1
|
Yan X, Shan Y, Ma Y, Wang Y, Wu C, Ren X, Song X, Wang D, Hu H, Ma X, Ma Y. Thiacloprid-silica nano-delivery system enhances toxicity against Aphis gossypii and improves non-target biosafety. CHEMOSPHERE 2024; 367:143596. [PMID: 39442578 DOI: 10.1016/j.chemosphere.2024.143596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Nanotechnology aligns with the requirements of sustainable development of agriculture, and nano-pesticides offer a promising approach to controlling agricultural pests and increasing productivity. Non-target predators also play a crucial role in pest controls and enhancing the efficacy of pesticide on target organisms. Reducing the toxicity of pesticides to non-target organisms is key to of coordinating chemical control and biological control methods. Therefore, it is essential to assess the toxicity of nano-pesticides on non-target predators. In this study, a carbon dots-doped mesoporous silica nano-delivery system (Thi@CD-MSN) was successfully developed using CD-MSN as carrier material and thiacloprid (Thi) as a model pesticide. The results demonstrated that the synthesized Thi@CD-MSN exhibited a relatively high loading efficiency (33.58%). Laboratory bioassay experiments revealed that Thi@CD-MSN demonstrated effective insecticidal activity (LC50 = 21.67 mg/L) in controlling Aphis gossypii Glover. Besides, the acute toxicity of Thi@CD-MSN on Chrysoperla pallens larvae was significantly lower than that of Thi, as was its toxicity to 4T1 cells. These findings suggest that CD-MSN can serve as an ecological safety carrier for pesticide delivery, improving the effective utilization of Thi while reducing the risks to non-target predators. These results are essential for comprehending the effects of nano-pesticides on non-target predators, providing informative data for implementing biological and chemical control strategies. It strengthens the safety evaluation of nano-pesticides.
Collapse
Affiliation(s)
- Xiaohui Yan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; College of Life Science and Technology, Tarim University, Alar, 843300, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Yajie Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Yanqin Wang
- College of Life Science and Technology, Tarim University, Alar, 843300, China
| | - Changcai Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Dan Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Yan Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
2
|
Lori G, Coppola L, Casella M, Tinari A, Masciola I, Tait S. Chlorpyrifos induces autophagy by suppressing the mTOR pathway in immortalized GnRH neurons. CHEMOSPHERE 2024; 362:142723. [PMID: 38945228 DOI: 10.1016/j.chemosphere.2024.142723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Chlorpyrifos (CPF) is a widely used pesticide inducing adverse neurodevelopmental and reproductive effects. However, knowledge of the underlying mechanisms is limited, particularly in the hypothalamus. We investigated the mode of action of CPF at human relevant concentrations (1 nM-100 nM) in immortalized mouse hypothalamic GnRH neurons (GT1-7), an elective model for studying disruption of the hypothalamus-pituitary-gonads (HPG) axis. We firstly examined cell vitality, proliferation, and apoptosis/necrosis. At not-cytotoxic concentrations, we evaluated neuron functionality, gene expression, Transmission Electron Microscopy (TEM) and proteomics profiles, validating results by immunofluorescence and western blotting (WB). CPF decreased cell vitality with a dose-response but did not affect cell proliferation. At 100 nM, CPF inhibited gene expression and secretion of GnRH; in addition, CPF reduced the immunoreactivity of the neuronal marker Map2 in a dose-dependent manner. The gene expression of Estrogen Receptor α and β (Erα, Erβ), Androgen Receptor (Ar), aromatase and oxytocin receptor was induced by CPF with different trends. Functional analysis of differentially expressed proteins identified Autophagy, mTOR signaling and Neutrophil extracellular traps (NETs) formation as significant pathways affected at all concentrations. This finding was phenotypically supported by the TEM analysis, showing marked autophagy and damage of mitochondria, as well as by protein analysis demonstrating a dose-dependent decrease of mTOR and its direct target pUlk1 (Ser 757). The bioinformatics network analysis identified a core module of interacting proteins, including Erα, Ar, mTOR and Sirt1, whose down-regulation was confirmed by WB analysis. Overall, our results demonstrate that CPF is an inhibitor of the mTOR pathway leading to autophagy in GnRH neurons; a possible involvement of the Erα/Ar signaling is also suggested. The evidence for adverse effects of CPF in the hypothalamus in the nanomolar range, as occurs in human exposure, increases concern on potential adverse outcomes induced by this pesticide on the HPG axis.
Collapse
Affiliation(s)
- Gabriele Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Antonella Tinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Irene Masciola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
3
|
Ommati MM, Nozhat Z, Sabouri S, Kong X, Retana-Márquez S, Eftekhari A, Ma Y, Evazzadeh F, Juárez-Rojas L, Heidari R, Wang HW. Pesticide-Induced Alterations in Locomotor Activity, Anxiety, and Depression-like Behavior Are Mediated through Oxidative Stress-Related Autophagy: A Persistent Developmental Study in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11205-11220. [PMID: 38708789 DOI: 10.1021/acs.jafc.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Samira Sabouri
- College of Animal Science and Veterinary, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Lizbeth Juárez-Rojas
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
4
|
Yang X, Guo C, Yu L, Lv Z, Li S, Zhang Z. Dendrobium officinale polysaccharide alleviates thiacloprid-induced kidney injury in quails via activating the Nrf2/HO-1 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2655-2666. [PMID: 38224485 DOI: 10.1002/tox.24137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Thiacloprid (THI) is a neonicotinoid insecticide, and its wide-ranging use has contributed to severe environmental and health problems. Dendrobium officinale polysaccharide (DOP) possesses multiple biological activities such as antioxidant and antiapoptosis effect. Although present research has shown that THI causes kidney injury, the exact molecular mechanism and treatment of THI-induced kidney injury remain unclear. The study aimed to investigate if DOP could alleviate THI-induced kidney injury and identify the potential molecular mechanism in quails. In this study, Japanese quails received DOP (200 mg/kg) daily with or without THI (4 mg/kg) exposure for 42 days. Our results showed that DOP improved hematological changes, biochemical indexes, and nephric histopathological changes induced by THI. Meanwhile, THI exposure caused oxidative stress, apoptosis, and autophagy. Furthermore, THI and DOP cotreatment significantly activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, restored antioxidant enzyme activity, and reduced apoptosis and autophagy in quail kidneys. In summary, our study demonstrated that DOP mitigated THI-mediated kidney injury was associated with oxidative stress, apoptosis, and autophagy via activation of the Nrf2/HO-1 signaling pathway in quails.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Ngo KJ, Paul KC, Wong D, Kusters CDJ, Bronstein JM, Ritz B, Fogel BL. Lysosomal genes contribute to Parkinson's disease near agriculture with high intensity pesticide use. NPJ Parkinsons Dis 2024; 10:87. [PMID: 38664407 PMCID: PMC11045791 DOI: 10.1038/s41531-024-00703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, develops sporadically, likely through a combination of polygenic and environmental factors. Previous studies associate pesticide exposure and genes involved in lysosomal function with PD risk. We evaluated the frequency of variants in lysosomal function genes among patients from the Parkinson's, Environment, and Genes (PEG) study with ambient pesticide exposure from agricultural sources. 757 PD patients, primarily of White European/non-Hispanic ancestry (75%), were screened for variants in 85 genes using a custom amplicon panel. Variant enrichment was calculated against the Genome Aggregation Database (gnomAD). Enriched exonic variants were prioritized by exposure to a cluster of pesticides used on cotton and severity of disease progression in a subset of 386 patients subdivided by race/ethnicity. Gene enrichment analysis identified 36 variants in 26 genes in PEG PD patients. Twelve of the identified genes (12/26, 46%) had multiple enriched variants and/or a single enriched variant present in multiple individuals, representing 61% (22/36) of the observed variation in the cohort. The majority of enriched variants (26/36, 72%) were found in genes contributing to lysosomal function, particularly autophagy, and were bioinformatically deemed functionally deleterious (31/36, 86%). We conclude that, in this study, variants in genes associated with lysosomal function, notably autophagy, were enriched in PD patients exposed to agricultural pesticides suggesting that altered lysosomal function may generate an underlying susceptibility for developing PD with pesticide exposure. Further study of gene-environment interactions targeting lysosomal function may improve understanding of PD risk in individuals exposed to pesticides.
Collapse
Affiliation(s)
- Kathie J Ngo
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Darice Wong
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Cynthia D J Kusters
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Beate Ritz
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Brown EG, Goldman SM, Coffey CS, Siderowf A, Simuni T, Meng C, Brumm MC, Caspell-Garcia C, Marek K, Tanner CM. Occupational Pesticide Exposure in Parkinson's Disease Related to GBA and LRRK2 Variants. JOURNAL OF PARKINSON'S DISEASE 2024; 14:737-746. [PMID: 38820021 PMCID: PMC11191498 DOI: 10.3233/jpd-240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Background The penetrance of common genetic risk variants for Parkinson's disease (PD) is low. Pesticide exposure increases PD risk, but how exposure affects penetrance is not well understood. Objective To determine the relationship between occupational pesticide exposure and PD in people with LRRK2 and GBA risk variants. Methods Participants of the Parkinson's Progression Markers Initiative (PPMI) with a LRRK2-G2019 S or GBA risk variant provided information about occupational pesticide exposure. We compared exposure in carriers with and without PD. Among carriers with PD, we used Cox proportional hazard models to compare time-to impairment in balance, cognition, and activities of daily living (ADLs) between participants with and without prior occupational pesticide exposure. Results 378 participants with a risk variant provided exposure information; 176 with LRRK2-G2019 S (54 with and 122 without PD) and 202 with GBA variants (47 with and 155 without PD). Twenty-six participants reported pesticide exposure. People with a GBA variant and occupational pesticide exposure had much higher odds of PD (aOR: 5.4, 95% CI 1.7-18.5, p < 0.01). People with a LRRK2 variant and a history of occupational pesticide exposure had non-significantly elevated odds of PD (aOR 1.3, 95% CI 0.4-4.6, p = 0.7). Among those with PD, pesticide exposure was associated with a higher risk of balance problems and cognitive impairment in LRRK2-PD and functional impairment in GBA-PD, although associations were not statistically significant. Conclusions Occupational pesticide exposure may increase penetrance of GBA-PD and may be associated with faster symptom progression. Further studies in larger cohorts are necessary.
Collapse
Affiliation(s)
- Ethan G. Brown
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel M. Goldman
- Division of Occupational, Environmental, and Climate Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University, Evanston, IL, USA
| | - Cheryl Meng
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Michael C. Brumm
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | | | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Caroline M. Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - The Parkinson’s Progression Markers Initiative
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Division of Occupational, Environmental, and Climate Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
7
|
Nejati R, Nematollahi A, Doraghi HK, Sayadi M, Alipanah H. Probiotic bacteria alleviate chlorpyrifos-induced rat testicular and renal toxicity: A possible mechanism based on antioxidant and anti-inflammatory activity. Basic Clin Pharmacol Toxicol 2023; 133:743-756. [PMID: 37732939 DOI: 10.1111/bcpt.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Chlorpyrifos (CPF) has caused many potential toxicities in nontarget organisms. Fewer studies have been conducted on the effects of lactic acid bacteria (LAB) in mitigating tissue damage induced by CPF in vivo. Therefore, we investigated CPF renal and testicular toxicity and the alleviating effect of probiotic lactobacilli, based on antioxidant and anti-inflammatory activity, on induced toxicity in an animal model. Biochemical assays showed that CPF induced oxidative stress along with a change in superoxide dismutase (SOD) and catalase (CAT) activity in a tissue-dependent manner. After treatment with CPF, testicular and renal levels of TNF-α were significantly reduced and enhanced, respectively, compared to the control group. The probiotic treatment restored renal and testicular TNF-α levels and modulated and blocked the increasing effect of CPF on renal IL-1β levels. Testicular IL-1β levels in the probiotic-treated and CPF groups demonstrated similar values. Exposure to CPF significantly induced renal histopathological damage that, of course, was completely inhibited by treatment with Lactobacillus casei and the LAB mixture. In summary, CPF showed significant toxicological effects on oxidative stress and the inflammation rate in CPF-exposed rats. Therefore, supplementation with probiotic bacteria may alleviate CPF renal toxicity and mitigate its oxidative stress and inflammation effects.
Collapse
Affiliation(s)
- Roghayeh Nejati
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Mehran Sayadi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
8
|
Rahman MA, Rahman MS, Parvez MAK, Kim B. The Emerging Role of Autophagy as a Target of Environmental Pollutants: An Update on Mechanisms. TOXICS 2023; 11:135. [PMID: 36851010 PMCID: PMC9965655 DOI: 10.3390/toxics11020135] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/09/2023]
Abstract
Autophagy is an evolutionarily conserved cellular system crucial for cellular homeostasis that protects cells from a broad range of internal and extracellular stresses. Autophagy decreases metabolic load and toxicity by removing damaged cellular components. Environmental contaminants, particularly industrial substances, can influence autophagic flux by enhancing it as a protective response, preventing it, or converting its protective function into a pro-cell death mechanism. Environmental toxic materials are also notorious for their tendency to bioaccumulate and induce pathophysiological vulnerability. Many environmental pollutants have been found to influence stress which increases autophagy. Increasing autophagy was recently shown to improve stress resistance and reduce genetic damage. Moreover, suppressing autophagy or depleting its resources either increases or decreases toxicity, depending on the circumstances. The essential process of selective autophagy is utilized by mammalian cells in order to eliminate particulate matter, nanoparticles, toxic metals, and smoke exposure without inflicting damage on cytosolic components. Moreover, cigarette smoke and aging are the chief causes of chronic obstructive pulmonary disease (COPD)-emphysema; however, the disease's molecular mechanism is poorly known. Therefore, understanding the impacts of environmental exposure via autophagy offers new approaches for risk assessment, protection, and preventative actions which will counter the harmful effects of environmental contaminants on human and animal health.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Republic of Korea
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Lima TRR, Martins AC, Pereira LC, Aschner M. Toxic Effects Induced by Diuron and Its Metabolites in Caenorhabditis elegans. Neurotox Res 2022; 40:1812-1823. [PMID: 36306114 DOI: 10.1007/s12640-022-00596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
The toxicity of diuron herbicide and its metabolites has been extensively investigated; however, their precise toxic mechanisms have yet to be fully appreciated. In this context, we evaluated the toxic mechanism of diuron, 3,4-dichloroaniline (DCA) and 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), using Caenorhabditis elegans (C. elegans) in the L1 larval stage. For this purpose, worms were acutely exposed to the test chemicals with a preliminary concentration range of 0.5 to 500 μM and first analyzed for lethality (%). Next, the highest concentration (500 μM) was considered for survival (%), reactive oxygen and nitrogen species (RONS), glutathione (GSH) and ATP levels, autophagy index, behavior, and dopaminergic neurodegeneration parameters. Interestingly, increased lethality (%) was found for all chemicals at the higher concentrations tested (100 and 500 μM), with significant differences at 500 μM DCA (p < 0.05). A decrease in the median survival was observed mainly for DCA. Although no changes were observed in RONS production, GSH levels were significantly increased upon diuron and DCA treatment, likely reflecting an attempt to restore the redox status. Moreover, diuron and its metabolites impaired ATP levels, suggesting an alteration in mitochondrial function. The latter may trigger autophagy as an adaptive survival mechanism, but this was not observed in C. elegans. Dopaminergic neurotoxicity was observed upon treatment with all the tested chemicals, but only diuron induced alterations in the worms' locomotor behavior. Combined, these results indicate that exposure to high concentrations of diuron and its metabolites elicit distinct adverse outcomes in C. elegans, and DCA in particular, plays an important role in the overall toxicity observed in this experimental model.
Collapse
Affiliation(s)
- Thania Rios Rossi Lima
- Medical School - TOXICAM, UNIPEX, São Paulo State University (Unesp), Block 5 Botucatu, São Paulo, 18618-970, Brazil. .,Center for Evaluation of Environmental Impact On Human Health (TOXICAM), Medical School, Unesp, Botucatu, SP, Brazil.
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lílian Cristina Pereira
- Center for Evaluation of Environmental Impact On Human Health (TOXICAM), Medical School, Unesp, Botucatu, SP, Brazil.,School of Agriculture, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
10
|
Preparation of fenpropathrin nanoemulsions for eco-friendly management of Helicoverpa armigera: improved insecticidal activity and biocompatibility. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Germolec DR, Lebrec H, Anderson SE, Burleson GR, Cardenas A, Corsini E, Elmore SE, Kaplan BL, Lawrence BP, Lehmann GM, Maier CC, McHale CM, Myers LP, Pallardy M, Rooney AA, Zeise L, Zhang L, Smith MT. Consensus on the Key Characteristics of Immunotoxic Agents as a Basis for Hazard Identification. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:105001. [PMID: 36201310 PMCID: PMC9536493 DOI: 10.1289/ehp10800] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Key characteristics (KCs), properties of agents or exposures that confer potential hazard, have been developed for carcinogens and other toxicant classes. KCs have been used in the systematic assessment of hazards and to identify assay and data gaps that limit screening and risk assessment. Many of the mechanisms through which pharmaceuticals and occupational or environmental agents modulate immune function are well recognized. Thus KCs could be identified for immunoactive substances and applied to improve hazard assessment of immunodulatory agents. OBJECTIVES The goal was to generate a consensus-based synthesis of scientific evidence describing the KCs of agents known to cause immunotoxicity and potential applications, such as assays to measure the KCs. METHODS A committee of 18 experts with diverse specialties identified 10 KCs of immunotoxic agents, namely, 1) covalently binds to proteins to form novel antigens, 2) affects antigen processing and presentation, 3) alters immune cell signaling, 4) alters immune cell proliferation, 5) modifies cellular differentiation, 6) alters immune cell-cell communication, 7) alters effector function of specific cell types, 8) alters immune cell trafficking, 9) alters cell death processes, and 10) breaks down immune tolerance. The group considered how these KCs could influence immune processes and contribute to hypersensitivity, inappropriate enhancement, immunosuppression, or autoimmunity. DISCUSSION KCs can be used to improve efforts to identify agents that cause immunotoxicity via one or more mechanisms, to develop better testing and biomarker approaches to evaluate immunotoxicity, and to enable a more comprehensive and mechanistic understanding of adverse effects of exposures on the immune system. https://doi.org/10.1289/EHP10800.
Collapse
Affiliation(s)
- Dori R. Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Herve Lebrec
- Translational Safety & Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Gary R. Burleson
- Burleson Research Technologies, Inc., Morrisville, North Carolina, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sarah E. Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Barbara L.F. Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Geniece M. Lehmann
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Curtis C. Maier
- In Vitro In Vivo Translation, Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - L. Peyton Myers
- Division of Pharm/Tox, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Federal Food and Drug Administration, Silver Spring, Maryland, USA
| | - Marc Pallardy
- Inserm, Inflammation microbiome immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Andrew A. Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
12
|
Wu H, Gao J, Xie M, Wu J, Song R, Yuan X, Wu Y, Ou D. Chronic exposure to deltamethrin disrupts intestinal health and intestinal microbiota in juvenile crucian carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113732. [PMID: 35679730 DOI: 10.1016/j.ecoenv.2022.113732] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The indiscriminate use of deltamethrin in agriculture and aquaculture can lead to residues increased in many regions, which poses negative impacts on intestinal health of aquatic organisms. Although the potential toxicity of deltamethrin have recently attracted attention, the comprehensive studies on intestinal injuries after chronic deltamethrin exposure remain poorly understood. Herein, in a 28-day chronic toxicity test, crucian carp expose to different concentrations of deltamethrin (0, 0.3, and 0.6 μg/L) were used as the research object. We found that the morphology changes and increased goblet cells in intestinal tissue, and the extent of tissue injury increased along with the increasing exposure dose of deltamethrin. Additionally, the genes expression of antioxidant activity (Cu/Zn superoxide dismutase (Cu-Zn SOD), glutathione peroxidase 1 (GPX1), and catalase (CAT)), inflammatory response (tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and interleukin 1 beta (IL-1β)), and tight junctions (Claudin 12 (CLDN12), and tight junction protein 1 (ZO-1)) dramatically increased. Meanwhile, the apoptosis and autophagy process were triggered through caspase-9 cascade and autophagy related 5 (ATG5)- autophagy related 12 (ATG12) conjugate. Besides, chronic deltamethrin exposure increased the amount of Proteobacteria and Verrucomicrobiota, while decreased Fusobacteriota abundance, resulting in intestinal microbiota function disorders. In summary, our results highlight that chronic exposure to deltamethrin cause serious intestinal toxicity and results in physiological changes and intestinal flora disturbances.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jiayu Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China.
| |
Collapse
|
13
|
Fang L, Long N, Li Y, Liao X, Shi L, Zhao H, Zhou L, Kong W. Transfer behavior of pesticides from honeysuckle into tea infusions: Establishment of an empirical model for transfer rate prediction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113377. [PMID: 35272189 DOI: 10.1016/j.ecoenv.2022.113377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Affected by some external conditions and internal factors, pesticides can be transferred from tea into its infusion, causing subsequent damage to humans as tea infusion is generally consumed. This study aimed to explore the inherent regularity in transfer behavior of 23 pesticides belonging to different classes from honeysuckle to its tea infusion, and to understand the effects of external brewing conditions and internal physicochemical parameters of the pesticides on their transfer rates. Results indicated that the transfer rates (Rt) of pesticides from honeysuckle into tea solutions increased with prolonged brewing time, or adding a cover on a container, but decreased with increasing the times of infusion. In addition, the transfer potential of these pesticides greatly depended on their physicochemical properties but not their type. The pesticides with high water solubility and low water partition coefficient (LogKow, e.g., omethoate) were more easily transferred into tea infusions than those with low water solubility and high LogKow (e.g., chlorpyrifos). Compared the tea brewing in a covered container, the empirical models obtained in an uncovered cup predicted the transfer behavior and drinking risk of pesticides potentially introduced into honeysuckle and its tea infusion. The linear equation was as follow: Rt = 10.756 LogWS + 7.517, R = 0.8771. In practice, honeysuckle should be brewed in an uncovered cup within a short brewing time, and the first tea infusion should be abandoned to reduce the transfer percentage of pesticides. This study provided beneficial references for pesticide application in honeysuckle plantation to establish realistic maximum residue limits of multi-pesticides in honeysuckle tea and related products.
Collapse
Affiliation(s)
- Ling Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Nan Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Haiping Zhao
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Paraquat Inhibits Autophagy Via Intensifying the Interaction Between HMGB1 and α-Synuclein. Neurotox Res 2022; 40:520-529. [PMID: 35316522 DOI: 10.1007/s12640-022-00490-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Paraquat, a widely used herbicide, is associated with an increased risk of Parkinson's disease (PD). PQ induces upregulation and accumulation of α-synuclein in neurons, which is one of the major pathological hallmarks of PD. Autophagy, as the major mechanism for the clearance of α-synuclein, is disrupted upon pesticide exposure as well as in PD patients. Meanwhile, HMGB1 is involved in autophagy dysfunction and particularly relevant to PD. However, whether PQ exposure affects HMGB1, α-synuclein, and autophagy function have rarely been reported. In this study, we found that PQ exposure impaired autophagy function via disturbing the complex formation of HMGB1 and Beclin1. Moreover, the expression of α-synuclein is modulated by HMGB1 and the interaction between HMGB1 and α-synuclein was intensified by PQ exposure. Taken together, our results revealed that HMGB1-mediated α-synuclein accumulation could competitively perturb the complex formation of HMGB1 and Beclin1, thereby inhibiting the autophagy function in SH-SY5Y cells.
Collapse
|
15
|
Kim D, Kim EH, Bae ON. Comparative study of two isothiazolinone biocides, 1,2-benzisothiazolin-3-one (BIT) and 4,5-dichloro-2-n-octyl-isothiazolin-3-one (DCOIT), on barrier function and mitochondrial bioenergetics using murine brain endothelial cell line (bEND.3). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:932-943. [PMID: 34315345 DOI: 10.1080/15287394.2021.1955786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Isothiazolinone (IT) biocides are potent antibacterial substances used as preservatives and disinfectants. These biocides exert differing biocidal effects and display environmental stability based upon chemical structure. In agreement with our recent study reporting that 2-n-octyl-4-isothiazolin-3-one (OIT) induced dysfunction of the blood-brain barrier (BBB), the potential adverse health effects of two IT biocides 1,2-benzisothiazolin-3-one (BIT) and 4,5-dichloro-2-n-octyl-isothiazolin-3-one (DCOIT) were compared using brain endothelial cells (ECs) derived from murine brain endothelial cell line (bEND.3). BIT possesses an unchlorinated IT ring structure and used as a preservative in cleaning products. DCOIT contains a chlorinated IT ring structure and employed as an antifouling agent in paints. Data demonstrated that DCOIT altered cellular metabolism at a lower concentration than BIT. Both BIT and DCOIT increased reactive oxygen species (ROS) generation at the mitochondrial and cellular levels. However, the effect of DCOIT on glutathione (GSH) levels appeared to be greater than BIT. While mitochondrial membrane potential (MMP) was decreased in both BIT- and DCOIT-exposed cells, direct disturbance in mitochondrial bioenergetic flux was only observed in BIT-treated ECs. Taken together, IT biocides produced toxicity in brain EC and barrier dysfunction, but at different concentration ranges suggesting distinct differing mechanisms related to chemical structure.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| |
Collapse
|
16
|
Hirano T, Suzuki N, Ikenaka Y, Hoshi N, Tabuchi Y. Neurotoxicity of a pyrethroid pesticide deltamethrin is associated with the imbalance in proteolytic systems caused by mitophagy activation and proteasome inhibition. Toxicol Appl Pharmacol 2021; 430:115723. [PMID: 34520793 DOI: 10.1016/j.taap.2021.115723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
Pyrethroids are one of the most commonly used classes of synthetic pesticides in the world. Recent laboratory and epidemiological evidence suggested that pyrethroids have potential adverse effects in the mammalian brain; however, the underlying mechanisms of the neurotoxic effects of pyrethroids have not been fully elucidated. In the present study, we investigated the mechanisms of effects of a type II pyrethroid deltamethrin (DM) in a neuronal cell model focusing on the proteolytic function, including autophagy and the ubiquitin-proteasome system. We confirmed that a micromolar concentration of DM dose-dependently decreased the cell viability and induced apoptotic cell death. Our results showed that DM enhanced autophagy in association with an accumulation of autophagosomes and increase in the levels of autophagy markers LC3-II/LC3-I ratio and p62 which were much elevated in the presence of lysosomal inhibitors bafilomycin A1 and chloroquine. We also found that DM caused a dysfunction of mitochondria with a decrease of mitochondrial membrane potential and mitochondrial DNA copy number as well as colocalization with autophagosomes. Moreover, a decrease in the activities of three major proteasomal enzymes and an accumulation of ubiquitinated proteins were observed by the exposure to DM. Transcriptome analysis revealed that up-regulated genes supported the activation of autophagy with induction of cellular stress responses including oxidative stress and endoplasmic reticulum stress, while down-regulated genes related to the cell cycle and DNA replication. These findings provide novel insights into the neurotoxicity of DM which underlie the imbalance in proteolytic function caused by mitophagy activation and proteasome inhibition.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.
| | - Nihei Suzuki
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Yoshinori Ikenaka
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| |
Collapse
|
17
|
Fang L, Jia M, Zhao H, Kang L, Shi L, Zhou L, Kong W. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Yuan S, Li C, Yu H, Xie Y, Guo Y, Yao W. Screening of lactic acid bacteria for degrading organophosphorus pesticides and their potential protective effects against pesticide toxicity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Wang H, Qiu TX, Lu JF, Liu HW, Hu L, Liu L, Chen J. Potential aquatic environmental risks of trifloxystrobin: Enhancement of virus susceptibility in zebrafish through initiation of autophagy. Zool Res 2021; 42:339-349. [PMID: 33998181 PMCID: PMC8175947 DOI: 10.24272/j.issn.2095-8137.2021.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic pollution in aquatic ecosystems can lead to many adverse effects, including a greater susceptibility to pathogens among resident biota. Trifloxystrobin (TFS) is a strobilurin fungicide widely used in Asia to control soybean rust. However, it has the potential to enter aquatic ecosystems, where it may impair fish resistance to viral infections. To explore the potential environmental risks of TFS, we characterized the antiviral capacities of fish chronically exposed to TFS and subsequently infected with spring viraemia of carp virus (SVCV). Although TFS exhibited no significant cytotoxicity at the tested environmental concentrations during viral challenge, SVCV replication increased significantly in a time-dependent manner within epithelioma papulosum cyprini (EPC) cells and zebrafish exposed to 25 μg/L TFS. Results showed that the highest viral load was more than 100-fold that of the controls. Intracellular biochemical assays indicated that autophagy was induced by TFS, and associated changes included an increase in autophagosomes, conversion of LC3-II, accumulation of Beclin-1, and degradation of P62 in EPC cells and zebrafish. In addition, TFS markedly decreased the expression and phosphorylation of mTOR, indicating that activation of TFS may be associated with the mTOR-mediated autophagy pathway. This study provides new insights into the mechanism of the immunosuppressive effects of TFS on non-target aquatic hosts and suggests that the existence of TFS in aquatic environments may contribute to outbreaks of viral diseases.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Han-Wei Liu
- Ningbo Customs District Technology Center, Ningbo, Zhejiang 315832, China
| | - Ling Hu
- Ningbo Customs District Technology Center, Ningbo, Zhejiang 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
20
|
Rivera-Urbalejo AP, Vázquez D, Fernández Vázquez JL, Rosete Enríquez M, Cesa-Luna C, Morales-García YE, Muñoz Rojas J, Quintero Hernández V. APORTES Y DIFICULTADES DE LA METAGENÓMICA DE SUELOS Y SU IMPACTO EN LA AGRICULTURA. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.85760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los microorganismos son de gran interés porque colonizan todo tipo de ambiente, sin embargo, uno de los problemas al que nos enfrentamos para conocer su diversidad biológica es que no todos los microorganismos son cultivables. El desarrollo de nuevas tecnologías como la generación de vectores de clonación aunado al desarrollo de técnicas de secuenciación de alto rendimiento ha favorecido el surgimiento de una nueva herramienta llamada metagenómica, la cual nos permite estudiar genomas de comunidades enteras de microorganismos. Debido a que ningún ambiente es idéntico a otro, es importante mencionar que dependiendo del tipo de muestra a analizar será el tipo de reto al cual nos enfrentaremos al trabajar con metagenómica, en el caso específico del suelo existen diversas variantes como la contaminación del suelo con metales pesados o diversos compuestos químicos que podrían limitar los estudios. Sin embargo, pese a las limitaciones que el mismo ambiente presenta, la metagenómica ha permitido tanto el descubrimiento de nuevos genes como la caracterización de las comunidades microbianas que influyen positivamente en el desarrollo de plantas, lo cual en un futuro podría generar un gran impacto en la agricultura. En este artículo se realizó una revisión de diversas investigaciones que han empleado metagenómica, reportadas en las bases de datos de PudMed y Google Schoolar, con el objetivo de examinar los beneficios y limitaciones de las diversas metodologías empleadas en el tratamiento del ADN metagenómico de suelo y el impacto de la metagenómica en la agricultura.
Collapse
|
21
|
Saquib Q, Siddiqui MA, Ansari SM, Alwathnani HA, Al-Khedhairy AA. Carbofuran cytotoxicity, DNA damage, oxidative stress, and cell death in human umbilical vein endothelial cells: Evidence of vascular toxicity. J Appl Toxicol 2021; 41:847-860. [PMID: 33629750 DOI: 10.1002/jat.4150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Carbofuran is a broad-spectrum carbamate insecticide, which principally inhibits the acetylcholinesterase (AChE) enzyme in the nervous system. Nonetheless, their selective action is not restricted to a single species and expanded to humans. No studies are available on the toxicological effects of carbofuran in the endothelial cells (ECs), which first confronts the toxicants in blood vessels. Hence, we have exposed the human umbilical vein ECs (HUVECs) with carbofuran for 24 h, which significantly reduced the cell survival to 25.16% and 33.48% at 500 and 1,000 μM analyzed by MTT assay. In the neutral red uptake (NRU) assay, 16.68%, 30.99%, and 58.11% survival decline was found at 250, 500, and 1,000 μM of carbofuran. HUVECs exposed to carbofuran showed significant increase in the intracellular reactive oxygen species (ROS), indicating oxidative stress at low concentrations. In parallel, HUVECs showed hyperpolarization effects in the mitochondrial membrane potential (ΔΨm) upon carbofuran exposure. Carbofuran induced DNA damage in HUVECs measured as 8.80, 11.82, 35.56, and 79.69 Olive tail moment (OTM) in 100-, 250-, 500-, and 1,000-μM exposure groups. Flow cytometric analysis showed apoptotic peak (SubG1) and G2M arrest in the HUVECs exposed to carbofuran. Overall, our novel data confirm that carbofuran is toxic for the EC cells, especially at the higher concentrations, which may affect the vascular functions and possibly angiogenesis. Hence, carbofuran should be applied judiciously, and detailed vascular studies are warranted to gain an in-depth information focusing the transcriptomic and translation changes employing suitable in vivo and in vitro test models.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.,Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maqsood A Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sabiha M Ansari
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hend A Alwathnani
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
22
|
Kalefetoğlu Macar T. Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2391-2399. [PMID: 32888152 DOI: 10.1007/s11356-020-10708-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted to investigate the cytotoxicity and genotoxicity induced by abamectin pesticide in Allium cepa L. bulbs. Following 72-h exposure to different doses (0.025 ml/L, 0.050 ml/L, and 0.100 ml/L) of abamectin, growth level, micronuclei abundance, mitotic index, chromosomal aberrations, malondialdehyde content, meristematic cell damages, and total activities of superoxide dismutase and catalase were explored. The results revealed that all concentrations of abamectin were capable of inducing significant and dose-dependent changes in all parameters. Increasing doses of abamectin caused remarkable decreases in germination ratio, weight gain, and root elongation. Due to abamectin-induced genotoxicity, the mitotic index declined, while chromosomal abnormalities listed as micronucleus, fragment, sticky chromosome, unequal distribution of chromatin, bridge, vacuole nucleus, nucleus damage, and multipolar anaphase. Depending on the oxidative stress caused by abamectin administration, the total activities of superoxide dismutase and catalase enzymes increased significantly along with the malondialdehyde content. Indistinct transmission tissue, epidermis cell deformation and flattened cell nucleus were the meristematic cell damages in pesticide-applied groups. Findings of the present study revealed that abamectin is a risky pesticide with a variety of cytotoxic and genotoxic effects in non-targeted organisms. A. cepa is a promising material for biomonitoring the toxicity of abamectin.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| |
Collapse
|
23
|
Feng J, Chen W, Liu Q, Chen Z, Yang J, Yang W. Development of abamectin-loaded nanoemulsion and its insecticidal activity and cytotoxicity. PEST MANAGEMENT SCIENCE 2020; 76:4192-4201. [PMID: 32592445 DOI: 10.1002/ps.5976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/04/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Owing to the advantages of high-efficiency, environmental protection and safety, nanoemulsions have become a highly popular water-insoluble pesticide delivery system in recent years. RESULTS In this study, abamectin-loaded nanoemulsion with remarkable physical stability and application performance was obtained by selecting the type and concentration of surfactant and the emulsification method. The optimal formula was 2% abamectin and 5% castor oil polyoxyethylene (EL-40) dissolved in 7.5% hydrocarbon solvent (S-200) made up to 100% with deionized water, which conformed to the quality indicators from the Food and Agriculture Organization (FAO) standards. Droplets on cabbage leaves showed a small dynamic contact angle, which ensured that the resulting nanoemulsion exhibited excellent wettability and diffusivity. Compared with emulsifiable concentrates (EC) and microemulsions (ME), the abamectin-loaded nanoemulsion had the lowest LC50 (0.0686 mg L-1 ) to third-instar larva of Plutella xylostella, causing the larval body to blacken and shrivel, which improved insecticidal activity. In addition, the abamectin-loaded nanoemulsion had low cytotoxicity. The viability of dendritic cells with added nanoemulsion reached 100% after 2 h, whereas that of cells with EC and ME was lower. After 24 h, the cell viability of dendritic cells with added ME was 0. CONCLUSION This research facilitated the design and fabrication of nanoemulsions for water-insoluble pesticide to enhance insecticidal activity, lower cytotoxicity and reduce environmental pollution. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qi Liu
- Medical College, Yangzhou University, Yangzhou, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenchao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Wnuk A, Rzemieniec J, Przepiórska K, Wesołowska J, Wójtowicz AK, Kajta M. Autophagy-related neurotoxicity is mediated via AHR and CAR in mouse neurons exposed to DDE. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140599. [PMID: 32721735 DOI: 10.1016/j.scitotenv.2020.140599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
DDE (dichlorodiphenyldichloroethylene) is an environmental metabolite of the pesticide DDT, which is still present in the environment, and its insecticidal properties are used to fight malaria and the Zika virus disease. We showed for the first time that the neurotoxic effects of DDE involve autophagy, as demonstrated by elevated levels of Becn1, Map1lc3a/MAP1LC3A, Map1lc3b, and Nup62/NUP62 and an increase in autophagosome formation. The suggestion that the aryl hydrocarbon receptor (AHR) and the constitutive androstane receptor (CAR) are involved in the neurotoxic effect of DDE was supported by increases in the mRNA and protein expression of these receptors, as detected by qPCR, ELISA, immunofluorescence labeling and confocal microscopy. Selective antagonists of the receptors, including alpha-naphthoflavone, CH223191, and CINPA 1, inhibited p,p'-DDE- and o,p'-DDE-induced LDH release and caspase-3 activity, while specific siRNAs (Ahr and Car siRNA) reduced the levels of p,p'-DDE- and o,p'-DDE-induced autophagosome formation. Although the neurotoxic effects of DDE were isomer independent, the mechanisms of p,p'- and o,p'-DDE were isomer specific. Therefore, we identified previously unknown mechanisms of the neurotoxic actions of DDE that, in addition to inducing apoptosis, stimulate autophagy in mouse neocortical cultures and induce AHR and CAR signaling.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland
| | - Joanna Rzemieniec
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland
| | - Karolina Przepiórska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland
| | - Julita Wesołowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory for In vivo and In Vitro Imaging, Smetna street 12, 31-343 Krakow, Poland
| | - Anna Katarzyna Wójtowicz
- University of Agriculture, Faculty of Animal Sciences, Department of Nutrition, Animal Biotechnology and Fisheries, Adama Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Małgorzata Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland.
| |
Collapse
|
25
|
He B, Wang X, Jin X, Xue Z, Ni Y, Zhu J, Wang C, Jin Y, Fu Z. β‐Cypermethrin
Alleviated the Inhibitory Effect of Medium from
RAW
264.7 Cells on
3T3‐L1
Cell Maturation into Adipocytes. Lipids 2020; 55:251-260. [DOI: 10.1002/lipd.12234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/29/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Bingnan He
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Xia Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Xini Jin
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Zimeng Xue
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Jianbo Zhu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Caiyun Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Yuanxiang Jin
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| |
Collapse
|