1
|
Anwar T, Qureshi H, Jabeen M, Siddiqi EH, Zaman W, Alharbi SA, Ansari MJ. Exploring the synergistic benefits of biochar and gibberellic acid in alleviating cadmium toxicity. Sci Rep 2024; 14:24196. [PMID: 39406739 PMCID: PMC11480094 DOI: 10.1038/s41598-024-73678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Cadmium (Cd) toxicity significantly threatens agricultural productivity and food safety. Developing effective strategies to enhance plant tolerance to Cd stress is essential. This study investigates the synergistic effects of biochar (BC) and gibberellic acid (GA3) on mitigating Cd toxicity in maize (Zea mays), focusing on their impact on oxidative stress markers and antioxidant enzyme activities. Soil samples were collected from the Cholistan Institute of Desert Studies (CIDS) and analyzed for trace metal ions and other properties. Biochar was produced from fruit and vegetable waste, washed, washed, deashed, and mixed with 10 ppm GA3. FH-1036 hybrid maize seeds were sterilized and planted in pots containing soil with varying Cd levels (0, 8, and 16 mg Cd/kg soil). Twelve treatments were established, including control, GA3, BC, and their combinations under different Cd stress levels. Plants were irrigated to maintain 60% field capacity and harvested at the V10 growth stage. Hydrogen peroxide (H2O2) contents and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were measured in roots, stems, and leaves. Statistical analysis was performed using OriginPro 2021, with ANOVA and Fisher's LSD test used to determine significant differences. GA3 and BC treatments significantly reduced H2O2 levels in maize roots, stems and leaves under Cd stress. The combined treatment of GA3 + BC showed the most significant reduction in H2O2 levels across all plant parts, reducing root H2O2 by 50%, stem H2O2 by 55%, and leaf H2O2 by 53% under severe Cd stress (16 mg Cd/kg). SOD activity increased under non-stress conditions but decreased under Cd stress, with the highest activity observed in the combined treatment. POD activity followed a similar pattern, with GA3 + BC treatment resulting in the most significant increases under non-stress conditions and the least reductions under Cd stress. CAT activity showed substantial increases with GA3 + BC treatment, particularly under severe Cd stress, with a notable rise over the control. APX activity also exhibited enhancements with GA3 and BC treatments, especially in the combined treatment under various Cd stress levels. This study highlights the potential of combined BC and GA3 treatments in improving Cd stress tolerance in maize. Future research should focus on field trials and the long-term impacts of these treatments on crop productivity and soil health.
Collapse
Affiliation(s)
- Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800, Pakistan.
| | - Mah Jabeen
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Mahatma Jyotiba Phule Rohilkhand University, Moradabad, Bareilly, 244001, India
| |
Collapse
|
2
|
Xiao Q, Huang X, Chen Y, Zhang X, Liu X, Lu J, Mi L, Li B. Effects of N, N-bis (carboxymethyl)-L-glutamic acid and polyaspartic acid on the phytoremediation of cadmium in contaminated soil at the presence of pyrene: Biochemical properties and transcriptome analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121825. [PMID: 38996604 DOI: 10.1016/j.jenvman.2024.121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Chelator-assisted phytoremediation is an efficacious method for promoting the removal efficiency of heavy metals (HMs). The effects of N, N-bis(carboxymethyl)-L-glutamic acid (GLDA) and polyaspartic acid (PASP) on Cd uptake and pyrene removal by Solanum nigrum L. (S. nigrum) were compared in this study. Using GLDA or PASP, the removal efficiency of pyrene was over 98%. And PASP observably raised the accumulation and transport of Cd by S. nigrum compared with GLDA. Meanwhile, both GLDA and PASP markedly increased soil dehydrogenase activities (DHA) and microbial activities. DHA and microbial activities in the PASP treatment group were 1.05 and 1.06 folds of those in the GLDA treatment group, respectively. Transcriptome analysis revealed that 1206 and 1684 differentially expressed genes (DEGs) were recognized in the GLDA treatment group and PASP treatment group, respectively. Most of the DEGs found in the PASP treatment group were involved in the metabolism of carbohydrates, the biosynthesis of brassinosteroid and flavonoid, and they were up-regulated. The DEGs related to Cd transport were screened, and ABCG3, ABCC4, ABCG9 and Nramp5 were found to be relevant with the reduction of Cd stress in S. nigrum by PASP. Furthermore, with PASP treated, transcription factors (TFs) related to HMs such as WRKY, bHLH, AP2/ERF, MYB were down-regulated, while more MYB and bZIP TFs were up-regulated. These TFs associated with plant stress resistance would work together to induce oxidative stress. The above results indicated that PASP was more conducive for phytoremediation of Cd-pyrene co-contaminated soil than GLDA.
Collapse
Affiliation(s)
- Qingyun Xiao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xun Huang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Shanghai Huali Integrated Circuit Manufacturing Co., LTD, Shanghai, 201317, China
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Jingxian Lu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Lanxin Mi
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Beibei Li
- Ecological Environment Monitoring and Scientific Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai, 200125, China
| |
Collapse
|
3
|
Salazar MJ, Cáceres-Mago K, Becerra AG. Role of arbuscular mycorrhizal fungi in lead translocation from Bidens pilosa L. plants to soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121626. [PMID: 38944957 DOI: 10.1016/j.jenvman.2024.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Bidens pilosa frequently forms a symbiotic association with arbuscular mycorrhizal fungi (AMF). This plant species can grow in Pb-polluted soils, accumulating Pb in its tissues. The aims of the study were to determine whether Pb accumulated in the tissues of B. pilosa can be transferred to the soil through AMF and to compare the role of AMF communities that have a history of exposure to the contaminant with those that have never been exposed. The experiment combined plants with and without Pb accumulated in their tissues, and inoculated with AMF collected from the rhizosphere of B. pilosa in soils contaminated and not contaminated with Pb. The results showed that AMF participate in the removal of Pb that had entered the plant and release it into the soil, as evidenced by the presence of Pb in the AMF spores and in the glomalin produced by AMF. We propose that Pb accumulation in AMF spores would be a protection mechanism that interrupts Pb uptake by the plant; however, that mechanism would not be fully exploited in detoxification, whereas the production of Pb-enriched glomalin could be an important detoxification mechanism to eliminate Pb already taken up by plants. AMF with a history of Pb exposure achieved only higher rates of root colonization, while AMF without previous exposure showed higher Pb concentration in the spores and higher glomalin production, and successfully removed Pb from both the roots and aboveground parts of the plant. The use of AMF communities not adapted to Pb may be a more effective option for microbe-mediated phytoremediation methods in which detoxification mechanisms are desirable.
Collapse
Affiliation(s)
- M Julieta Salazar
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| | - Karla Cáceres-Mago
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| | - Alejandra G Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| |
Collapse
|
4
|
Anwar T, Qureshi H, Jabeen M, Zaman W, Ali HM. Mitigation of cadmium-induced stress in maize via synergistic application of biochar and gibberellic acid to enhance morpho-physiological and biochemical traits. BMC PLANT BIOLOGY 2024; 24:192. [PMID: 38491471 PMCID: PMC10941574 DOI: 10.1186/s12870-024-04805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.
Collapse
Affiliation(s)
- Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur (Baghdad ul Jadeed Campus), Bahawalpur, 63100, Pakistan.
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800, Pakistan
| | - Mah Jabeen
- Department of Botany, The Islamia University of Bahawalpur (Baghdad ul Jadeed Campus), Bahawalpur, 63100, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Yang W, Dai H, Wei S, Robinson BH, Xue J. Effect of ammonium sulfate combined with aqueous bio-chelator on Cd uptake by Cd-hyperaccumulator Solanum nigrum L. CHEMOSPHERE 2024; 352:141317. [PMID: 38286306 DOI: 10.1016/j.chemosphere.2024.141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The efficacy of using plants to phytoremediate heavy metal (HM) contaminated soils can be improved using soil amendments. These amendments may both increase plant biomasses and HMs uptake. We aimed to determine the composite effect of ammonium sulfate ((NH4)2SO4) combined with the application of an aqueous stem-extracted bio-chelator (Bidens tripartita L) on the plant biomasses and cadmium (Cd) phytoextraction by Solanum nigrum L. The constant (NH4)2SO4 application mode plus bio-chelator additives collectively enhanced the shoot Cd extraction ability owing to the increased plant biomass and shoot Cd concentration by S. nigrum. The shoot Cd extraction and the soil Cd decreased concentration confirmed the optimal Cd phytoextraction pattern in K8 and K9 treatments (co-application of (NH4)2SO4 and twofold/threefold bio-chelators). Accordingly, Cd contamination risk in the soil (2 mg kg-1) could be completely eradicated (<0.2 mg kg-1) after three rounds of phytoremediation by S.nigrum based on K8 and K9 treatments through calculating soil Cd depletion. The microorganism counts and enzyme activities in rhizosphere soils at treatments with the combined soil additives apparently advanced. In general, co-application mode of (NH4)2SO4 and aqueous bio-chelator was likely to be a perfect substitute for conventional scavenger agents on account of its environmental friendliness and cost saving for field Cd contamination phytoremediation by S. nigrum.
Collapse
Affiliation(s)
- Wei Yang
- Academy of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, Liaoning, China.
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Brett H Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), POB 29237, Christchurch 8440, New Zealand
| |
Collapse
|
6
|
Kong F, Zhang Q, Xie Y, Ding J, Zhao H, Zhang Z, Ma Z, Cong H, Meng Z. Controlled release of herbicides through glyphosate intercalated layered double hydroxides and enhancement of anti-scouring ability via poly-l-aspartic acid and chitosan modification. Int J Biol Macromol 2023; 253:126750. [PMID: 37678678 DOI: 10.1016/j.ijbiomac.2023.126750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Nanocarrier preparations could effectively improve the utilization rate of pesticides, and reduce pesticide loss. In this study, glyphosate (GLY)-loaded MgAl layered double hydroxide (GLY@LDH) was synthesized via an in-situ method. Subsequently, GLY@LDH composite samples were prepared using a layer-by-layer self-assembly approach and modified with poly-L-aspartic acid (PASP) and chitosan (CS). XRD, FT-IR, SEM, and Zeta potential characterization confirmed that GLY was successfully loaded in the interlayer of LDHs and PASP/CS were successfully encapsulated on the surface of the composite sample. The release effect in different ionic solutions and soils was studied and analyzed. The release behavior conforms to the Ritger-Peppas kinetic model, and the release mechanism was ion exchange, which was further explored by means of XRD, SEM, and molecular simulation. The results of the anti-scouring experiment and contact angle measurement indicated that the layered self-assembly material enhanced the washing resistance of the material. The practical application effect of the sample was verified through a pot experiment. This study provides new insights into the simple preparation of pesticide-controlled release formulations that reduce leaching losses.
Collapse
Affiliation(s)
- Fanping Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Qian Zhang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, PR China.
| | - Yuan Xie
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Jiyue Ding
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Hui Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Zihan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Zequn Ma
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Jiangsu, PR China
| | - Hailin Cong
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, PR China.
| | - Zilin Meng
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, PR China.
| |
Collapse
|
7
|
Meng Y, Cui Y, Peng F, Guo L, Cui R, Xu N, Huang H, Han M, Fan Y, Zhang M, Sun Y, Wang L, Yang Z, Liu M, Chen W, Ni K, Wang D, Zhao L, Lu X, Chen X, Wang J, Wang S, Ye W. GhCYS2 governs the tolerance against cadmium stress by regulating cell viability and photosynthesis in cotton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115386. [PMID: 37598545 DOI: 10.1016/j.ecoenv.2023.115386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Cysteine, an early sulfur-containing compound in plants, is of significant importance in sulfur metabolism. CYS encodes cysteine synthetase that further catalyzes cysteine synthesis. In this investigation, CYS genes, identified from genome-wide analysis of Gossypium hirsutum bioinformatically, led to the discovery of GhCYS2 as the pivotal gene responsible for Cd2+ response. The silencing of GhCYS2 through virus-induced gene silencing (VIGS) rendered plants highly susceptible to Cd2+ stress. Silencing GhCYS2 in plants resulted in diminished levels of cysteine and glutathione while leading to the accumulation of MDA and ROS within cells, thereby impeding the regular process of photosynthesis. Consequently, the stomatal aperture of leaves decreased, epidermal cells underwent distortion and deformation, intercellular connections are dramatically disrupted, and fissures manifested between cells. Ultimately, these detrimental effected culminating in plant wilting and a substantial reduction in biomass. The association established between Cd2+ and cysteine in this investigation offered a valuable reference point for further inquiry into the functional and regulatory mechanisms of cysteine synthesis genes.
Collapse
Affiliation(s)
- Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde 415101, Hunan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yupin Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China.
| |
Collapse
|
8
|
Li Y, Shi X, Tan W, Ling Q, Pei F, Luo S, Qin P, Yuan H, Huang L, Yu F. Metagenomics combined with metabolomics reveals the effect of Enterobacter sp. inoculation on the rhizosphere microenvironment of Bidens pilosa L. in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132033. [PMID: 37453352 DOI: 10.1016/j.jhazmat.2023.132033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Metagenomics analysis was performed to determine the effects of Enterobacter sp. FM-1 (FM-1) on key genera as well as functional genes in the rhizosphere of Bidens pilosa L. (B. pilosa L.). Moreover, metabolomics was used to reveal the differences among rhizosphere metabolites after FM-1 inoculation. FM-1 inoculation significantly increased the activity of enzymes associated with the carbon cycle in soil; among them, invertase activity increased by 5.52 units compared to a control. Specifically, the relative abundance of beneficial genera increased significantly, such as Lysobacter (0.45-2.58 unit increase) in low-contamination soils (LC) and Pseudomonas (31.17-45.99 unit increase) in high-contamination soils (HC). Comparison of different transformation processes of the C cycle revealed that inoculation of FM-1 increased the abundance of functional genes related to the carbon cycle in LC soil. In contrast, the nitrogen cycling pathway was significantly elevated in both the LC and HC soils. FM-1 inoculation reduced HM resistance gene abundance in the rhizosphere soil of B. pilosa L. in the LC soil. Moreover, FM-1 and B. pilosa L. interactions promoted the secretion of rhizosphere metabolites, in which lipids and amino acids played important roles in the phytoremediation process. Overall, we explored the rhizosphere effects induced by plantmicrobe interactions, providing new insights into the functional microbes and rhizosphere metabolites involved in phytoremediation.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Weilan Tan
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qiujie Ling
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fengmei Pei
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Shiyu Luo
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Peiqing Qin
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Huijian Yuan
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Liuan Huang
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China.
| |
Collapse
|
9
|
Li X, Tian L, Li B, Chen H, Zhao G, Qin X, Liu Y, Yang Y, Xu J. Polyaspartic acid enhances the Cd phytoextraction efficiency of Bidens pilosa by remolding the rhizospheric environment and reprogramming plant metabolism. CHEMOSPHERE 2022; 307:136068. [PMID: 35985384 DOI: 10.1016/j.chemosphere.2022.136068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/17/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The green soil chelator polyaspartic acid (PASP) can enhance heavy metal phytoextraction efficiency, but the potential mechanisms are not clearly understood from the whole soil-plant system. In this study, we explored the effects and potential mechanisms of PASP addition in soils on plant growth and cadmium (Cd) uptake in the Cd hyperaccumulator Bidens pilosa by analysing variations in chemical elements, rhizospheric microbial community, and plant metabolomics. The results showed that PASP significantly promoted the biomass yield and Cd concentration in B. pilosa, leading to an increase in the total accumulated Cd by 46.4% and 76.4% in shoots and 124.7% and 197.3% in roots under 3 and 6 mg kg-1 PASP addition, respectively. The improved soil-available nutrients and enriched plant growth-promoting rhizobacteria (e.g., Sphingopyxis, Sphingomonas, Cupriavidus, Achromobacter, Nocardioides, and Rhizobium) were probably responsible for the enhanced plant growth after PASP addition. The increase in Cd uptake by plants could be due to the improved rhizosphere-available Cd, which was directly activated by PASP and affected by the induced rhizobacteria involved in immobilizing/mobilizing Cd (e.g., Sphingomonas, Cupriavidus, Achromobacter, and Rhizobium). Notably, PASP and/or these potassium (K)-solubilizing rhizobacteria (i.e., Sphingomonas, Cupriavidus, and Rhizobium) highly activated rhizosphere-available K to enhance plant growth and Cd uptake in B. pilosa. Plant physiological and metabolomic results indicated that multiple processes involving antioxidant enzymes, amino acids, organic acids, and lipids contributed to Cd detoxification in B. pilosa. This study provides novel insights into understanding how soil chelators drive heavy metal transfer in soil-plant systems.
Collapse
Affiliation(s)
- Xiong Li
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Liyan Tian
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, China
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Huafang Chen
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Gaojuan Zhao
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiangshi Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanyuan Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, 666303, China.
| | - Jianchu Xu
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
10
|
Yan P, Fang M, Lu L, Ren L, Dong X, Dong Z. Effect of Urea Coated with Polyaspartic Acid on the Yield and Nitrogen Use Efficiency of Sorghum (Sorghum bicolor, (L.) Moench.). PLANTS 2022; 11:plants11131724. [PMID: 35807676 PMCID: PMC9268984 DOI: 10.3390/plants11131724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Innovative approaches to enhance N fertilization to improve season-long N availability are essential to optimal sorghum (Sorghum bicolor, (L.) Moench.) productivity and N use efficiency. A two-year field experiment was conducted in the 2020 and 2021 summer seasons on the North China Plain to determine the effects of a novel urea coated with polyaspartic acid (PAA) (PN) and a control treatment (CN) on grain sorghum yield and N utilization characteristics at four N application rates (0, 60, 120, and 240 kg ha−1). The results showed that sorghum yield, agronomic traits (including leaf area duration (LAD), crop growth rate (CGR), and dry matter accumulation (DMA)), the accumulation of nitrate N and ammonium N in the 0–60 cm soil layer, stover and grain N content, and total N uptake (NUT) in 2020 and 2021 significantly increased as N application rates increased from 0 to 240 kg ha−1, whereas nitrogen agronomic efficiency (NAE), N uptake efficiency (NUpE), and N utilization efficiency (NUtE) varied inversely with increasing N application rates. Compared to CN, PN demonstrated a significant enhancement in grain sorghum yield, LAD, and CGR, from 3.3% to 7.1%, from 4.8% to 6.1%, and from 5.8% to 6.8%, respectively, at 60 and 120 kg N ha−1. PN improved the N availability (mainly nitrate-N) in the sorghum soft dough and the stover and grain N content at harvest and NUT, NUpE, and NAE accordingly compared with CN at the 60 and 120 kg ha−1 N application rates. In short, our two-year field trials demonstrated that PN with 120 kg N ha−1 is recommended in grain sorghum to optimize sorghum productivity and nitrogen use efficiency at the current yield level in the North China Plain.
Collapse
|
11
|
Li S, Wu Y, Li X, Liu Q, Li H, Tu W, Luo X, Luo Y. Enhanced remediation of Cd-contaminated soil using electrokinetic assisted by permeable reactive barrier with lanthanum-based biochar composite filling materials. ENVIRONMENTAL TECHNOLOGY 2022:1-13. [PMID: 35244499 DOI: 10.1080/09593330.2022.2049891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Electrokinetic remediation (EK) combined with a permeable reactive barrier (PRB) is a relatively new technique for efficiently remediating Cd-contaminated soil in situ. Eupatorium adenophorum, which is a malignant invasive plant, was used to synthesise biochar and a novel lanthanum-based biochar composite (LaC). The biochar and LaC were used as cheap and environmentally benign PRB filling materials to remediate simulated and real Cd-contaminated soils. The pH and residual Cd concentration in the simulated contaminated soil during remediation gradually increased from the anode to the cathode used to apply an electric field to the EK-PRB system. However, the soil conductivity changed in the opposite way, and the current density first increased and then decreased. For simulated contaminated soils with initial Cd concentrations of 34.9 and 100.6 mg kg-1, the mean Cd removal rates achieved using LaC were 90.6% and 89.3%, respectively, which were significantly higher than those of biochar (P < 0.05). Similar results were achieved using natural soils from mining area and polluted farmland, and the Cd removal rates were 66.9% and 72.0%, respectively. Fourier-transform infrared and X-ray photoelectron spectroscopy indicated that there were many functional groups on the LaC surfaces. The removal mechanism of EK-PRB for Cd in contaminated soil includes electromigration, electroosmotic flow, surface adsorption, and ion exchange. The results indicated that the LaC could be used in the EK-PRB technique as a cheap and 'green' material to efficiently decontaminate soil polluted with heavy metals.
Collapse
Affiliation(s)
- Sen Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| | - Yong Wu
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Xueling Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Qin Liu
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Hongtao Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| | - Yong Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| |
Collapse
|
12
|
Kang Y, Liu J, Yang L, Li N, Wang Y, Ao T, Chen W. Foliar application of flavonoids (rutin) regulates phytoremediation efficiency of Amaranthus hypochondriacus L. by altering the permeability of cell membranes and immobilizing excess Cd in the cell wall. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127875. [PMID: 34902722 DOI: 10.1016/j.jhazmat.2021.127875] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 05/27/2023]
Abstract
The gap between the current serious soil heavy metal (HM) contamination and the low efficiency of soil remediation threatens human health. The aim of this study was to propose a method to improve the efficiency of phytoremediation by exogenous rutin application and explain the potential mechanism. A series of rutin treatments were designed to evaluate the biomass, cadmium (Cd) accumulation and physiological and biochemical responses of Amaranthus hypochondriacus under different Cd stresses. The results showed a decline in cell membrane damage with rutin application, and more Cd ions were immobilized in the cell wall than in the vacuole, resulting in an increase in Cd tolerance in plants. The addition of rutin caused significant effects on the synthesis of glutathione (GSH), including the advancement of the conversion of GSH to phytochelatins (PCs). Among them, PC2 and PC3 in the leaves contributed the most to the high accumulation of Cd. Overall, the phytoremediation efficiency and phytoextraction amount of Amaranthus hypochondriacus with rutin application were improved maximumly by 219.48% and 260.00%, respectively. This study provides a constructive approach for improving the efficiency of phytoremediation by foliar application of flavonoids and contributes to the further development of soil remediation in Cd-contaminated fields.
Collapse
Affiliation(s)
- Yuchen Kang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Jiaxin Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Li Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Na Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Yuhao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, Naz I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. CHEMOSPHERE 2022; 291:132979. [PMID: 34801572 DOI: 10.1016/j.chemosphere.2021.132979] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 05/22/2023]
Abstract
Phytoremediation is an effective, green and economical technique. Different types of phytoremediation methods can be used for the reduction of heavy metal contaminations, such as phytoextraction, phytovolatilization, phytostabilization and phytofiltration. The biomass of plants and the bioavailability of heavy metals in soil are the key factors affecting the efficiency of phytoremediation. It's worth noting that the low remediation efficiency and the lack of effective disposal methods for contaminated biomass have limited its development and application. At present, biological, physical, chemical, agronomic and genetic approaches have been used to enhance phytoremediation. Disposal methods of contaminated biomass usually include pyrolysis, incineration, composting and compaction. They are effective, but are costly and have security problems. Improper disposal of contaminated biomass can lead to leaching of heavy metals. The leaching possibility of different forms of heavy metal in plants is different. Hence, it has great significance to explore the different forms of heavy metals in plants which can help to explore appropriate disposal methods. According to the challenges of phytoremediation, we put forward some views and recommendations for the sustainable and rapid development of phytoremediation technology.
Collapse
Affiliation(s)
- Xing Shen
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiawei Yang
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Lin Sun
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Department of Environmental Engineering, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Imran Ali
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452, Saudi Arabia.
| |
Collapse
|
14
|
Li Y, Ali A, Jeyasundar PGSA, Azeem M, Tabassum A, Guo D, Li R, Mian IA, Zhang Z. Bacillus subtilis and saponin shifted the availability of heavy metals, health indicators of smelter contaminated soil, and the physiological indicators of Symphytum officinale. CHEMOSPHERE 2021; 285:131454. [PMID: 34271464 DOI: 10.1016/j.chemosphere.2021.131454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Bacillus subtilis and saponin were tested for the uptake of heavy metals (HMs) by Symphytum officinale grown in a smelter-contaminated soil in completely randomized design. Soil pH and electrical conductivity increased by 0.11 unit (T3) and 754 mS cm-1 (T2), respectively. The bioavailable Zn decreased by 5.80% (T2); Cd and Pb increased by 6.21% (T2) and 13.46% (T3), respectively. Soil urease increased by 24% (T3) and alkaline phosphatase, β-glucosidase, and dehydrogenase decreased by 20% (T2), 27.70% (T2), and 21% (T1), respectively. Soil amendments altered the microbial diversity. Fourier-transform infrared spectroscopy and X-ray diffraction reported no obvious changes, except saponin application, which led to possible release of HMs in soil. The fresh weight of Symphytum officinale increased by 21.3 and 5.50% in T2 and T3, respectively. Chlorophyll (a) and carotenoid decreased by the sole application of B. subtilis and saponin and vice-versa for chlorophyll (b). Mono-application of B. subtilis efficiently increased the peroxidase (POD: 27%) and polyphenol oxidase (PPO: 13.56%), whereas, co-application enhanced the phenylalanine ammonia-lyase (PAL: 6.50%) level in shoots. Zn concentration in the shoots and roots declined by 12.75 and 27.32% in T1, respectively. Cd increased (3.92%, T3) in shoots and decreased (39.25%, T1) in roots; Pb concentration remained below detection in shoots and increased by 40% (T3) in roots due to accumulation in dead cells and cell vacuoles. Overall, B. subtilis and saponin influenced the bioavailability of HMs, enzymatic activities, and bacterial abundance in the soil; plant growth indicators, antioxidants activities, and metal uptake in shoots and roots.
Collapse
Affiliation(s)
- Yiman Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, 715000, China.
| | | | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Anum Tabassum
- Department of Microbiology, Women University, Mardan, 23200, Pakistan
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, 2500, Pakistan
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
15
|
Zhang X, Gu P, Liu X, Huang X, Wang J, Zhang S, Ji J. Effect of crop straw biochars on the remediation of Cd-contaminated farmland soil by hyperaccumulator Bidens pilosa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112332. [PMID: 34044313 DOI: 10.1016/j.ecoenv.2021.112332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/04/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) due to its strong toxicity and high mobility, which poses a considerable threat to soil environment and human health, has aroused widespread concern. Biochar has been used for remediating Cd-contaminated soil recently, however this method has the risk of fixed-Cd re-release. Phytoremediation can make up for its shortcoming. In this study, a pot experiment was carried out, where Bidens pilosa L. (B.pilosa) was as the tested plant and biochars (maize straw biochar and wheat straw biochar with two particle sizes) were as amendments. The mechanism of how biochars promoted B.pilosa Cd accumulation in Cd-contaminated farmland soil was explored. Results showed that the application of 5% wheat straw fine biochar (WF), wheat straw coarse biochar (WC), maize straw fine biochar (MF) and maize straw coarse biochar (MC) increased the total Cd accumulation of B.pilosa to 251.57%, 217.41%, 321.64% and 349.66%, respectively. Biochars amendment significantly promoted B.pilosa growth and increased Cd accumulation by improving soil physical properties, nutrient levels (available nitrogen, available phosphorus (AP), available potassium (AK) and organic matter (OM)) and microbial activity, and changing the nutrients distribution in B.pilosa organs although tissues although DTPA-Cd reduced to some extent. The effect of MF on AP increase was better than MC, while the effect of WF on AK increase was better than WC. Fine-particle was superior to coarse-particle in increasing B.pilosa biomass of aboveground, OM and microbial activity in soil. The changes of N, P and K concentrations in B.pilsosa roots, stems and leaves were closely related to the changes of AN, AP and AK in soil after biochars application. The results indicated that the combination of straw biochars and hyperaccumulators had the synergistic effect. This study can provide data support and meaningful reference values for remediating actual Cd-contaminated soil.
Collapse
Affiliation(s)
- Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Panxue Gu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Xun Huang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jiayi Wang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Shenyu Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jinghao Ji
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
16
|
Li Y, Xie T, Zha Y, Du W, Yin Y, Guo H. Urea-enhanced phytoremediation of cadmium with willow in pyrene and cadmium contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124257. [PMID: 33127193 DOI: 10.1016/j.jhazmat.2020.124257] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The phytoremediation of cadmium (Cd) and pyrene (PYR) in agricultural soil with willow was investigated by carrying out a pot-culture experiment in a greenhouse. The soil was incubated with urea 60 days before it was used for this experiment. The concentrations of Cd and PYR in soil and willow, the bioconcentration and transfer factors, the physiological and biochemical responses, and plant biomass production were determined at the end of the experiment. The phytoremediation with willow based on urea application was effective for enhancing the phytoremediation of Cd and PYR contaminated soil. Urea application did not affect the available Cd but increased the accumulation of soil Cd and the plant biomass of different parts of the willow. The removal rate (77.1-89.5%) of PYR in soil was not significantly affected although urea application decreased the accumulation of PYR in willow root and bark. Urea application significantly promoted the uptake of chlorophyll, carotenoid and malondialdehyde by willow leaves. The results of this study will provide scientific information for the effective phytoremediation of Cd in Cd and PYR contaminated soil.
Collapse
Affiliation(s)
- Yepu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tanchun Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yidi Zha
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Implications of the Phytoremediation of Heavy Metal Contamination of Soils and Wild Plants in the Industrial Area of Haina, Dominican Republic. SUSTAINABILITY 2021. [DOI: 10.3390/su13031403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The study evaluates pollution by Pb, Zn, and Cr, and a possible sustainable solution through phytoremediation technologies, in the surroundings of Haina, a very polluted area of the Dominican Republic. Soils and plants were analyzed at 11 sampling points. After sample processing, the elemental composition was analyzed by ICP-OES. Soil metal concentrations, contaminating factors, pollution load indexes, and the Nemerow pollution index were assessed. Soil metal concentrations showed Pb > Zn > Cr, resulting in very strong Pb pollution and medium-impact Zn pollution, with an anthropogenic origin in some sites. This means that some agricultural and residential restrictions must be applied. Accumulation levels in plant tissues, bioaccumulation factors in roots and shoots, and translocation factors were determined for Acalypha alopecuroidea, Achyranthes aspera, Amaranthus dubius, Bidenspilosa, Heliotropium angiospermum, Parthenium hysterophorus, and Sida rhombifolia. The vast majority of the plants showed very low levels of the potentially toxic elements studied, although it may be advisable to take precautions before consumption as they are all considered edible, fodder, and/or medicinal plants. Despite their low rate of bioaccumulation, most of the plants studied could be suitable for the application of phytoremediation of Zn in the field, although further studies are needed to assess their potential for this.
Collapse
|
18
|
Liu X, Shen S, Zhang X, Chen X, Jin R, Li X. Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass (Sorghum sudanense (Piper) Stapf.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41639-41646. [PMID: 32691318 DOI: 10.1007/s11356-020-09934-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Remediation of heavy metal and polycyclic aromatic hydrocarbon (PAH)-co-contaminated soils has drawn much more attention; phytoremediation is an often-used technique. Sudan grass (Sorghum sudanense (Piper) Stapf.) with developed root system and strong PAHs and heavy metal tolerance is a potential choice for phytoremediation. In this study, the application of tea saponin (TS) (1 g kg-1 soil) and nitrilotriacetic acid (NTA) (1 g kg-1 soil) was to improve the removal efficiency of Ni and pyrene. TS and NTA had no obvious effects on the growth and soluble proteins of Sudan grass. Ni concentration in root was higher than that in the shoot. The addition of TS and NTA increased the Ni concentration in the root by 25.98% in Ni-contaminated treatment. Pyrene was mainly accumulated in the shoot of Sudan grass. Pyrene concentration in shoot increased by 20.14% with TS-NTA in pyrene-contaminated treatment and increased by 31.97% in Ni-contaminated treatment. TS and NTA had significantly improved dissolved organic matter and soil microbial activity. Microbial activity increased by 16.75%, 18.07%, and 23.364% in pyrene-contaminated, Ni-contaminated, and pyrene and Ni-co-contaminated treatment, respectively. This study showed that phytoremediation of pyrene and Ni-co-contaminated soil by Sudan grass could be enhanced by the application of TS-NTA and the interaction between pyrene and Ni impacted the accumulation of Ni and pyrene in Sudan grass.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Siyuan Shen
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinying Zhang
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xintong Chen
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ruolin Jin
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinyi Li
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|