prevented the BDE-209 into plant, it was also closely related to the distribution of fatty acids in rice, altering BDE-209 accumulation in the rice. To safely use the iron mineral Fenton-like oxidation in the agricultural soil remediation, the safety of plant cells treated by mineral Fenton-like oxidation was evaluated using the transmission electron microscopy (TEM) and enzyme activity determination, which indicated that iron mineral Fenton-like oxidation would destroy the inner structures of plant cells, especially for G + 3H group.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Mengfei Yin
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongxian Jian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Juyuan Wang
- Agricultural College, Liaocheng University, Liaocheng 252000, China
| | - Weili Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Bouzid I, Pino Herrera D, Dierick M, Pechaud Y, Langlois V, Klein PY, Albaric J, Fatin-Rouge N. A new foam-based method for the (bio)degradation of hydrocarbons in contaminated vadose zone. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123420. [PMID: 32763708 DOI: 10.1016/j.jhazmat.2020.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
An innovative foam-based method for Fenton reagents (FR) and bacteria delivery was assessed for the in situ remediation of a petroleum hydrocarbon-contaminated unsaturated zone. The surfactant foam was first injected, then reagent solutions were delivered and propagated through the network of foam lamellae with a piston-like effect. Bench-scale experiments demonstrated the feasibility of the various treatments with hydrocarbon (HC) removal efficiencies as high as 96 %. Compared to the direct injection of FR solutions, the foam-based method led to larger radii of influence and more isotropic reagents delivery, whereas it did not show any detrimental effect regarding HC oxidation. Despite 25 % of HCs were expelled from the treated zone because of high foam viscosity, average degradation rates were increased by 20 %. At field-scale, foam and reagent solutions injections in soil were tracked both using visual observation and differential electric resistivity tomography. The latter demonstrated the controlled delivery of the reactive solutions using the foam-based method. Even if the foam-based method duration is about 5-times longer than the direct injection of amendment solutions, it provides important benefits, such as the confinement of harmful volatile hydrocarbons during Fenton treatments, the enhanced reagents delivery and the 30 % lower consumption of the latter.
Collapse
Affiliation(s)
- I Bouzid
- Université de Bourgogne Franche-Comté-Besançon, Institut UTINAM-UMR CNRS 6213, 16, route de Gray, 25030, Besançon, France
| | - D Pino Herrera
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA4508, UPEM, 77454, Marne-la-Vallée, France
| | - M Dierick
- REMEA, 22 Rue Lavoisier, 92000 Nanterre, France
| | - Y Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA4508, UPEM, 77454, Marne-la-Vallée, France
| | - V Langlois
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA4508, UPEM, 77454, Marne-la-Vallée, France
| | - P Y Klein
- REMEA, 22 Rue Lavoisier, 92000 Nanterre, France
| | - J Albaric
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne, Franche-Comté, France
| | - N Fatin-Rouge
- Université de Bourgogne Franche-Comté-Besançon, Institut UTINAM-UMR CNRS 6213, 16, route de Gray, 25030, Besançon, France.
| |
Collapse
|
18
|
Cavalcanti JVFL, Fraga TJM, Loureiro Leite MDA, Dos Santos E Silva DF, de Lima VF, Schuler ARP, do Nascimento CWA, da Motta Sobrinho MA. In-depth investigation of Sodium percarbonate as oxidant of PAHs from soil contaminated with diesel oil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115832. [PMID: 33120152 DOI: 10.1016/j.envpol.2020.115832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Sodium percarbonate (SPC, 2Na2CO3∙3H2O2), is a compound that can be used under multiple environmental applications. In this work, SPC was employed as oxidant in the treatment of soil contaminated with diesel oil. The soil samples were collected during the earthmoving stage of RNEST Oil Refinery (Petrobras), Brazil. Then, the samples were air-dried, mixed and characterized. Subsequently, raw soil was contaminated with diesel and treated by photo-Fenton reaction (H2O2/Fe2+/UV). SPC played a significant role in the generation of hydroxyl radicals under the catalytic effect of ferrous ions (Fe2+), hydrogen peroxide (H2O2) and radiation. These radicals provoked the photodegradation of polycyclic aromatic hydrocarbons (PAHs), in the soil remediation. A factorial design 33 was carried out to assess the variables which most influenced the decrease in total organic carbon (TOC). The study was performed with the following variables: initial concentration of [H2O2] and [Fe2+], between 190.0 and 950.0 mmol L-1 and 0.0-14.4 mmol L-1, respectively. UV radiation was supplied from sunlight, blacklight lamps, and system without radiation. All experiments were performed with 5.0 g of contaminated soil in 50.0 mL of solution. The initial concentration of Fe2+ showed the statistically most significant effect. The oxidation efficiency evaluated in the best condition showed a decrease from 34,765 mg kg-1 to 15,801 mg kg-1 in TOC and from 85.750 mg kg-1 to 20.770 mg kg-1 in PAHs content. Moreover, the sums of low and high molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs and HMW-PAHs) were 19.537 mg kg-1 and 1.233 mg kg-1, respectively. Both values are within the limits recommended by the United Sates Environmental Protection Agency (USEPA) and evidenced the satisfactory removal of PAHs from contaminated soil, being an alternative to classic oxidation protocols.
Collapse
Affiliation(s)
| | - Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil.
| | - Mirella de Andrade Loureiro Leite
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | - Daniella Fartes Dos Santos E Silva
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | - Valmir Félix de Lima
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | - Alexandre Ricardo Pereira Schuler
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | | | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil.
| |
Collapse
|
19
|
Xu J, Fan P, Dong Y, Xu L, Zheng Y. Oriented oxidation of all alkanes in soils. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123078. [PMID: 32540710 DOI: 10.1016/j.jhazmat.2020.123078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
In order to investigate the mechanism of the oriented oxidation of all alkanes by regulating organic functional groups, Fenton oxidation was performed in two soils (S1 and S2: total petroleum hydrocarbons (TPH) are 26,281 mg/kg and 12,668 mg/kg). The higher the proportion of hydroxyl radicals (OH) transferred (41 %-58 %), the more the number of oriented oxidation of alkanes, which realized the oriented oxidation of all alkanes. Meanwhile, high oriented oxidation of long alkanes and short alkanes (58 %: 3405 mg/kg and 1729 mg/kg) was observed. Protein Ⅰ in soil organic matter (SOM) was reduced by regulating CH and carboxyl group OH, which indicated that protein Ⅰ was inactive. Protein Ⅰ oxidation after regulation was decreased significantly. Protein Ⅰ was the main active organic matter to capture OH. When the relative reactivity coefficient KTPH/SOM (the ratio of TPH oxidation to SOM oxidation) and KTPH/protein I (the ratio of TPH oxidation to protein Ⅰ oxidation) were higher than 1, low oxidation of SOM and protein Ⅰ was obtained. It indicated that for the oriented oxidation of all alkanes, the high coefficient of relative reactivity for petroleum was the key for the transfer of OH from oxidizing SOM to oxidizing alkanes.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Peiqi Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Yanliang Dong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Lu Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Yuanyuan Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
20
|
Removal of Total Petroleum Hydrocarbons from Contaminated Soil through Microwave Irradiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165952. [PMID: 32824446 PMCID: PMC7459634 DOI: 10.3390/ijerph17165952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/07/2023]
Abstract
In this study, we investigated the removal mechanism of total petroleum hydrocarbons (TPH) from soil by microwave heating. TPH contaminated soil was investigated to determine the desorption behavior of five carbon number-based fractions of TPH. The applied operating microwave power density influenced the final temperature that was reached during heating. For low operating power density applications, microwave effectiveness was limited due to the soil’s dielectric properties, which exhibited a direct relationship with temperature variation. Soil particle distribution could be attributed to permeability, which significantly influenced the evaporation of contaminated soil during the microwave treatment. The results indicate that the activation energy was correlated with the influence of particle size. The removal efficiency of the coarse soil reached 91.1% at 15 min, whereas that of fine soil was low. A total of 30 min had passed, and a removal efficiency of 71.2% was found for the fine soil. Residual TPH concentration was decreased when irradiation time was increased with a removal rate dependent on soil temperature variation. The surface functional groups of the contaminated soil were influenced by microwave irradiation, and changes in the hydrocarbon fraction affected contaminant removal.
Collapse
|
21
|
Teng X, Li J, Wang Z, Wei Z, Chen C, Du K, Zhao C, Yang G, Li Y. Performance and mechanism of methylene blue degradation by an electrochemical process. RSC Adv 2020; 10:24712-24720. [PMID: 35516220 PMCID: PMC9055207 DOI: 10.1039/d0ra03963b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/15/2020] [Indexed: 12/03/2022] Open
Abstract
An exciting electrochemical oxidation (EO) process has been developed. Compared with electro-Fenton (EF) and electro-coagulation (EC) processes, this process had more advantages in the degradation of methylene blue. It is observed that methylene blue can be quickly degraded by EO, in which an iron rod is used as an anode, graphite is used as a cathode, and fly ash-red mud particles are used as particle electrodes. Compared to EC and EF processes that are affected by specific pH values, EO has excellent performance in the pH range of 3.0-11.0. In addition, the electric energy consumption (EEC) of EF, EC and EO is 81.51, 36.55 and 21.35 kW h m-3 respectively, suggesting EO is more economical. The free radical scavenging mechanism of i-PrOH is studied, and the contribution of EC, EF and fly ash-red mud particle electrodes in EO is inferred. Particle electrodes before and after use are characterized by SEM, EDS and BET to illustrate the role of particle electrodes in the EO system. Analysis of flocs and solutions by FTIR and GC-MS proves that EO can effectively degrade methylene blue, and the degradation route of methylene blue is speculated. The particle electrode dissolution experiment shows that the prepared fly ash-red mud particle electrode is considered to be suitable and safe for wastewater treatment. Finally, in actual surface water experiments, the EO process still has great potential.
Collapse
Affiliation(s)
- Xiaolei Teng
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 8320000 PR China
| | - Junfeng Li
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 8320000 PR China
| | - Zhaoyang Wang
- College of Earth and Environmental Science, Lanzhou University Lanzhou 730000 PR China
- School of Urban Construction and Environmental Engineering, Chongqing University Chongqing 400001 PR China
| | - Zhen Wei
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 8320000 PR China
| | - Cuizhong Chen
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 8320000 PR China
| | - Keqing Du
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 8320000 PR China
| | - Chun Zhao
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 8320000 PR China
- School of Urban Construction and Environmental Engineering, Chongqing University Chongqing 400001 PR China
| | - Guang Yang
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 8320000 PR China
| | - Yun Li
- Water Administration and Water Resources Management Office Hali Barikun County 839200 PR China
| |
Collapse
|
22
|
Zhang T, Liu Y, Zhong S, Zhang L. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. CHEMOSPHERE 2020; 246:125726. [PMID: 31901666 DOI: 10.1016/j.chemosphere.2019.125726] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Petroleum hydrocarbons are a class of anthropogenic compounds including alkanes, aromatic hydrocarbons, resins, asphaltenes and other organic matters, and soil pollution caused by petroleum hydrocarbons has drawn increasing interest in recent years. Multiple advanced oxidation processes (AOPs) are emerging to remediate petroleum hydrocarbons-contaminated soils, while very few studies have focused on the features of AOPs applied in soils. This review aims to provide an updated overview of the state of the science about the efficiency, influencing factors and environmental implications of AOPs. The key findings from this review include: 1) cyclodextrin and its derivatives can be used to synthesize targeting reagents; 2) soil organic matter (SOM), glucose and cement can activate persulfate; 3) SOM affects redox circumstance in soil and could be further developed for enhancing the catalysis effect of transition metals; 4) non-thermal plasma and wet oxidation are promising methods of AOPs to remove petroleum hydrocarbons from soil; 5) the occurrence, fate, and transformation of intermediates during the degradation of petroleum hydrocarbons in soil should be considered more. Overall, this review reveals an urgent need to develop the cost-effective remedial strategies for petroleum hydrocarbons contaminated soils, and to advance our knowledge on the generation, transport and propagation of radicals in soils.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yuanyuan Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Shan Zhong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Lishan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|