1
|
Hu R, Li S, Li K, Huang T, Liu Z, Wen G. Stratified control of chemical crystallization in a pellet fluidized bed for pH-Adjusted fluoride and phosphate reduction: An experimental study. ENVIRONMENTAL RESEARCH 2024; 252:118873. [PMID: 38604484 DOI: 10.1016/j.envres.2024.118873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Chemical crystallization granulation in a fluidized bed offers an environmentally friendly technology with significant promise for fluoride removal. This study investigates the impact of stratified pH control in a crystallization granulation fluidized bed for the removal of fluoride and phosphate on a pilot scale. The results indicate that using dolomite as a seed crystal, employing sodium dihydrogen phosphate (SDP) and calcium chloride as crystallizing agents, and controlling the molar ratio n(F):n(P):n(Ca) = 1:5:10 with an upflow velocity of 7.52 m/h, effectively removes fluoride and phosphate. Stratified pH control-maintaining weakly acidic conditions (pH = 6-7) at the bottom and weakly alkaline conditions (pH = 7-8) at the top-facilitates the induction of fluoroapatite (FAP) and calcium phosphate crystallization. This approach reduces groundwater fluoride levels from 9.5 mg/L to 0.2-0.6 mg/L and phosphate levels to 0.1-0.2 mg/L. Particle size analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy, and X-ray diffraction physical characterizations reveal significant differences in crystal morphology between the top and bottom layers, with the lower layer primarily generating high-purity FAP crystals. Further analysis shows that dolomite-induced FAP crystallization offers distinct advantages. SDP not only dissolves on the dolomite surface to provide active sites for crystallization but also, under weakly acidic conditions, renders both dolomite and FAP surfaces negatively charged. This allows for the effective adsorption of PO43-, HPO42-, and F- anions onto the crystal surfaces. This study provides supporting data for the removal of fluoride from groundwater through induced FAP crystallization in a chemical crystallization pellet fluidized bed.
Collapse
Affiliation(s)
- Ruizhu Hu
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an, 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shichang Li
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an, 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kaihong Li
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an, 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an, 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zenan Liu
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an, 710055, China
| | - Gang Wen
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an, 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
2
|
Wang T, Zhang Y, Qi J, Hu C, Qu J. Sulfate Doping Promotes Agglomeration of Calcium Fluoride Crystals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4450-4458. [PMID: 38386650 DOI: 10.1021/acs.est.3c10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Calcium salt precipitation is an effective solution to wastewater fluoride pollution. The purity and precipitation efficiency of calcium fluoride is critical for its removal and recovery. This study aimed to reveal the role of coexisting sulfates in the precipitation of calcium fluoride. A low sulfate concentration promoted calcium fluoride precipitation. The size of calcium fluoride-aggregated particle clusters increased from 750 to 2000 nm when the molar ratio of sulfate to fluoride was increased from 0 to 3:100. Sulfate doped in the calcium fluoride crystals neutralized the positive charge of the calcium fluoride. Online atomic force microscopy measurements showed that sulfate reduced the repulsive force between calcium fluoride crystals and increased the adhesion force from 1.62 to 2.46 nN, promoting the agglomeration of calcium fluoride crystals. Sulfate improved the precipitation efficiency of calcium fluoride by promoting agglomeration; however, the purity of calcium fluoride was reduced by doping. Sulfate reduced the induction time of calcium fluoride crystallization and improved the nucleation rate of calcium fluoride. Sulfate should be retained to improve the precipitation of calcium fluoride and to avoid its loss from the effluents. However, it is necessary to separate sulfate from fluoride to obtain high-purity calcium fluoride. Therefore, sulfate concentration regulation in high-fluoride wastewater is key to achieving the efficient removal and recovery of fluoride ions.
Collapse
Affiliation(s)
- Tianyu Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhang H, Kou J, Sun C. Combing Seeding Crystallization with Flotation for Recovery of Fluorine from Wastewater: Experimental and Molecular Simulation Studies. Molecules 2023; 28:molecules28114490. [PMID: 37298965 DOI: 10.3390/molecules28114490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
For effective removal and utilization of fluorine resources from industrial wastewater, stepwise removal and recovery of fluorine were accomplished by seeding crystallization and flotation. The effects of seedings on the growth and morphology of CaF2 crystals were investigated by comparing the processes of chemical precipitation and seeding crystallization. The morphologies of the precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements. The seed crystal, fluorite, helps improve the growth of perfect CaF2 crystals. The solution and interfacial behaviors of the ions were calculated by molecular simulations. The existing perfect surface of fluorite was proven to provide the active sites for ion adhesion and formed a more ordered attachment layer than the precipitation procedure. The precipitates were then floated to recover calcium fluoride. By stepwise seeding crystallization and flotation, the products with a CaF2 purity of 64.42% can be used to replace parts of metallurgical-grade fluorite. Both removal of fluorine from wastewater and the reutilization of the fluorine resource were realized.
Collapse
Affiliation(s)
- Hao Zhang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jue Kou
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunbao Sun
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Qiu Y, Ren LF, Xia L, Zhong C, Shao J, Zhao Y, Van der Bruggen B. Recovery of Fluoride-Rich and Silica-Rich Wastewaters as Valuable Resources: A Resource Capture Ultrafiltration-Bipolar Membrane Electrodialysis-Based Closed-Loop Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16221-16229. [PMID: 36287592 DOI: 10.1021/acs.est.2c04704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Traditional technologies such as precipitation and coagulation have been adopted for fluoride-rich and silica-rich wastewater treatment, respectively, but waste solid generation and low wastewater processing efficiency are still the looming concern. Efficient resource recovery technologies for different wastewater treatments are scarce for environment and industry sustainability. Herein, a resource capture ultrafiltration-bipolar membrane electrodialysis (RCUF-BMED) system was designed into a closed-loop process for simultaneous capture and recovery of fluoride and silica as sodium silicofluoride (Na2SiF6) from mixed fluoride-rich and silica-rich wastewaters, as well as achieving zero liquid discharge. This RCUF-BMED system comprised two key parts: (1) capture of fluoride and silica from two wastewaters using acid, and recovery of the Na2SiF6 using base by UF and (2) UF permeate conversion for acid/base and freshwater generation by BMED. With the optimized RCUF-BMED system, fluoride and silica can be selectively captured from wastewater with removal efficiencies higher than 99%. The Na2SiF6 recovery was around 72% with a high purity of 99.1%. The aging and cyclic experiments demonstrated the high stability and recyclability of the RCUF-BMED system. This RCUF-BMED system has successfully achieved the conversion of toxic fluoride and silica into valuable Na2SiF6 from mixed wastewaters, which shows great application potential in the industry-resource-environment nexus.
Collapse
Affiliation(s)
- Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai200240, P. R. China
- Chongqing Research Institute of Shanghai Jiao Tong University, No. 168 Liangjiang Road, Chongqing401120, P. R. China
| | - Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001Leuven, Belgium
| | - Changmei Zhong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001Leuven, Belgium
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001Leuven, Belgium
| |
Collapse
|
5
|
Iizuka A, Ho HJ, Yamasaki A. Removal of fluoride ions from aqueous solution by metaettringite. PLoS One 2022; 17:e0265451. [PMID: 35286355 PMCID: PMC8920265 DOI: 10.1371/journal.pone.0265451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Fluoride contamination is a major problem in wastewater treatment. Metaettringite (which has previously shown enhanced anion adsorption) was investigated as a possible adsorbent to remove fluoride from low-concentration solution (25 mg-F/L). The fluoride removal properties of ettringite and metaettringite were first compared at pH 10, and metaettringite was found to be more effective. The dominant reaction mechanism for fluoride adsorption in metaettringite was found to be recrystallization of metaettringite by rehydration; this was accompanied by precipitation of calcium fluoride. The adsorption kinetics followed the pseudo-second order model. Metaettringite was also able to remove fluoride effectively in low pH environment (i.e., at pH 3.5). The influence of coexistence of sulfate ions in solution on the fluoride removal performance was investigated, and a small decrease in performance was noted. The residual fluoride concentrations obtained with higher doses of metaettringite were lower than those specified by the Japanese effluent standard (non-coastal areas: 8 mg-F/L; coastal areas: 15 mg-F/L). The fluoride removal capacity of metaettringite was compared with those of other solid materials. The observed maximum capacity was 174.7 mg-F/g-metaettringite. In the case of high fluoride concentration solution, the main removal mechanism will be changed to calcium fluoride precipitation. In general, metaettringite is regarded as promising material for fluoride removal in wastewater treatment.
Collapse
Affiliation(s)
- Atsushi Iizuka
- Center for Mineral Processing and Metallurgy, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| | - Hsing-Jung Ho
- Center for Mineral Processing and Metallurgy, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Akihiro Yamasaki
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Musashino, Tokyo, Japan
| |
Collapse
|
6
|
Rodríguez-Iglesias J, Alcalá L, Megido L, Castrillón L. Removal of fluoride from coke wastewater by aluminum doped chelating ion-exchange resins: a tertiary treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8705-8715. [PMID: 34491503 PMCID: PMC8776662 DOI: 10.1007/s11356-021-16299-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Coke wastewater is one of the most problematic industrial wastewaters, due to its large volume and complex pollutant load. In this study, ion exchange technology was investigated with the objective of reducing the fluoride content of the effluent from a coke wastewater treatment plant (26.7 mg F-/L). Two Al-doped exchange resins with chelating aminomethyl-phosphonic acid and iminodiacetic groups were assessed: Al-doped TP260 and TP207 resins, respectively. The effect of resin dosage, varying from 5 to 25 g/L, was evaluated. F- removal was within the range 57.8-89.3% and 72.0-92.1% for Al-doped TP260 and TP207, respectively. A kinetic study based on a generalized integrated Langmuir kinetic equation fitted the experimental data (R2 > 0.98). The parameters of the said kinetics met the optimal conditions for the ion exchange process, which seemed to be more favorable with Al-doped TP260 resin than with Al-doped TP207 resin, using the same resin dosage. Furthermore, the experimental data were well described (R2 > 0.98) by Langmuir and Freundlich isotherm models, in agreement with the findings of the kinetic study: the maximum sorption capacity was obtained for the Al-doped TP260 resin.
Collapse
Affiliation(s)
- Jesús Rodríguez-Iglesias
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Lara Alcalá
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Laura Megido
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| | - Leonor Castrillón
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| |
Collapse
|
7
|
Li W, Dai R, Al-shiaani NHA, Li J, Sun C, Wang K, Chen K, Guo A, Liu H. High-efficiency N-doped activated carbon-based defluoridation adsorbent prepared from itaconic acid fermentation waste liquid. NEW J CHEM 2022. [DOI: 10.1039/d2nj03699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Excessive amounts of fluoride in water cause irreversible harm to people and seriously threaten human health.
Collapse
Affiliation(s)
- Weining Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Renwei Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Nabil. H. A. Al-shiaani
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Jiakang Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Chengyu Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Kunyin Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Kun Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Aijun Guo
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - He Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| |
Collapse
|
8
|
Li S, Liu M, Meng F, Hu X, Yu W. Removal of F - and organic matter from coking wastewater by coupling dosing FeCl 3 and AlCl 3. J Environ Sci (China) 2021; 110:2-11. [PMID: 34593190 DOI: 10.1016/j.jes.2021.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
Coagulation and precipitation is a widely applied method to remove F- from wastewater. In this work, the effect of coagulation on the removal of F- and organic matter from coking wastewater was studied using AlCl3 and FeCl3 as compound coagulants. The removal rates of F- and organic matter under different coagulant doses and pH conditions were investigated. The results show that the highest removal rates of F- by AlCl3 and FeCl3 are 94.4% and 25.4%, respectively; when the dosage is 10 mmol/L, the TOC removal rates of FeCl3 and AlCl3 reach 20.4% and 34.7%, respectively. Therefore, the removal rate of F- by AlCl3 is higher than that of FeCl3, but the removal rate of organic matter by FeCl3 is relatively higher. The addition of Ca2+ can promote the removal of F-, but the removal rate of organic matter decreases. In addition, by investigating the effects of different pH and Fe-Al ratio on the removal rate, the removal effect of adding FeCl3 and AlCl3 at the same time was discussed. The results show that the most suitable working condition for the removal of organic matter and F- is that the pH is 6.5 and the molar ratio of Al/Fe is 8:2. Overall, the removal mechanism of F- and organic matter in coking wastewater by FeCl3 and AlCl3 was explored in this study. The experimental results can provide reference for the advanced treatment of coking wastewater.
Collapse
Affiliation(s)
- Shuo Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China
| | - Mengjie Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China
| | - Fuming Meng
- Jinan Municipal Engineering Design & Research Institute (Group) Co. LTD, China
| | - Xia Hu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China.
| |
Collapse
|
9
|
Direct contact membrane distillation with softening Pre-treatment for effective reclaiming flue gas desulfurization wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Xie W, Duan J, Li J, Qi B, Liu R, Yu B, Wang H, Zhuang X, Xu M, Zhou J. Charge-Gradient Hydrogels Enable Direct Zero Liquid Discharge for Hypersaline Wastewater Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100141. [PMID: 33963780 DOI: 10.1002/adma.202100141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Zero liquid discharge (ZLD), which maximizes water recovery and eliminates environmental impact, is an urgent wastewater management strategy for alleviating freshwater shortage. However, because of the high concentration of salts and broad-spectrum foulants in wastewater, a huge challenge for ZLD is lack of a robust membrane-based desalination technology that enables direct wastewater recovery without costly pretreatment processes. Here, a paradigm-shift membrane distillation (MD) strategy is presented, wherein the traditional hydrophobic porous membrane is replaced with a hydrophilic nonporous charge-gradient hydrogel (CGH) membrane that possesses hypersaline tolerance, fouling/scaling-free properties, and negligible vapor transfer resistance inside the membrane, simultaneously. Therefore, the CGH-based MD with high water flux enables direct desalination of hypersaline wastewater (130 g L-1 ) containing broad-spectrum foulants (500 mg L-1 ) during continuous long-term operation (200 h), and this technology paves a promising way to direct ZLD for wastewater management.
Collapse
Affiliation(s)
- Wenke Xie
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiangjiang Duan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jia Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bei Qi
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rong Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Boyang Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinyan Zhuang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Xu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
11
|
He Y, Huang L, Song B, Wu B, Yan L, Deng H, Yang Z, Yang W, Wang H, Liang Z, Luo J. Defluorination by ion exchange of SO 42- on alumina surface: Adsorption mechanism and kinetics. CHEMOSPHERE 2021; 273:129678. [PMID: 33515960 DOI: 10.1016/j.chemosphere.2021.129678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Electrostatic and complexation effects have been considered as the primary adsorption mechanisms for defluorination using aluminum based materials, while the effect of ion exchange between anions and fluorine ion has been mostly ignored, although synthesized alumina materials usually contain a large amount of anions, such as SO42-, NO3-, and Cl-. In this study, the effect of anions exchanges and its key role on defluorination were systematically investigated for adsorption by aluminas loaded with various typical anions (SO42-, NO3- and Cl-). Experimental results showed that SO42-- loading alumina had the best defluorination performance (94.5 mg/g), much higher than NO3- (45.0 mg/g) and Cl- (19.1 mg/g). The contribution ratio of ion exchange between SO42- and F- was as high as 20-60% in all potential defluorination mechanisms. By using Density Functional Theory calculation, the detailed mechanism revealed that the ion exchange process was mainly driven by the tridentate chelation of SO42- which reduced the exchange energy ( [Formula: see text] 4.8 eV). Our study clearly demonstrated that ion exchange between SO42- and F- is a critical mechanism in defluorination using aluminum-based materials and provides a potential alternative method to enhance the adsorption performance of modified alumina.
Collapse
Affiliation(s)
- Yingjie He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Baocheng Song
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| | - Zhengyong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0355, United States.
| |
Collapse
|
12
|
Damtie MM, Woo YC, Kim B, Hailemariam RH, Park KD, Shon HK, Park C, Choi JS. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109524. [PMID: 31542619 DOI: 10.1016/j.jenvman.2019.109524] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
The presence of excess fluoride in aqueous media above local environmental standards (e.g., the U.S. Environmental Protection Agency (EPA) standard of 4 mg/L) affects the health of aquatic life. Excess fluoride in drinking water above the maximum contaminant level (e.g., the World Health Organization (WHO) standard of 1.5 mg/L) also affects the skeletal and nervous systems of humans. Fluoride removal from aqueous solutions is difficult using conventional electrochemical, precipitation, and adsorption methods owing to its ionic size and reactivity. Thus, new technologies have been introduced to reduce the fluoride concentration in industrial wastewater effluents and various drinking water sources. Membrane technology is one of the newer technologies found to be very effective in significantly reducing fluoride to desired standards levels; however, it has received less attention than other technologies because it is perceived as a costly process. This study critically reviewed the performance of various membrane process and compared it with effluent and zero liquid discharge (ZLD) standards. The performance review has been conducted with the consideration of the theoretical background, rejection mechanisms, technical viability, and parameters affecting flux and rejection performance. This review includes membrane systems investigated for the defluoridation process but operated under pressure (i.e., reverse osmosis [RO] and nanofiltration [NF]), temperature gradients (i.e., membrane distillation [MD]), electrical potential gradients (i.e., electrodialysis [ED] and Donnan dialysis [DD]), and concentration differences (i.e., forward osmosis [FO]). Moreover, the study also addressed the advantages, limitations, & applicable conditions of each membrane based defluoridation process.
Collapse
Affiliation(s)
- Mekdimu Mezemir Damtie
- Department of Construction Environment Engineering, KICT School, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Yun Chul Woo
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Bongchul Kim
- Water Transportation Environmental Center, Environmental Technology Division, Korea Testing Laboratory (KTL), 87 Digital-ro 26-gil, Guro-gu, Seoul, 08389, Republic of Korea
| | - Ruth Habte Hailemariam
- Department of Construction Environment Engineering, KICT School, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Kwang-Duck Park
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - June-Seok Choi
- Department of Construction Environment Engineering, KICT School, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea.
| |
Collapse
|