1
|
Kanda K, Iwata H. Tris(2-chloroethyl) phosphate (TCEP) exposure inhibits the epithelial-mesenchymal transition (EMT), mesoderm differentiation, and cardiovascular development in early chicken embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171242. [PMID: 38417504 DOI: 10.1016/j.scitotenv.2024.171242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is an organophosphorus flame retardant used worldwide and has been detected in the tissues and eggs of wild birds. Our previous study reported that exposure to TCEP induced developmental delay and cardiovascular dysfunction with attenuated heart rate and vasculogenesis in early chicken embryos. This study aimed to investigate the molecular mechanisms underlying the cardiovascular effects of TCEP on chicken embryos using cardiac transcriptome analysis and to examine whether TCEP exposure affects epithelial-mesenchymal transition (EMT) and mesoderm differentiation during gastrulation. Transcriptome analysis revealed that TCEP exposure decreased the expression of cardiac conduction-related genes and transcription factors on day 5 of incubation. In extraembryonic blood vessels, the expression levels of genes related to fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) were significantly reduced by TCEP exposure and vasculogenesis was suppressed. TCEP exposure also attenuated Snail family transcriptional repressor 2 (SNAI2) and T-box transcription factor T (TBXT) signaling in the chicken primitive streak, indicating that TCEP inhibits EMT and mesoderm differentiation during gastrulation at the early developmental stage. These effects on EMT and mesoderm differentiation may be related to subsequent phenotypic defects, including suppression of heart development and blood vessel formation.
Collapse
Affiliation(s)
- Kazuki Kanda
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
2
|
Wei L, Huang Q, Qiu Y, Zhao J, Rantakokko P, Gao H, Huang F, Bignert A, Bergman Å. Legacy persistent organic pollutants (POPs) in eggs of night herons and poultries from the upper Yangtze Basin, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93744-93759. [PMID: 37516701 DOI: 10.1007/s11356-023-28974-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Black-crowned night heron (Nycticorax nycticorax) eggs have been identified as useful indicators for biomonitoring the environmental pollution in China. In this study, we investigated thirty eggs of black-crowned night heron collected from the upper Yangtze River (Changjiang) Basin, Southwest China, for the occurrence of legacy persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Our results showed a general presence of POPs in night heron eggs with OCPs being the dominant contaminants, having a geometric mean concentration of 22.2 ng g-1 wet weight (ww), followed by PCBs (1.36 ng g-1 ww), PBDEs (0.215 ng g-1 ww), and PCDD/Fs (23.0 pg g-1 ww). The concentration levels were found to be significantly higher in night heron eggs than in poultry eggs by one or two magnitude orders. Among OCP congeners, p,p'-DDE was found to be predominant in night heron eggs, with a geometric mean concentration of 15.1 ng g-1 ww. Furthermore, species-specific congener patterns in eggs suggested similar or different sources for different POPs, possibly associated with contaminated soil and parental dietary sources. Additionally, estimated daily intakes (EDIs) were used to evaluate non-carcinogenic and carcinogenic risk associated with consumption of bird eggs. Our results revealed non-negligible non-cancer and cancer risk for humans who consume wild bird eggs as a regular diet instead of poultry eggs.
Collapse
Affiliation(s)
- Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701, Kuopio, Finland
| | - Hongwen Gao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Fei Huang
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
| | - Anders Bignert
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
- Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| | - Åke Bergman
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- Department of Environmental Science (ACES), Stockholm University, 106 91, Stockholm, Sweden
- Department of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| |
Collapse
|
3
|
Ramesh M, Angitha S, Haritha S, Poopal RK, Ren Z, Umamaheswari S. Organophosphorus flame retardant induced hepatotoxicity and brain AChE inhibition on zebrafish (Danio rerio). Neurotoxicol Teratol 2020; 82:106919. [DOI: 10.1016/j.ntt.2020.106919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
|