1
|
Rastegarpanah A, Deng J, Liu Y, Jing L, Pei W, Wang J, Dai H. Bamboo-like MnO 2⋅Co 3O 4: High-performance catalysts for the oxidative removal of toluene. J Environ Sci (China) 2025; 147:617-629. [PMID: 39003076 DOI: 10.1016/j.jes.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 07/15/2024]
Abstract
The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.
Collapse
Affiliation(s)
- Ali Rastegarpanah
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Wenbo Pei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jia Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Shan C, Zhang Y, Hou N, Jia Q, Hou X, Wang Y, Han R, Liu C, Wang W, Liu Q. Revealing the key role of interfacial oxygen activation over CoMn 2O 4@MnO 2 in the catalytic oxidation of acetone. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136904. [PMID: 39709810 DOI: 10.1016/j.jhazmat.2024.136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The accumulation of intermediate products on the catalyst surface caused by insufficient oxygen activity is an important reason for the poor activity of catalysts towards oxygenated volatile organic compounds (OVOCs). CoMn2O4@MnO2 heterogeneous catalysts were fabricated to decipher the interfacial oxygen activation mechanism for efficient acetone oxidation. Experimental and theoretical explorations revealed that oxygen vacancies were easily formed at the interface. Gaseous oxygen tended to adsorb on the interfacial vacancies while bonding with adjacent Mn sites, resulting in the stretching of O-O bonds. Rapid electron transfer at the interface led to the charge accumulation on the two oxygen atoms inducing electrostatic repulsion. These factors are conducive to the O-O bond breaking and gaseous oxygen activation. The obtained CoMn2O4@0.8MnO2 exhibited excellent catalytic performance with 90 % of acetone conversion at 159 °C, better than CoMn2O4 and MnO2. The acetone oxidation on CoMn2O4@0.8MnO2 not only avoided the accumulation of aldehydes, but also realized the rapid degradation of acetate into formate, achieving the shortest degradation pathway due to the rapid interfacial oxygen activation. CoMn2O4@0.8MnO2 also exhibited better catalytic activity for other OVOCs (ethyl acetate, ethylene oxide, methanol). This work provides new insights for the mechanism of interfacial oxygen activation and the design of heterogeneous catalyst for efficient OVOC oxidation.
Collapse
Affiliation(s)
- Cangpeng Shan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Yan Zhang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Ning Hou
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qinwei Jia
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Xinyu Hou
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Yunchong Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Caixia Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Tang T, Zhao S, Liu Y, Tang X, Sun L, Ma Y, Zhu R, Yi H. Metal-support interaction in supported Pt single-atom catalyst promotes lattice oxygen activation to achieve complete oxidation of acetone at low concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135839. [PMID: 39298965 DOI: 10.1016/j.jhazmat.2024.135839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
A precious metal catalyst with loaded Pt single atoms was prepared and used for the complete oxidation of C3H6O. Detailed results show that the T100 of the 1.5Pt SA/γ-Al2O3 catalyst in the oxidation process of acetone is 250 °C, the TOF of Pt is 1.09 × 10-2 s-1, and the catalyst exhibits good stability. Characterization reveals that the high dispersion of Pt single atoms and strong interaction with the carrier improve the redox properties of the catalyst, enhancing the adsorption and dissociation capability of gaseous oxygen. DFT calculations show that after the introduction of Pt, the oxygen vacancy formation energy on the catalyst surface is reduced to 1.2 eV, and PDOS calculations prove that electrons on Pt atoms can be quickly transferred to O atoms, increasing the number of electrons on the σp * bond and promoting the escape of lattice oxygen. In addition, in situ DRIFTS and adsorption experiments indicate that the C3H6O oxidation process follows the Mars-van Krevelen reaction mechanism, and CH2 =C(CH3)=O(ads), O* (O2-), formate, acetate, and carbonate are considered as the main intermediate species and/or transients in the reaction process. Particularly, the activation rate of O2 and the cleavage of the -C-C- bond are the main rate-determining steps in the oxidation of C3H6O. This work will further enhance the study of the oxidation mechanism of oxygenated volatile organic pollutants over loaded noble metal catalysts.
Collapse
Affiliation(s)
- Tian Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - ShunZheng Zhao
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - YunPeng Liu
- Institure of High Energy Physics, Chines Academy of Sciences, Beijing 100049, China
| | - XiaoLong Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Long Sun
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - YiMing Ma
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - RongHui Zhu
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - HongHong Yi
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Ren Y, Dong C, Song C, Qu Z. Spinel-Based Catalysts That Enable Catalytic Oxidation of Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20785-20811. [PMID: 39535160 DOI: 10.1021/acs.est.4c03509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Volatile organic compounds (VOCs) have caused serious harm to human health and ecological environment, and have received much attention in recent years. Despite the successful applications of catalytic combustion of VOCs as the core technology of VOCs removal in industry, the development of efficient catalysts that can mineralize VOCs into nontoxic CO2 and H2O at low temperatures remains a great challenge. Recent studies show that spinel-based materials as efficient catalysts were extensively used in the catalytic oxidation VOCs field due to their synergistic effect, manifold compositions, and electron configurations. However, most of the pollutants are complex, consisting of multiple VOCs, water vapor, CO2, SO2 and other substances, which presents a significant challenge in constructing highly active and stable catalysts. To meet the future demand for efficient catalysts capable of removing various types of VOCs, it is urgent to rationally design and scientifically prepare spinel catalysts based on existing knowledge. This work reviews the research and development of various spinel catalysts with an emphasis on their catalytic performance in VOCs oxidation. The catalytic performance of spinel-based catalysts for different sorts of VOCs was summarized and compared. Moreover, the effects of the reaction conditions on the catalytic performance of spinel-based catalysts were examined to accommodate complicated operating conditions. Subsequently, the regulation of spinel oxides in structure and defect was coherently reviewed to guide the development and design of efficient catalysts. Especially, the research techniques for the reaction mechanism over spinel catalysts were displayed to better deepen the understanding of catalytic oxidation of VOCs. Finally, the current development and challenges were proposed and put forward for future research. This review provided a systematic understanding of the VOCs oxidation over spinel-based catalysts and offered guidance for the development of high-performance catalysts for VOCs elimination.
Collapse
Affiliation(s)
- Yewei Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Cui Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Ci Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
5
|
Guo H, Guo T, Zhao M, Zhang Y, Shangguan W, Liao Y. Improving benzene catalytic oxidation on Ag/Co 3O 4 by regulating the chemical states of Co and Ag. J Environ Sci (China) 2024; 143:201-212. [PMID: 38644017 DOI: 10.1016/j.jes.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 04/23/2024]
Abstract
Silver (9 wt.%) was loaded on Co3O4-nanofiber using reduction and impregnation methods, respectively. Due to the stronger electronegativity of silver, the ratios of surface Co3+/Co2+ on Ag/Co3O4 were higher than on Co3O4, which further led to more adsorbed oxygen species as a result of the charge compensation. Moreover, the introducing of silver also obviously improved the reducibility of Co3O4. Hence the Ag/Co3O4 showed better catalytic performance than Co3O4 in benzene oxidation. Compared with the Ag/Co3O4 synthesized via impregnation method, the one prepared using reduction method (named as AgCo-R) exhibited higher contents of surface Co3+ and adsorbed oxygen species, stronger reducibility, as well as more active surface lattice oxygen species. Consequently, AgCo-R showed lowest T90 value of 183°C, admirable catalytic stability, largest normalized reaction rate of 1.36 × 10-4 mol/(h·m2) (150°C), and lowest apparent activation energy (Ea) of 63.2 kJ/mol. The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol, o-benzoquinone, small molecular intermediates, and finally to CO2 and water on the surface of AgCo-R. At last, potential reaction pathways including five detailed steps were proposed.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Xinjiang 830017, China; Xinjiang Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, Xinjiang University, Xinjiang 830017, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China
| | - Tao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Xinjiang 830017, China; Xinjiang Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, Xinjiang University, Xinjiang 830017, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China
| | - Mengqi Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Xinjiang 830017, China; Xinjiang Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, Xinjiang University, Xinjiang 830017, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China
| | - Yaxin Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Xinjiang 830017, China; Xinjiang Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, Xinjiang University, Xinjiang 830017, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China.
| | - Wenfeng Shangguan
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinnian Liao
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Guangdong 519041, China.
| |
Collapse
|
6
|
Li X, Chen R, Yang M, Niu Y, Li J, Shao D, Zheng X, Zhang C, Qi Y. Insight into modified CeMn based catalysts for efficient degradation of toluene by in situ infrared. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169192. [PMID: 38097085 DOI: 10.1016/j.scitotenv.2023.169192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Trace activated carbon (AC) and diatomaceous earth (DE) were used as structural promoters to be incorporated into Ce-Mn-based solid-solution catalysts by the redox precipitation method. The modified catalysts exhibit superior reducibility, with abundant Ce3+, Mn3+and reactive oxygen species, which are facilitated to the migration of oxygen and the generation of oxygen vacancies. In particular, the catalytic combustion temperatures of 90 % toluene (3000 ppm) on Ce1Mn3Ox-AC/DE were 84 °C (dry) and 123 °C (10 vol% H2O), respectively. The role of lattice oxygen and adsorbed oxygen was revealed by in situ DRIFTS. Additionally, in situ DRIFTS was employed to verify that the degradation of toluene by Ce1Mn3Ox-AC/DE satisfied the Langmuir-Hinshelwood (L-H) mechanism and the Mars-Van Krevelen (MvK) mechanism. The possible reaction pathway was elucidated (toluene → benzyl alcohol → benzoic acid → maleic anhydride → CO2 + H2O). Furthermore, final products attributed to toluene oxidation were detected by in situ DRIFTS at 50 °C in the absence of oxygen, confirming that the catalyst possessed outstanding performance at low temperatures beyond mere adsorption.
Collapse
Affiliation(s)
- Xuelian Li
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rujie Chen
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China
| | - Min Yang
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yongfang Niu
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Li
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Dan Shao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China
| | - Xinmei Zheng
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Chuanwei Zhang
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yanxing Qi
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China.
| |
Collapse
|
7
|
Zhang WP, Li JR, Li YY, Zhao J, Wu K, Xiao H, He C. Acetone Efficient Degradation under Simulated Humid Conditions by Mn-O-Pt Interaction Taming-Triggered Water Dissociation Intensification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20962-20973. [PMID: 38008907 DOI: 10.1021/acs.est.3c07194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
As a generally existing component in industrial streams, H2O usually inhibits the catalytic degradation efficiency of volatile organic compounds (VOCs) greatly. Here, we propose a novel strategy that accelerates the H2O dissociation and facilitates positive feedbacks during VOC oxidation by fabricating citric acid (CA)-assisted Pt(K)-Mn2O3/SiO2 (Pt-Mn/KS-xCA). Results reveal that the complexation of carboxyl groups of citric acid with Mn cations leads to the formation of small Mn2O3 (4.1 ± 0.2 nm) and further enhances the Mn-O-Pt interaction (strengthened by the Si-O-Mn interaction), which can transfer more electrons from Pt-Mn/KS-6CA to H2O, thus facilitating its breaking of covalent bonds. It subsequently produces abundant surface hydroxyl groups, improving the adsorption and activation abilities of acetone reactant and ethanol intermediate. Attributing to these, the acetone turnover frequency value of Pt-Mn/KS-6CA is 1.8 times higher than that of Pt-Mn/KS at 160 °C, and this multiple changes to 6.3 times in the presence of H2O. Remarkably, acetone conversion over Pt-Mn/KS-6CA increases by up to 14% in the presence of H2O; but it decreases by up to 26% for Pt-Mn/KS due to its weak dissociation ability and high adsorption capacity toward H2O. This work sheds new insights into the design of highly efficient catalytic materials for VOC degradation under humid conditions.
Collapse
Affiliation(s)
- Wan-Peng Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian-Rong Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Ying Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junyi Zhao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, P. R. China
| | - Kun Wu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, P. R. China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| |
Collapse
|
8
|
Wang B, Liang Y, Tong K, Ma H, Zhang Z, Fan W, Xuan Y, Zhang K, Yun Y, Wang D, Luan T. What is the role of interface in the catalytic elimination of multi-carbon air pollutants? CHEMOSPHERE 2023; 338:139547. [PMID: 37467856 DOI: 10.1016/j.chemosphere.2023.139547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Multi-carbon air pollutants pose serious hazards to the environment and health, especially soot and volatile organic compounds (VOCs). Catalytic oxidation is one of the most effective technologies for eliminating them. The oxidation of soot and most hydrocarbon VOCs begins with C-H (or edge-CH) activation, so this commonality can be targeted to design active sites. Rationally designed interface nanostructures optimize metal-support interactions (MSIs), providing suitable active sites for C-H activation. Meanwhile, the interfacial reactant spillover facilitates the further decomposition of activated intermediates. Thus, rationally exploiting interfacial effects is critical to enhancing catalytic activity. In this review, we analyzed recent advances in the following aspects: I. Understanding of the interface effects and design; II. Optimization of the catalyst-reactant contact, metal-support interface, and MSIs; III. Design of the interfacial composition and perimeter. Based on the analysis of the advances and current status, we provided challenges and opportunities for the rational design of interface nanostructures and interface-related stability. Meanwhile, a critical outlook was given on the interfacial sites of single-atom catalysts (SACs) for specific activation and catalytic selectivity.
Collapse
Affiliation(s)
- Bin Wang
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | - Yanjie Liang
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | - Kangbo Tong
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Hongyuan Ma
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | | | - Wenjie Fan
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | - Yue Xuan
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | - Kaihang Zhang
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA, 30332, USA
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China.
| | - Tao Luan
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| |
Collapse
|
9
|
Zhang H, Wang S, Wang M, Li G, Yu L, Liu X, Wang Z, Zhang C. Catalytic oxidation of vinyl chloride over Co–Ce composite oxides derived from ZIF-67 template: Effect of cerium incorporation. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Lu T, Su F, Zhao Q, Li J, Zhang C, Zhang R, Liu P. Catalytic oxidation of volatile organic compounds over manganese-based oxide catalysts: Performance, deactivation and future opportunities. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
High catalytic performance of neodymium modified Co3O4 for toluene oxidation. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Chen Y, Yao K, Zhang X, Shen B, Smith RL, Guo H. Siloxane-modified MnO x catalyst for oxidation of coal-related o-xylene in presence of water vapor. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129109. [PMID: 35594674 DOI: 10.1016/j.jhazmat.2022.129109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
In coal-combustion energy production, presence of water vapor in flue gas causes catalyst deactivation and leads to the release of large quantities of volatile organic compounds (VOCs). In this study, design of a low-temperature, hydrophobic catalyst for flue gas purification was achieved by modifying support material with inorganic siloxane. Introduction of 5% water vapor into simulated flue gas at 300 °C reduced oxidation efficiency for o-xylene removal by 26% with unmodified MnOx/γ-Al2O3 catalyst, whereas with modified catalyst MnOx-Si0.9/γ-Al2O3 oxidation efficiency was reduced by only 5%. MnOx-Si0.9/γ-Al2O3 exhibited stable catalytic efficiency for o-xylene gas oxidation containing water vapor for over 200 min. Water-resistance of the catalyst was effective for removal of multi-coal combustion pollutants (Hg0 and NO) and moreover, hydrophobicity of the catalyst led to a reduction in surface sulfate deposition, thereby lowering toxicity of SO2 from simulated flue gas. DRIFTS analysis showed that the hydrophobic catalyst surface not only reduces water adsorption, but also promotes water volatilization. Based on molecular adsorption energies, catalyst support modification with siloxane inhibits water adsorption and promotes organic adsorption and thus provides a new strategy for preparing water-resistant catalysts for flue gas purification.
Collapse
Affiliation(s)
- Yingjian Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China; Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, China
| | - Kening Yao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China; Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, China
| | - Xiao Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China; Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, China.
| | - Boxiong Shen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China; Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, China.
| | - Richard Lee Smith
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba, Sendai 980-8579, Japan
| | - Haixin Guo
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba, Sendai 980-8579, Japan
| |
Collapse
|
13
|
Bifunctional ZnCo2O4 catalyst for NO reduction and 1,2-dichloroethane combustion. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Wang J, Wang P, Wu Z, Yu T, Abudula A, Sun M, Ma X, Guan G. Mesoporous catalysts for catalytic oxidation of volatile organic compounds: preparations, mechanisms and applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Volatile organic compounds (VOCs) are mainly derived from human activities, but they are harmful to the environment and our health. Catalytic oxidation is the most economical and efficient method to convert VOCs into harmless substances of water and carbon dioxide at relatively low temperatures among the existing techniques. Supporting noble metal and/or transition metal oxide catalysts on the porous materials and direct preparation of mesoporous catalysts are two efficient ways to obtain effective catalysts for the catalytic oxidation of VOCs. This review focuses on the preparation methods for noble-metal-based and transition-metal-oxide-based mesoporous catalysts, the reaction mechanisms of the catalytic oxidations of VOCs over them, the catalyst deactivation/regeneration, and the applications of such catalysts for VOCs removal. It is expected to provide guidance for the design, preparation and application of effective mesoporous catalysts with superior activity, high stability and low cost for the VOCs removal at lower temperatures.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Peifen Wang
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Zhijun Wu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Tao Yu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Abuliti Abudula
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Ming Sun
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Xiaoxun Ma
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Guoqing Guan
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
- Energy Conversion Engineering Laboratory , Institute of Regional Innovation (IRI), Hirosaki University , 2-1-3 Matsubara , Aomori 030-0813 , Japan
| |
Collapse
|
15
|
Zheng Y, Su Y, Pang C, Yang L, Song C, Ji N, Ma D, Lu X, Han R, Liu Q. Interface-Enhanced Oxygen Vacancies of CoCuO x Catalysts In Situ Grown on Monolithic Cu Foam for VOC Catalytic Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1905-1916. [PMID: 34856794 DOI: 10.1021/acs.est.1c05855] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of highly efficient and stable monolithic catalysts is essential for the removal of volatile organic compounds (VOCs). Copper foam (CF) is a potential ideal carrier for monolithic catalysts, but its low surface area is not conducive to dispersion of active species, thus reducing the interface interaction with active species. Herein, a vertically oriented Cu(OH)2 nanorod was in situ grown on the CF, which acted as the template and precursor to synthesize CoCu-MOF. The optimized catalyst (12CoCu-R) delivers excellent performance for acetone oxidation with a T90 of 195 °C. Impressively, the catalyst demonstrated satisfactory stability in long-term, cycle, water resistance, and high airspeed tests. Therefore, the present study provides a novel strategy for rationally designing efficient monolithic catalysts for VOC oxidation and other environmental applications.
Collapse
Affiliation(s)
- Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Yun Su
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Caihong Pang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Lizhe Yang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Chunfeng Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Na Ji
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Xuebin Lu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| |
Collapse
|
16
|
Liu W, Xiang W, Guan N, Cui R, Cheng H, Chen X, Song Z, Zhang X, Zhang Y. Enhanced catalytic performance for toluene purification over Co3O4/MnO2 catalyst through the construction of different Co3O4-MnO2 interface. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Li X, Niu Y, Zhang C, Su H, Qi Y. Catalytic Combustion of Toluene Over Broccoli‐Shaped Ce
1
Mn
3
Ox Solid Solution. ChemCatChem 2021. [DOI: 10.1002/cctc.202100974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xuelian Li
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongfang Niu
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chuanwei Zhang
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Huaigang Su
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanxing Qi
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
18
|
Zeng K, Wang Z, Wang D, Wang C, Yu J, Wu G, Zhang Q, Li X, Zhang C, Zhao XS. Three-dimensionally ordered macroporous MnSmO composite oxides for propane combustion: Modification effect of Sm dopant. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Bhattarai DP, Pant B, Acharya J, Park M, Ojha GP. Recent Progress in Metal-Organic Framework-Derived Nanostructures in the Removal of Volatile Organic Compounds. Molecules 2021; 26:molecules26164948. [PMID: 34443537 PMCID: PMC8400575 DOI: 10.3390/molecules26164948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Air is the most crucial and life-supporting input from nature to the living beings of the planet. The composition and quality of air significantly affects human health, either directly or indirectly. The presence of some industrially released gases, small particles of anthropogenic origin, and the deviation from the normal composition of air from the natural condition causes air pollution. Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor pollutants. Such pollutants represent acute or chronic health hazards to the human physiological system. In the environment, such polluted gases may cause chemical or photochemical smog, leading to detrimental effects such as acid rain, global warming, and environmental pollution through different routes. Ultimately, this will propagate into the food web and affect the ecosystem. In this context, the efficient removal of volatile organic compounds (VOCs) from the environment remains a major threat globally, yet satisfactory strategies and auxiliary materials are far from being in place. Metal–organic frameworks (MOFs) are known as an advanced class of porous coordination polymers, a smart material constructed from the covalently bonded and highly ordered arrangements of metal nodes and polyfunctional organic linkers with an organic–inorganic hybrid nature, high porosities and surface areas, abundant metal/organic species, large pore volumes, and elegant tunability of structures and compositions, making them ideal candidates for the removal of unwanted VOCs from air. This review summarizes the fundamentals of MOFs and VOCs with recent research progress on MOF-derived nanostructures/porous materials and their composites for the efficient removal of VOCs in the air, the remaining challenges, and some prospective for future efforts.
Collapse
Affiliation(s)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
| | - Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Department of Fire Disaster Prevention, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Correspondence: (M.P.); (G.P.O.)
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Correspondence: (M.P.); (G.P.O.)
| |
Collapse
|
20
|
Zhang Y, Wang M, Kang S, Pan T, Deng H, Shan W, He H. Investigation of suitable precursors for manganese oxide catalysts in ethyl acetate oxidation. J Environ Sci (China) 2021; 104:17-26. [PMID: 33985720 DOI: 10.1016/j.jes.2020.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
The control of ethyl acetate emissions from fermentation and extraction processes in the pharmaceutical industry is of great importance to the environment. We have developed three Mn2O3 catalysts by using different Mn precursors (MnCl2, Mn(CH3COO)2, MnSO4), named as Mn2O3-Cl, -Ac, -SO4. The tested catalytic activity results showed a sequence with Mn precursors as: Mn2O3-Cl > Mn2O3-Ac > Mn2O3-SO4. The Mn2O3-Cl catalyst reached a complete ethyl acetate conversion at 212℃ (75℃ lower than that of Mn2O3-SO4), and this high activity 100% could be maintained high at 212℃ for at least 100 hr. The characterization data about the physical properties of catalysts did not show an obvious correlation between the structure and morphology of Mn2O3 catalysts and catalytic performance, neither was the surface area the determining factor for catalytic activity in the ethyl acetate oxidation. Here we firstly found there is a close linear relationship between the catalytic activity and the amount of lattice oxygen species in the ethyl acetate oxidation, indicating that lattice oxygen species were essential for excellent catalytic activity. Through H2 temperature-programmed reduction (H2-TPR) results, we found that the lowest initial reduction temperature over the Mn2O3-Cl had stronger oxygen mobility, thus more oxygen species participated in the oxidation reaction, resulting in the highest catalytic performance. With convenient preparation, high efficiency, and stability, Mn2O3 prepared with MnCl2 will be a promising catalyst for removing ethyl acetate in practical application.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
| | - Meng Wang
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shunyu Kang
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Tingting Pan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hua Deng
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Zheng Y, Liu Q, Shan C, Su Y, Fu K, Lu S, Han R, Song C, Ji N, Ma D. Defective Ultrafine MnO x Nanoparticles Confined within a Carbon Matrix for Low-Temperature Oxidation of Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5403-5411. [PMID: 33750114 DOI: 10.1021/acs.est.0c08335] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of catalysts for volatile organic compound (VOC) treatment by catalytic oxidation is of great significance to improve the atmospheric environment. Size-effect and oxygen vacancy engineering are effective strategies for designing high-efficiency heterogeneous catalysts. Herein, we explored the in situ carbon-confinement-oxidation method to synthesize ultrafine MnOx nanoparticles with adequately exposed defects. They exhibited an outstanding catalytic performance with a T90 of 167 °C for acetone oxidation, which is 73 °C lower than that of bulk MnOx (240 °C). This excellent catalytic activity was primarily ascribed to their high surface area, rich oxygen vacancies, abundant active oxygen species, and good reducibility at low temperatures. Importantly, the synthesized ultrafine MnOx exhibited impressive stability in long-term, cycling and water-resistance tests. Moreover, the possible mechanism for acetone oxidation over MnOx-NA was revealed. In this work, we not only prepared a promising material for removing VOCs but also provided a new strategy for the rational design of ultrafine nanoparticles with abundant defects.
Collapse
Affiliation(s)
- Yanfei Zheng
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Cangpeng Shan
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Yun Su
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Kaixuan Fu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Shuangchun Lu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Na Ji
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| |
Collapse
|
22
|
Zeng K, Wang Y, Huang C, Liu H, Liu X, Wang Z, Yu J, Zhang C. Catalytic Combustion of Propane over MnNbOx Composite Oxides: The Promotional Role of Niobium. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00699] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kai Zeng
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Yating Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Changfei Huang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Hanchen Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Zhong Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
| | - Jun Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Chuanhui Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
| |
Collapse
|
23
|
Zheng Y, Zhao Q, Shan C, Lu S, Su Y, Han R, Song C, Ji N, Ma D, Liu Q. Enhanced Acetone Oxidation over the CeO 2/Co 3O 4 Catalyst Derived from Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28139-28147. [PMID: 32423199 DOI: 10.1021/acsami.0c04904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel CeO2/Co3O4 catalyst with a high catalytic activity has been designed and prepared by pyrolysis of metal-organic frameworks, and its catalytic performance was evaluated by the acetone catalytic oxidation reaction. The Co3O4-M catalyst with T90 at 194 °C was prepared by pyrolysis of the MOF-71 precursor, which was 56 °C lower than that of commercial Co3O4 (250 °C). By the addition of cerium to the MOF-71 precursor, an enhanced CeO2/Co3O4 catalyst with T90 at 180 °C was prepared. Importantly, the CeO2/Co3O4 catalyst exhibited superior stability for acetone oxidation. After 10 cycle tests, the conversion could also be maintained at 97% for at least 100 h with slight activity loss. Characterization studies were used to investigate the influence of cerium doping on the property of the catalyst. The results showed that addition of cerium could facilitate the expansion of the surface area and enhance the porous structure and reducibility at low temperature. Furthermore, the surface ratio of Co3+/Co2+ and mobile oxygen obviously improved with the addition of cerium. Therefore, the metal oxides prepared by this method have potential for the elimination of acetone.
Collapse
Affiliation(s)
- Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qian Zhao
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Cangpeng Shan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Shuangchun Lu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Yun Su
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Chunfeng Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Na Ji
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| |
Collapse
|