1
|
Duan X, Li J, Li Y, Xu Y, Chai H, Chao S. Removal, accumulation, and micro-ecosystem impacts of typical POPs in bioretention systems with different media: A runoff infiltration study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174278. [PMID: 38925397 DOI: 10.1016/j.scitotenv.2024.174278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Bioretention systems prove effective in purifying common persistent organic pollutants (POPs) found in urban rainfall runoff. However, the response process of the microecosystem in the media becomes unclear when POPs accumulate in bioretention systems. In this study, we constructed bioretention systems and conducted simulated rainfall tests to elucidate the evolution of micro-ecosystems within the media under typical POPs pollution. The results showed all POPs in runoff were effectively removed by surface adsorption in different media, with load reduction rates of >85 % for PCBs and OCPs and > 80 % for PAHs. Bioretention soil media (BSM) + water treatment residuals (WTR) media exhibited greater stability in response to POPs contamination compared to BSM and pure soil (PS) media. POPs contamination significantly impacted the microecology of the media, reducing the number of microbial species by >52.6 % and reducing diversity by >27.6 % at the peak of their accumulation. Enzyme activities were significantly inhibited, with reductions ranging from 44.42 % to 60.33 %. Meanwhile, in terms of ecological functions, the metabolism of exogenous carbon sources significantly increased (p < 0.05), while nitrogen and sulfur cycling processes were suppressed. Microbial diversity and enzyme activities showed some recovery during the dissipation of POPs but did not reach the level observed before the experiment. Dominant bacterial species and abundance changed significantly during the experiment. Proteobacteria were suppressed, but remained the dominant phylum (all relative abundances >41 %). Bacteroidota, Firmicutes, and Actinobacteria adapted well to the contamination. Pseudomonas, a typical POPs-degrading bacterium, displayed a positive correlation between its relative abundance and POPs levels (mean > 10 %). Additionally, POPs and media properties, including TN and pH, are crucial factors that collectively shape the microbial community. This study provides new insights into the impacts of POPs contamination on the microbial community of the media, which can improve media design and operation efficiency.
Collapse
Affiliation(s)
- Xiaolong Duan
- State Key Laboratory of Eco-Hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Yajiao Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yefeng Xu
- State Key Laboratory of Eco-Hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Senhao Chao
- State Key Laboratory of Eco-Hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
2
|
Yu F, Zhang B, Liu Y, Luo W, Chen H, Gao J, Ye X, Li J, Xie Q, Peng T, Wang H, Huang T, Hu Z. Biotransformation of HBCDs by the microbial communities enriched from mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134036. [PMID: 38493623 DOI: 10.1016/j.jhazmat.2024.134036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
1,2,5,6,9,10-Hexabromocyclododecanes (HBCDs) are a sort of persistent organic pollutants (POPs). This research investigated 12 microbial communities enriched from sediments of four mangroves in China to transform HBCDs. Six microbial communities gained high transformation rates (27.5-97.7%) after 12 generations of serial transfer. Bacteria were the main contributors to transform HBCDs rather than fungi. Analyses on the bacterial compositions and binning genomes showed that Alcanivorax (55.246-84.942%) harboring haloalkane dehalogenase genes dadAH and dadBH dominated the microbial communities with high transformation rates. Moreover, expressions of dadAH and dadBH in the microbial communities and Alcanivorax isolate could be induced by HBCDs. Further, it was found that purified proteins DadAH and DadBH showed high conversion rates on HBCDs in 36 h (91.9 ± 7.4 and 101.0 ± 1.8%, respectively). The engineered Escherichia coli BL21 strains harbored two genes could convert 5.7 ± 0.4 and 35.1 ± 0.1% HBCDs, respectively, lower than their cell-free crude extracts (61.2 ± 5.2 and 56.5 ± 8.7%, respectively). The diastereoisomer-specific transforming trend by both microbial communities and enzymes were γ- > α- > β-HBCD, differed from α- > β- > γ-HBCD by the Alcanivorax isolate. The identified transformation products indicated that HBCDs were dehalogenated via HBr elimination (dehydrobromination), hydrolytic and reductive debromination pathways in the enriched cultures. Two enzymes converted HBCDs via hydrolytic debromination. The present research provided theoretical bases for the biotransformation of HBCDs by microbial community and the bioremediation of HBCDs contamination in the environment.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Bing Zhang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Haonan Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Jun'na Gao
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Xueying Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, Guangdong Province, China
| | - Jin Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, Guangdong Province, China
| | - Qingyi Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China.
| |
Collapse
|
3
|
Perelomov L, Rajput VD, Gertsen M, Sizova O, Perelomova I, Kozmenko S, Minkina T, Atroshchenko Y. Ecological features of trace elements tolerant microbes isolated from sewage sludge of urban wastewater treatment plant. STRESS BIOLOGY 2024; 4:8. [PMID: 38273092 PMCID: PMC10810767 DOI: 10.1007/s44154-023-00144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
Worldwide wastewater treatment plants generate enormous amounts of sewage sludge, and their further disposal depends on the treatment technologies applied and spontaneously occurring microbiological processes. From different ages urban sewage sludge, 12 strains of bacteria with simultaneous tolerance to two or more trace elements: Co, Ni, Cu, Zn, Cd and Pb at concentration of 3-5 mmol were isolated and identified by PCR of target genes and Sanger sequencing methods. The isloated metal(loids) tolerant strains belong to the species, i.e., Serratia fonticola, Rhodococcus qingshengii, Pseudomonas fragi, Pseudomonas extremaustralis, Pseudomonas cedrina, Stenotrophomonas maltophilia, Serratia liquefaciens and Citrobacter freundii. The ecological features of the isolated strains were studied. The optimal growth temperatures for most strains was 15-30°C at pH range of 5-9, although some strains grew at 7°C (Pseudomonas fragi SS0-4, Serratia fonticola SS0-9 and Serratia fonticola SS12-11). Satisfactory growth of two strains (Serratia fonticola SS0-1and Citrobacter freundii SS60-12) was noted in an acidic medium at pH 4. Most of the strains grew in the NaCl concentration range of 1-5%. The isolated bacteria resistant to high concentrations of trace elements can be used for the effective mineralization of sewage sludge and for the decontamination of wastewater.
Collapse
Affiliation(s)
- L Perelomov
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia.
| | - V D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - M Gertsen
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
| | - O Sizova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| | - I Perelomova
- Tula State University, Lenin Avenue, 92, Tula, 300026, Russia
| | - S Kozmenko
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - T Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Y Atroshchenko
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
| |
Collapse
|
4
|
Luiz FN, Passarini MRZ, Magrini FE, Gaio J, Somer JG, Meyer RF, Paesi S. Metataxonomic characterization of the microbial community involved in the production of biogas with microcrystalline cellulose in pilot and laboratory scale. World J Microbiol Biotechnol 2023; 39:184. [PMID: 37147463 DOI: 10.1007/s11274-023-03573-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 05/07/2023]
Abstract
Biogas, produced in anaerobic digestion, is a sustainable alternative for generating energy from agro-industrial and municipal waste. Information from the microbiota active in the process expands the possibilities for technological innovation. In this study, taxonomic annotations, and functional prediction of the microbial community of the inoculum of two processes were carried out: an industrial unit (pilot-scale urban solid waste plant-IU) and a laboratory-scale reactor fed with swine and cattle waste (LS). The biochemical potential of biogas was obtained using tested inoculum with microcrystalline cellulose, obtaining 682 LN/kgVS (LSC-laboratory scale inoculum and microcrystalline cellulose), and 583 LN/kgVS (IUC-industrial unit inoculum and microcrystalline cellulose), which is equivalent to a recovery of 91.5% of total biogas to LSC. The phyla Synergistota and Firmicutes were more abundant in LS/LSC. In the IU/IUC (treatment of restaurant waste and customs seizures), there was a greater microbiological variety and a predominance of the Bacteroidota, Cloacimonadota, Firmicutes and Caldatribacteriota. The genus Methanosaeta predominated in the process, and it was possible to infer the genes (K01895, K00193 and K00625) related to acetoclastic pathway, as well as endoglucanases that are involved in the metabolism of cellulose (LSC). Terpenoids, polyketides, cofactors, and vitamin metabolism were higher in reactors that received different substrates (IU; IUC). The taxonomic and functional differences revealed the importance of determining the microbiota in the analysis of the potential of an inoculum, combined with the use of microcrystalline cellulose, which can provide optimization information in the production of clean energy.
Collapse
Affiliation(s)
- Franciele Natividade Luiz
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | | | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil
| | - Juliano Gaio
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil
| | - Juliana Gaio Somer
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | - Rafaela Faust Meyer
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil.
| |
Collapse
|
5
|
Sun H, Chen Q, Qu C, Tian Y, Song J, Liu Z, Guo J. Occurrence of OCPs & PCBs and their effects on multitrophic biological communities in riparian groundwater of the Beiluo River, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114713. [PMID: 36870171 DOI: 10.1016/j.ecoenv.2023.114713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Persistent Organic Pollutants (POPs) may exert adverse effects on human and ecosystem health. However, as an ecologically fragile zone with strong interaction between river and groundwater, the POPs pollution in the riparian zone has received little attention. The goal of this research is to examine the concentrations, spatial distribution, potential ecological risks, and biological effects of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in the riparian groundwater of the Beiluo River, China. The results showed that the pollution level and ecological risk of OCPs in riparian groundwater of the Beiluo River were higher than PCBs. The presence of PCBs (Penta-CBs, Hexa-CBs) and CHLs, respectively, may have reduced the richness of bacteria (Firmicutes) and fungi (Ascomycota). Furthermore, the richness and Shannon's diversity index of algae (Chrysophyceae and Bacillariophyta) decreased, which could be linked to the presence of OCPs (DDTs, CHLs, DRINs), and PCBs (Penta-CBs, Hepta-CBs), while for metazoans (Arthropoda) the tendency was reversed, presumably as a result of SULPHs pollution. In the network analysis, core species belonging to bacteria (Proteobacteria), fungi (Ascomycota), and algae (Bacillariophyta) played essential roles in maintaining community function. Burkholderiaceae and Bradyrhizobium can be considered biological indicators of PCBs pollution in the Beiluo River. Note that the core species of interaction network, playing a fundamental role in community interactions, are strongly affected by POPs pollutants. This work provides insights into the functions of multitrophic biological communities in maintaining the stability of riparian ecosystems through the response of core species to riparian groundwater POPs contamination.
Collapse
Affiliation(s)
- Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Qiqi Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ziteng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
6
|
Krohn C, Khudur L, Dias DA, van den Akker B, Rees CA, Crosbie ND, Surapaneni A, O'Carroll DM, Stuetz RM, Batstone DJ, Ball AS. The role of microbial ecology in improving the performance of anaerobic digestion of sewage sludge. Front Microbiol 2022; 13:1079136. [PMID: 36590430 PMCID: PMC9801413 DOI: 10.3389/fmicb.2022.1079136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The use of next-generation diagnostic tools to optimise the anaerobic digestion of municipal sewage sludge has the potential to increase renewable natural gas recovery, improve the reuse of biosolid fertilisers and help operators expand circular economies globally. This review aims to provide perspectives on the role of microbial ecology in improving digester performance in wastewater treatment plants, highlighting that a systems biology approach is fundamental for monitoring mesophilic anaerobic sewage sludge in continuously stirred reactor tanks. We further highlight the potential applications arising from investigations into sludge ecology. The principal limitation for improvements in methane recoveries or in process stability of anaerobic digestion, especially after pre-treatment or during co-digestion, are ecological knowledge gaps related to the front-end metabolism (hydrolysis and fermentation). Operational problems such as stable biological foaming are a key problem, for which ecological markers are a suitable approach. However, no biomarkers exist yet to assist in monitoring and management of clade-specific foaming potentials along with other risks, such as pollutants and pathogens. Fundamental ecological principles apply to anaerobic digestion, which presents opportunities to predict and manipulate reactor functions. The path ahead for mapping ecological markers on process endpoints and risk factors of anaerobic digestion will involve numerical ecology, an expanding field that employs metrics derived from alpha, beta, phylogenetic, taxonomic, and functional diversity, as well as from phenotypes or life strategies derived from genetic potentials. In contrast to addressing operational issues (as noted above), which are effectively addressed by whole population or individual biomarkers, broad improvement and optimisation of function will require enhancement of hydrolysis and acidogenic processes. This will require a discovery-based approach, which will involve integrative research involving the proteome and metabolome. This will utilise, but overcome current limitations of DNA-centric approaches, and likely have broad application outside the specific field of anaerobic digestion.
Collapse
Affiliation(s)
- Christian Krohn
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,*Correspondence: Christian Krohn,
| | - Leadin Khudur
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, STEM College, RMIT University, Bundoora, VIC, Australia
| | | | | | | | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Denis M. O'Carroll
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Richard M. Stuetz
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Damien J. Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,Australian Centre for Water and Environmental Biotechnology, Gehrmann Building, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew S. Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
7
|
Jiang L, Zhang J, Fang M, Qin Y, Huang Y, Tao R. Analysis of subgingival micro-organisms based on multi-omics and Treg/Th17 balance in type 2 diabetes with/without periodontitis. Front Microbiol 2022; 13:939608. [PMID: 36519166 PMCID: PMC9743466 DOI: 10.3389/fmicb.2022.939608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/10/2022] [Indexed: 01/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and periodontitis are common and interrelated diseases, resulting in altered host response microbiota. The subgingival micro-organisms play a key role in periodontitis pathogenesis. To assess the shift of subgingival microbiome and metabolome in T2DM, we performed an analysis of the subgingival microbiome in patients with T2DM (n = 20) compared with non-diabetes (ND) subjects (n = 21). Furthermore, patients were subdivided into 10 T2DM with periodontitis (DP), 10 T2DM without periodontitis (DNP), 10 periodontitis (P), and 11 healthy control (H) groups. 16SrRNA gene sequencing combined with ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) based metabolomics was performed in all participants. T lymphocyte immunity was analyzed by flow cytometry. Furthermore, the network relationship among subgingival micro-organisms, metabolites, blood glucose level, and T lymphocyte immunity were analyzed. The results showed that the difference of the subgingival microbiome from healthy to periodontitis status was less prominent in T2DM compared with ND, though the clinical signs of disease were similar. The bacteria Eubacterium nodatum group, Filifactor, Fretibacterium, Peptostreptococcus, and Desulfovibrio, amongst others, may be important in the pathopoiesia of periodontitis in the T2DM state. In addition, some dominant bacteria showed network relationships. The Treg/Th17 ratio was lower in the DP and DNP groups than in the P and H groups-though that of P was lower than for H. The percentage of CD4+/CD8+ PD1 and CD8+ PDL1 was higher in the DP and DNP groups than in the H group; the percentage of CD8+ PDL1 was higher in the DP than P groups. Subgingival micro-organisms in periodontitis had a significant metabolic shift in terms of their signature metabolites. Butyrate metabolism and phenylalanine metabolism may play a role in the pathogenesis of periodontitis with/without T2DM. Specifically, biphenyl degradation, tryptophan metabolism, and the two-component system may play important roles in periodontitis with T2DM. Lastly, the network relationship among subgingival micro-organisms, metabolites, blood glucose level, and T lymphocyte immunity were unbalanced. This study identified the changes in the subgingival microbiome associated with periodontitis in T2DM, as well as the associated network between bacterial flora, metabolism dysbiosis, and immune regulation.
Collapse
Affiliation(s)
- Lanlan Jiang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Nanning, China
| | - Jiaming Zhang
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, China
| | - Meifei Fang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yuxiao Huang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Renchuan Tao
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Nanning, China
| |
Collapse
|
8
|
Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E. Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912853. [PMID: 36232152 PMCID: PMC9564893 DOI: 10.3390/ijerph191912853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 05/07/2023]
Abstract
Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.
Collapse
|
9
|
Yu F, Luo W, Xie W, Li Y, Meng S, Kan J, Ye X, Peng T, Wang H, Huang T, Hu Z. Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129159. [PMID: 35643009 DOI: 10.1016/j.jhazmat.2022.129159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The microbial community in seriously contaminated environment were not well known. This research investigated the community reassemblies in microcosms made of two distinct mangrove sediments amended with high levels of hexabromocyclododecanes (HBCDs). After eight months of contamination, the transformation of HBCDs yielded various lower brominated products and resulted in acidification (pH ~2). Therefore, the degraders and dehalogenase homologous genes involved in transformation of HBCDs only presented in low abundance to avoid further deterioration of the habitats. Moreover, in these deteriorated habitats, 1344 bacterial, 969 archaeal, 599 eukaryotic (excluded fungi), 187 fungal OTUs, and 10 viral genera, were reduced compared with controls. Specifically, in two groups of microcosms, Zetaproteobacteria, Deinococcus-Thermus, Spirochaetes, Bacteroidetes, Euryarchaeota, and Ascomycota, were positively responding taxa to HBCDs. Caloneis (Bacillariophyta) and Ascomycota turned to the dominant eukaryotic and fungal taxa. Most of predominant taxa were related to the contamination of brominated flame retardants (BFRs). Microbial communities were reassembled in divergent and sediment-dependent manner. The long-term contamination of HBCDs leaded to the change of relations between many taxa, included some of the environmental viruses and their known hosts. This research highlight the importance of monitoring the ecological effects around plants producing or processing halogenated compounds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Jie Kan
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, PR China.
| |
Collapse
|
10
|
Biogas Production Enhancement through Chicken Manure Co-Digestion with Pig Fat. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chicken manure and pig fat are found abundantly around the globe, and there is a challenge to get rid of them. This waste has considerable energy potential to be recovered into fuel, but extracting this energy from some by-products, especially fat, isn’t an easy task. When anaerobic digestion technology stepped to the level of anaerobic co-digestion, the utilisation of hardly degradable waste became feasible. Our research was conducted on anaerobic co-digestion of chicken manure as the primary substrate with pig fat as a fat reach supplement in a semi-continuous mode at different organic load rates. The influence of fat waste on the process of biogas production from chicken manure and the composition of the obtained products was determined using an organic load rate of 3.0–4.5 kg VS·(m3·day)−1. A sturdy and continuously growing biogas production was observed at all organic load rates, implying the synergetic effect on chicken manure and pig fat co-digestion. The highest specific methane yield, 441.3 ± 7.6 L·kg VS−1, was observed at an organic load rate of 4.5 kg VS·(m3·day)−1. The research results showed that co-digestion of chicken manure with pig fat is an appropriate measure for fat utilisation and contributes to the increase in biogas yield, methane concentration, and overall methane yield at investigated organic load rates.
Collapse
|
11
|
Qi C, Wang R, Jia S, Chen J, Li Y, Zhang J, Li G, Luo W. Biochar amendment to advance contaminant removal in anaerobic digestion of organic solid wastes: A review. BIORESOURCE TECHNOLOGY 2021; 341:125827. [PMID: 34455247 DOI: 10.1016/j.biortech.2021.125827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion (AD) has been widely applied to convert organic solid wastes into biogas, a renewable energy, and digestate, a bio-fertilizer, to sustain waste management. Nevertheless, several vexing contaminants in OSWs restrict digestate application in agriculture. Biochar has been evidenced to effectively improve AD by promoting organic biodegradation and alleviating the accumulation of inhibitory substances (e.g. ammonia and volatile fatty acids). Furthermore, biochar could advance contaminant removal in AD given its highly porous, conductive and alkaline features. Thus, this review aims to highlight the role of biochar amendment to advance contaminant removal in AD of OSWs. Key contaminants, such as antibiotics, heavy metals, microplastics, polycyclic aromatic hydrocarbons, furfural and 5-hydroxy methyl furfural (5-HMF) that ubiquitously present in OSWs were demonstrated. The underlying mechanisms of biochar to amend the removal of these contaminants by AD were discussed. Furthermore, future perspectives to the development of biochar-assisted AD for OSWs treatment were provided.
Collapse
Affiliation(s)
- Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sumeng Jia
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yangyang Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaxing Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Liu S, Wang P, Wang C, Chen J, Wang X, Hu B, Yuan Q. Ecological insights into the disturbances in bacterioplankton communities due to emerging organic pollutants from different anthropogenic activities along an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148973. [PMID: 34274679 DOI: 10.1016/j.scitotenv.2021.148973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Emerging organic pollutants (EOPs) in urban rivers have raised concerns regarding their eco-toxicological effects. However, the bacterioplankton community disturbances caused by EOPs in urban rivers and the associated ecological mechanisms remain unclear. This study provided profiles of the spatial distribution of a bacterioplankton community disturbed by human activity along an urban river. The results showed that EOP concentration and composition were differently distributed in residential and industrial areas, which significantly influenced bacterioplankton community structure. Based on redundancy analysis, parabens (methylparaben and propylparaben) were the major factors driving bacterioplankton community changes. Parabens inhibited gram-positive bacteria and promoted oxidative stress-tolerant bacteria in the river ecosystem. Parabens also disturbed ecological processes of bacterioplankton community assembly, shifting from a homogeneous selection (consistent selection pressure under similar environmental condition) to stochastic processes (random changes due to birth, death, immigration, and emigration) with changing in paraben concentrations. Heterogeneous selection was predicted to dominate microbial community assembly with paraben concentration changes exceeding 61.6 ng/L, which could deteriorate the river ecosystem. Furthermore, specific bacterial genera were identified as potential bioindicators to assess the condition of EOP contaminants in the river. Overall, this study highlights significant disturbances in bacterioplankton communities by EOPs at environmental concentrations, and our results could facilitate generation of appropriate management strategies aimed at EOPs in urban rivers.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
13
|
Gurmessa B, Milanovic V, Foppa Pedretti E, Corti G, Ashworth AJ, Aquilanti L, Ferrocino I, Rita Corvaglia M, Cocco S. Post-digestate composting shifts microbial composition and degrades antimicrobial resistance genes. BIORESOURCE TECHNOLOGY 2021; 340:125662. [PMID: 34333345 DOI: 10.1016/j.biortech.2021.125662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Post-digestate treatments may reduce the risk linked to Antibiotic Resistant Genes (ARGs) release with digestate direct land application. Thus, this study aimed to evaluate post-digestate composting and co-composting with biogas production feedstock (maize silage, food processing waste, and poultry litter) effect on abundance of selected ARGs: erm(B), tet(K), tet(M), tet(O), and tet(S) genes. More than 80% of all ARGs were removed after 90 days of composting but removals from co-composting were lower. Bacteroidetes, Firmicutes, and Proteobacteria dominated fresh digestate, and a network analysis indicated that these were potential hosts of ARGs. The emergence of Actinobacteria (dominant), Planctomycetes, and Verrucomicrobia phyla during composting shifted the microbial composition. Moreover, canonical correspondence analysis showed trace elements explaining 90% variations in ARGs abundance. The study illustrates significance of post-digestate composting in mitigating ARGs release, and effectiveness could be linked to shift in microbial composition and trace elements release.
Collapse
Affiliation(s)
- Biyensa Gurmessa
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, Ancona 60131, Italy.
| | - Vesna Milanovic
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, Ancona 60131, Italy
| | - Ester Foppa Pedretti
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, Ancona 60131, Italy
| | - Giuseppe Corti
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, Ancona 60131, Italy
| | - Amanda J Ashworth
- Agricultural Research Service, U.S. DEPARTMENT OF AGRICULTURE (USDA-ARS), Poultry Production and Product Safety Research Unit, 1260 W. Maple St., Fayetteville, AR 72701, USA
| | - Lucia Aquilanti
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, Ancona 60131, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Maria Rita Corvaglia
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Stefania Cocco
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, Ancona 60131, Italy
| |
Collapse
|
14
|
Zheng K, Li H, Wang S, Wang Y, Li A, Feng X, Li J. Enhanced proteins and amino acids production based on ammonia nitrogen assimilation and sludge increment by the integration of bioadsorption with anaerobic-anoxic-oxic (AAO) process. CHEMOSPHERE 2021; 280:130721. [PMID: 33962293 DOI: 10.1016/j.chemosphere.2021.130721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Poor effect of contaminants removal efficiency and low organic matter content of activated sludge are common in wastewater treatment plants (WWTPs) in China due to the low-strength wastewater. An anaerobic-anoxic-oxic (AAO) and an adsorption/AAO (A/AAO) combined system were established simultaneously to conduct a comparative study for realizing the conversion of carbon source in influent and the enrichment and recovery of proteins and amino acids through the assimilation of ammonia nitrogen. The experimental results showed that 63.5% of the organic matter in influent was adsorbed and flocculated in adsorption process, and the removal rates of chemical oxygen demand, total nitrogen and total phosphorus in A/AAO process were 88.7%, 77.1%, and 93.0% respectively, which were remarkably better than those in AAO process owing to the addition of improved carbon source. Ammonia assimilation rate of A/AAO process was 26.7% higher than that of AAO process, which implied that the ammonia used to synthesize sludge protein was prominently increased. Furthermore, intracellular proteins and amino acids in A/AAO process were 20% higher than those of AAO process, and the quality was equivalent with fish meal or soybean meal as feed. In addition, the microbial community analysis based on 16S rDNA was conducted. Dechloromonas, Zoogloea, Nitrospira, and Flavobacterium were the main genera, and played important roles in nutrient removal and ammonia nitrogen assimilation. The integration of adsorption process was significant to low-strength wastewater treatment and the improvement of excess sludge quality, which is a prospective inspiration for the resource recovery-based wastewater treatment process.
Collapse
Affiliation(s)
- Kaikai Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huaibo Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| | - Yan Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Aimin Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xuan Feng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
15
|
Yu F, Li Y, Wang H, Peng T, Wu YR, Hu Z. Microbial debromination of hexabromocyclododecanes. Appl Microbiol Biotechnol 2021; 105:4535-4550. [PMID: 34076715 DOI: 10.1007/s00253-021-11095-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 11/29/2022]
Abstract
Hexabromocyclododecanes (HBCDs), a new sort of brominated flame retardants (BFRs), are globally prevalent and recalcitrant toxic environmental pollutants. HBCDs have been found in many environmental media and even in the human body, leading to serious health concerns. HBCDs are biodegradable in the environment. By now, dozens of bacteria have been discovered with the ability to transform HBCDs. Microbial debromination of HBCDs is via HBr-elimination, HBr-dihaloelimination, and hydrolytic debromination. Biotic transformation of HBCDs yields many hydroxylated and lower brominated compounds which lack assessment of ecological toxicity. Bioremediation of HBCD pollution has only been applied in the laboratory. Here, we review the current knowledge about microbial debromination of HBCDs, aiming to promote the bioremediation applied in HBCD contaminated sites. KEY POINTS: • Microbial debromination of HBCDs is via hydrolytic debromination, HBr-elimination, and HBr-dihaloelimination. • Newly occurred halogenated contaminants such as HBCDs hitch the degradation pathway tamed by previously discharged anthropogenic organohalides. • Strategy that combines bioaugmentation with phytoremediation for bioremediation of HBCD pollution is promising.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Yuyang Li
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Hui Wang
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Tao Peng
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Yi-Rui Wu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Zhong Hu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China.
| |
Collapse
|
16
|
Xu G, Zhao X, Zhao S, Chen C, Rogers MJ, Ramaswamy R, He J. Insights into the Occurrence, Fate, and Impacts of Halogenated Flame Retardants in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4205-4226. [PMID: 33705105 DOI: 10.1021/acs.est.0c05681] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) have been extensively used in various consumer products and many are classified as persistent organic pollutants due to their resistance to degradation, bioaccumulation potential and toxicity. HFRs have been widely detected in the municipal wastewater and wastewater treatment solids in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental HFRs contamination. This review seeks to provide a current overview on the occurrence, fate, and impacts of HFRs in WWTPs around the globe. We first summarize studies recording the occurrence of representative HFRs in wastewater and wastewater treatment solids, revealing temporal and geographical trends in HFRs distribution. Then, the efficiency and mechanism of HFRs removal by biosorption, which is known to be the primary process for HFRs removal from wastewater, during biological wastewater treatment processes, are discussed. Transformation of HFRs via abiotic and biotic processes in laboratory tests and full-scale WWTPs is reviewed with particular emphasis on the transformation pathways and functional microorganisms responsible for HFRs biotransformation. Finally, the potential impacts of HFRs on reactor performance (i.e., nitrogen removal and methanogenesis) and microbiome in bioreactors are discussed. This review aims to advance our understanding of the fate and impacts of HFRs in WWTPs and shed light on important questions warranting further investigation.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
17
|
Nabeeh NA, Abdel-Basset M, Soliman G. A model for evaluating green credit rating and its impact on sustainability performance. JOURNAL OF CLEANER PRODUCTION 2021; 280:124299. [PMID: 33020685 PMCID: PMC7521472 DOI: 10.1016/j.jclepro.2020.124299] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 05/21/2023]
Abstract
The development of economic activities and social progress index leads to the governmental considerations for the environmental challenge's issues. The Green Credit Policy (GCP) in China for manufacturing, as a part of a sustainable finance package, initiatives restrictions with suppliers to reduce harmful pollution for the environment. The study mainly validates the impact of GCP on manufacturing for diminishing the emerged pollution to the environment. The study develops Neutrosophic Multiple-Criteria Decision-Making Framework (N-MCDMF) according to neutrosophic theory and various MCDM methods of grey relational analysis (GRA), analytic network process (ANP), the Decision-Making Trial and Evaluation Laboratory technique (DEMATEL), and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to support the decision-makers with highly systematic procedures in the uncertain and inconsistent environmental conditions. The N-MCDMF evaluates the conditions of GCP and recommends the optimal Supply Chain Management (SCM) in manufacturing alternatives. A case study is presented for the validation of the issues of applicability and flexibility for the proposed N-MCDMF. The results obtained from the implementation of the N-MCDMF indicates the applicability and flexibility of the proposed approach. In addition, results show that SCM in manufacturing can provide more cooperation for the environment to reduce harmful pollution and to attain sustainability for achieving motivations under the restrictions of GCP.
Collapse
Affiliation(s)
- Nada A Nabeeh
- Information Systems Department, Faculty of Computers and Information Sciences, Mansoura University, Dakahlia, 35516, Egypt
| | - Mohamed Abdel-Basset
- Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Sharqiyah, Egypt
| | - Gawaher Soliman
- Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Sharqiyah, Egypt
| |
Collapse
|
18
|
Lin X, Su C, Deng X, Wu S, Tang L, Li X, Liu J, Huang X. Influence of polyether sulfone microplastics and bisphenol A on anaerobic granular sludge: Performance evaluation and microbial community characterization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111318. [PMID: 32979806 DOI: 10.1016/j.ecoenv.2020.111318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The retention of polyether sulfone (PES) and bisphenol A (BPA) in wastewater has received extensive attention. The effects of PES and BPA on the removal of organic matter by anaerobic granular sludge were investigated. We also analyzed the changes in the electron transport system and the effects on the composition of extracellular polymeric substances (EPS), as well as alternations of the microbial community in the anaerobic granular sludge. In the experimental groups which received BPA, the removal of the chemical oxygen demand (COD) were significantly suppressed, which an average removal efficiency of less than 65%, 30% lower than that of the control group. In the loosely-bound EPS (LB-EPS) excitation-emission matrix (EEM) spectra, the absorption peak of tryptophan disappeared when the BPA pollutants was added, which it was present in the control group without added pollutants. The addition of PES and BPA also affected protease, acetate kinase, and coenzyme F420 activities in the anaerobic granular sludge. Especially, the coenzyme F420 reduced from 0.0045 to 0.0017 μmol/L in the presence of PES and BPA. The relative abundance of Spirochaetes decreased in the presence of PES and BPA, while the relative abundance of Bacteroidetes increased from 12.98% to 22.87%. At the genus level, in the presence of PES and BPA, the relative abundance of Acinetobacter increased from 2.20% to 9.64% and Hydrogenophaga decreased sharply from 15.58% to 0.12%.
Collapse
Affiliation(s)
- Xumeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Shumin Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Jie Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
19
|
Kracmarova M, Karpiskova J, Uhlik O, Strejcek M, Szakova J, Balik J, Demnerova K, Stiborova H. Microbial Communities in Soils and Endosphere of Solanum tuberosum L. and their Response to Long-Term Fertilization. Microorganisms 2020; 8:E1377. [PMID: 32911685 PMCID: PMC7566005 DOI: 10.3390/microorganisms8091377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022] Open
Abstract
An understanding of how fertilization influences endophytes is crucial for sustainable agriculture, since the manipulation of the plant microbiome could affect plant fitness and productivity. This study was focused on the response of microbial communities in the soil and tubers to the regular application of manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and chemical fertilizer (NPK; 330-90-300 kg N-P-K/ha). Unfertilized soil was used as a control (CF), and the experiment was set up at two distinct sites. All fertilization treatments significantly altered the prokaryotic and fungal communities in soil, whereas the influence of fertilization on the community of endophytes differed for each site. At the site with cambisol, prokaryotic and fungal endophytes were significantly shifted by MF and SF3 treatments. At the site with chernozem, neither the prokaryotic nor fungal endophytic communities were significantly associated with fertilization treatments. Fertilization significantly increased the relative abundance of the plant-beneficial bacteria Stenotrophomonas, Sphingomonas and the arbuscular mycorrhizal fungi. In tubers, the relative abundance of Fusarium was lower in MF-treated soil compared to CF. Although fertilization treatments clearly influenced the soil and endophytic community structure, we did not find any indication of human pathogens being transmitted into tubers via organic fertilizers.
Collapse
Affiliation(s)
- Martina Kracmarova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Jana Karpiskova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague – Suchdol, 165 21, Czech Republic; (J.S.); (J.B.)
| | - Jiri Balik
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague – Suchdol, 165 21, Czech Republic; (J.S.); (J.B.)
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| |
Collapse
|