1
|
Yang N, Ji H, Yang S. Influence of monosaccharides and lipids on protein structure and solubility-Reaction simulation of sludge thermal hydrolysis system. BIORESOURCE TECHNOLOGY 2024; 418:131940. [PMID: 39638009 DOI: 10.1016/j.biortech.2024.131940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
During the hydrothermal treatment process, sludge proteins can interact with other organic matter, thereby affecting protein structure and altering protein solubility. This paper investigates the effects and causes of monosaccharides and lipids on protein structure and solubility during thermal hydrolysis of sludge. The results indicated that monosaccharides increase protein solubility by preventing the conversion of proteins into free amino acids. Monosaccharides can reduce the temperature sensitivity of benzene, pyridine and other heteroaromatic rings, thereby reducing the generation of conjugated structures during thermal hydrolysis of sludge. The temperature and activation energy of proteins denaturation increased with increasing glucose concentration. Heating promotes the disappearance of the protein's α-helix structure, while glucose tends to aggregate on the protein surface and form hydrogen bonds, thereby inhibiting further protein denaturation and precipitation. This study provides insight into the effect of organics on protein solubility during thermal treatment of sludge.
Collapse
Affiliation(s)
- Ning Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hua Ji
- SUEZ Environmental Technology (Beijing) Company Limited, Beijing 100026, China
| | - Shucheng Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Luo J, Zhao C, Huang W, Wang F, Fang F, Su L, Wang D, Wu Y. A holistic valorization of treasured waste activated sludge for directional high-valued products recovery: Routes, key technologies and challenges. ENVIRONMENTAL RESEARCH 2024; 262:119904. [PMID: 39270963 DOI: 10.1016/j.envres.2024.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Global energy shortages and environmental crises underscore the imperative for a circular economy to tackle resource scarcity and waste management. The circular economy model encourages the recovery and reuse of valuable materials, reducing reliance on finite natural resources and lessening the environmental impact of waste disposal. Among urban organic solid wastes, waste activated sludge (WAS) emerges as a potent reservoir of untapped resources (including various inorganic and organic ones) offering significant potential for recovery. This review delves into a comprehensive analysis of directional valorization of WAS to recover high-valued products, including the inorganic matters (i.e. phosphorus, ammonia nitrogen, and heavy metals), organic resources (i.e. extracellular polymers like alginate and protein, volatile fatty acid, methane, hydrogen, and plant growth hormones) and reutilization of WAS residues for the preparation of adsorbent materials - the biochar. Moreover, the main recovery methodologies associated influencing parameters, product application, and attendant challenges for those diverse recovered resources are unveiled. Future research are encouraged to prioritize the development of integrated multi-resource recovery approaches, the establishment of regulatory frameworks to support resource recovery and product utilization, and the systematic evaluation of disposal strategies to foster a more sustainable and resource-efficient future. This work illuminates avenues for sustainable WAS management with high-valued resource recovery towards circular economy.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chenxin Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Li C, Liu J, Yu C, Lou G. Feasibility analysis of continuous extraction of biomaterials from flocculant sludge and potential applications in the fire protection field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122351. [PMID: 39260277 DOI: 10.1016/j.jenvman.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
The sludge contains many high-value biological materials. However, current extraction methods focus only on individual materials, neglecting the further extraction potential of the residual after extraction. This study used continuous extraction to extract extracellular polymeric substances (EPS) and proteins (PN) from sludge, verified the flame retardancy of EPS and the foaming properties of PN and finally analyzed the economic feasibility of continuous extraction. The results showed that continuous extraction increased the protein extraction from 857.11 mg/L to 1089.41 mg/L. EPS reduced the heat release rate of linen fabric from 379.2 (J/g·K) to 38.3 (J/g·K), and PN achieved foaming capacity and stability reaching 770% and 71%, meeting the standards of foam extinguishing agents. The binding form of EPS with linen fabric and the peptide content in PN are crucial factors affecting their application effectiveness. Economic analysis showed that continuous extraction reduced processing costs by 37.64% compared to traditional sludge disposal methods.
Collapse
Affiliation(s)
- Chen Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Jing Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Chuning Yu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Guanchen Lou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
4
|
Li C, Liu J, Lou G, Yu C. The feasibility and applicability of sequential extraction of high value-added biogenic materials from sewage sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2812-2822. [PMID: 38822616 DOI: 10.2166/wst.2024.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
The sequential extraction routes of biogenic materials from sewage sludge (SS) were investigated. Physical methods (ultrasound, heating) and chemical methods (sodium hydroxide, sodium carbonate) were used to extract extracellular polymeric substances (EPS) and alginate-like extracellular polymers (ALEs) from SS. The residues after extraction were further subjected to physical methods (heating) and chemical methods (sulfuric acid, sodium hydroxide) for protein extraction. A comparison was made between sequential extraction routes and direct extraction of biomaterials from sludge in terms of extraction quantity, material properties, and applicability. The results showed that sequential extraction of biomaterials is feasible. The highest extraction quantities were obtained when using sodium carbonate for EPS and ALE extraction and sodium hydroxide for protein, reaching 449.80 mg/gVSS, 109.78 mg/gVSS, and 5447.08 mg/L, respectively. Sequential extraction procedures facilitate the extraction of biomaterials. Finally, suitable extraction methods for different application scenarios were analyzed.
Collapse
Affiliation(s)
- Chen Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail:
| | - Guanchen Lou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Chuning Yu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
5
|
Ning Z, Ma C, Zhong W, Liu C, Niu J, Wang C, Wang Z. Compound mutation by ultraviolet and diethyl sulfate of protease producing thermophilic bacteria to hydrolyze excess sludge. BIORESOURCE TECHNOLOGY 2024; 395:130330. [PMID: 38224788 DOI: 10.1016/j.biortech.2024.130330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Excess sludge (ES), a resource-rich organic waste, can be solubilized by thermophilic enzymes to extract proteins for sludge reduction and resources recovery. To solve the problems of low hydrolysis effect of ES and low enzyme producing ability of wild thermophilic bacteria, ultraviolet and diethyl sulfate (UV-DES) were adopted to mutate thermophilic bacteria in this study. Mutation sites were detected and annotated by whole genome sequencing analysis. The results showed that UV-DES mutagenesis could effectively improve enzyme-producing capacity of thermophilic bacteria and promote the hydrolysis of ES. The protease activity of the mutant strain KT16 was 46.7 % higher than that of the original strain DC8. The protein extraction rate with enzyme produced by KT16 reached 83.3 %. The total content of proteins recycled through KT16 enzyme solution was 3539.6 mg·L-1, 18.4 % higher than that of DC8. This work provided a theoretical idea and technical guidance for the protein recovery from ES.
Collapse
Affiliation(s)
- Zhifang Ning
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Caiyun Ma
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weizhang Zhong
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China.
| | - Chun Liu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Jianrui Niu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Changwei Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhaoyang Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
6
|
Romero L, Weng S, Oulego P, Collado S, Marcet I, Díaz M. Hydrolyzed sewage sludge as raw bio-based material for hermetic bag production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:31-43. [PMID: 38006756 DOI: 10.1016/j.wasman.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
This study aimed to assess the potential of sewage sludge, a significant residue of wastewater treatment plants (WWTPs), as a sustainable resource for producing a bio-based material for hermetic bags (BMHB), in order to reduce the dependency on petroleum-derived plastics. The approach involved the application of thermal hydrolysis to solubilize sewage sludge, and it systematically examined critical process parameters, including temperature (120-150 °C), residence time (1-4 h), and medium pH (6.6-10). Results revealed that alkaline thermal hydrolysis significantly enhanced biomolecule solubilization, particularly proteins (289 ± 1 mg/gVSSo), followed by humic-like substances (144 ± 6 mg/gVSSo) and carbohydrates (49 ± 2 mg/gVSSo). This condition also increased the presence of large-and medium-sized compounds, thereby enhancing BMHB mechanical resistance, with puncture resistance values reaching 63.7 ± 0.2 N/mm. Effective retention of UV light within the 280-400 nm range was also observed. All BMHB samples exhibited similar properties, including water vapor permeability (WVP) (∼3.9 g * mm/m2 * h * kPa), hydrophilicity (contact angles varied from 35.4° ± 0.3 to 64° ± 5), solubility (∼95%), and thermal stability (∼74% degradation at 700 °C). Notably, BMHB proved to be an eco-friendly packaging for acetamiprid, an agricultural pesticide, preventing direct human exposure to harmful substances. Testing indicated rapid pesticide release within 5 min of BMHB immersion in water, with only 5% of BMHB residues remaining after 20 min. Additionally, the application of this material in soil was considered safe, as it met regulatory limits for heavy metal content and exhibited an absence of microorganisms.
Collapse
Affiliation(s)
- Luis Romero
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Shihan Weng
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain.
| |
Collapse
|
7
|
Zarina R, Mezule L. Opportunities for resource recovery from Latvian municipal sewage sludge. Heliyon 2023; 9:e20435. [PMID: 37810806 PMCID: PMC10556758 DOI: 10.1016/j.heliyon.2023.e20435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Sewage sludge is a type of waste that has high health and environmental risks associated with its reuse. Moreover, sludge has been neglected in global circular economy targets because it is generated in considerably lower quantities than municipal solid waste. At the same time, European Union's transition towards circular economy has set the need to reduce the amount of waste and to promote the production of secondary raw materials. Many countries have developed national strategies for sludge management to reach their sustainability goals. In Latvia, the current sludge management approaches include land application, composting and anaerobic digestion which all utilize sludge as an organic fertilizer. As an alternative to current management practices, resource recovery is put forward as a solution that is in agreement with EU policy. Carbohydrates (including cellulose), proteins and lipids were selected as candidates for energy and materials recovery from sludge. For the first time, this study demonstrates a comprehensive assessment of Latvian municipal sewage sludge composition and offers the theoretical yields of secondary resources on a yearly basis. Primary, secondary, and anaerobically digested sludge from 13 wastewater treatment plants (WWTPs) in Latvia was characterized in this study. The most abundant sludge type - secondary sludge - contained 18.5% proteins, 9.8% lipids and 2.6% cellulose per TS. On a yearly basis, secondary sludge from all Latvian WWTPs could provide 2530 t proteins, corresponding to 750 t protein-based fertilizer. Primary sludge contained 23.9% proteins, 9.1% lipids and 7.1% cellulose per TS. Primary sludge could provide 763 t/a carbohydrates, including 545 t/a cellulose. The currently available secondary and digested sludge would yield 727 t bioethanol, corresponding to 4.0% of the national biofuel consumption. This work applies the concept of resource recovery to the Latvian wastewater sector and shows the potential of simultaneously addressing waste and wastewater management issues.
Collapse
Affiliation(s)
- Ruta Zarina
- Water Research and Environmental Biotechnology laboratory, Riga Technical University, Kipsalas 6A-263, Riga, Latvia
| | - Linda Mezule
- Water Research and Environmental Biotechnology laboratory, Riga Technical University, Kipsalas 6A-263, Riga, Latvia
| |
Collapse
|
8
|
Romero L, Oulego P, Collado S, Díaz M. Advanced thermal hydrolysis for biopolymer production from waste activated sludge: Kinetics and fingerprints. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118243. [PMID: 37276624 DOI: 10.1016/j.jenvman.2023.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Waste activated sludge (WAS) is the main residue of wastewater treatment plants, which can be considered an environmental problem of prime concern due to its increasing generation. In this study, a non-energetic approach was evaluated in order to use WAS as a renewable resource of high value-added products. For this reason, WAS was treated by thermal hydrolysis, H2O2 oxidation and advanced thermal hydrolysis (ATH) promoted by H2O2. The influence of temperature, H2O2 concentration and dosing strategy on biomolecule production (proteins and carbohydrates), size distribution (fingerprints) and various physico-chemical parameters (VSS, total and soluble COD, soluble TOC, pH and colour) was studied. The results revealed a synergistic effect between TH and H2O2 oxidation, which led to a significant increase in the production of both proteins and carbohydrates. In this sense, the concentration of proteins and carbohydrates obtained during TH at 85 °C for120 min was found to be 1376 ± 9 mg/L (121 mg/gVSSo) and 208 ± 4 mg/L (18 mg/gVSSo), respectively. However, in the presence of 4.5 mM H2O2/gVSSo under the same process conditions, the concentrations of proteins and carbohydrates exhibited a significant increase of 1.9-fold and 3.1-fold, respectively. Besides, the addition of H2O2 promoted the transformation of hydrophobic compounds, such as proteins and or lipids, into hydrophilic compounds, which presented low and medium sizes. An increase in temperature improved the solubilization rate and the yield of biomolecules significantly. Besides, the analysis of the kinetics related to the dosing strategy of H2O2 suggested the existence of two fractions during WAS solubilization, one of them being easily oxidizable, whereas the other one was more refractory to oxidation. Thus, the value of kH2O2 for the first addition of 1 mM H2O2/g VSSo was 0.020 L0.4 mgH2O2-0.4 min-1, while it was 4.3 and 8 times lower for the second and third additions, respectively.
Collapse
Affiliation(s)
- Luis Romero
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain.
| |
Collapse
|
9
|
Yan Y, Zhang M, Gao J, Qin L, Fu X, Wan J. Comparison of methods for detecting protein extracted from excess activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60967-60975. [PMID: 37042919 DOI: 10.1007/s11356-023-26455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 05/10/2023]
Abstract
The protein contents of hydrolyzed sludge supernatant are commonly determined with the Kjeldahl method, but this method suffers from complicated operations, long process times, and large quantities of chemicals consumed. In this paper, the Lowry, bicinchoninic acid (BCA), and Bradford methods were used to test the precision and spiked recovery of proteins from sludge supernatants hydrolyzed by alkaline-thermal hydrolysis (ATH), enzymatic hydrolysis (EH), and ultrasound-assisted enzymatic hydrolysis (UEH), and the results were compared with those obtained with the Kjeldahl method. For all the hydrolytic processes, the sludge protein values determined with the three tested methods were within 0.05 of each other, which met the experimental requirement for accuracy. Both the Lowry and BCA methods had recovery rates of 95-105%, while the Bradford method showed large deviations and was not highly reliable. The three protein determination methods showed significant differences with the Kjeldahl method (P<0.05). However, the relative deviation between the Kjeldahl and BCA methods was the smallest (3-5%), followed by those between the Kjeldahl and the Lowry (11-21%) and Bradford methods (21-90%), and the causes of the deviations were analyzed based on the protein hydrolysate components and the mechanisms for the different detection methods. On the basis of these results, the BCA method was chosen as the most appropriate quantification method for use with sludge protein extraction, and it was used to analyze the protein contents extracted from residual sludge samples obtained from two sewage treatment plants. The reliability of the method was verified, and this lays a foundation for the extraction and reclamation of sludge proteins.
Collapse
Affiliation(s)
- Yixin Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengnan Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lei Qin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi Fu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
- Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
10
|
Yan Y, Zhang Y, Wan J, Gao J, Liu F. Optimization of protein recovery from sewage sludge via controlled and energy-saving ultrasonic-alkali hydrolysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162004. [PMID: 36739027 DOI: 10.1016/j.scitotenv.2023.162004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The abundant protein in excess sludge can be recovered to prepare high value-added products. However, this sustainable treatment method still has large challenges, such as high energy consumption. In this work, the classical batch operation (BO) and semi-batch operation (SBO) modes were adopted and compared for ultrasonic-alkali hydrolysis. The results showed that the reaction time of SBO significantly decreased to half of that of BO with the same efficiency (ca. 70 %), indicating that SBO was much more energy-efficient. Moreover, analysis of the nitrogen solubility index and trichloroacetic acid-soluble nitrogen index demonstrated that the further proteolysis of protein under SBO was limited. Furthermore, the first-order reaction model fitted the hydrolysis data well (R2 ≥ 0.91) for both modes, in which the rate constant of SBO (k = 0.44 min-1) was 2.3 times that of BO. Finally, the properties of both products met the standards of foaming extinguishers.
Collapse
Affiliation(s)
- Yixin Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yajing Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
11
|
The enhanced dewaterability of sludge by a starch-based flocculant combined with attapulgite. Sci Rep 2023; 13:402. [PMID: 36624301 PMCID: PMC9829677 DOI: 10.1038/s41598-023-27749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Coagulation/flocculation is one of the most widely used and cost-effective pretreatment methods for improving the dewaterability of sludge. In this study, a cationic modified starch-based flocculant (St-CTA) in conjunction with a popular clay, attapulgite (ATP), was used for the conditioning of waste-activated sludge. The dewatering properties, including the filter cake moisture content, filtration specific resistance, capillary suction time, filtration rate and compressibility coefficient, were measured and compared by varying the doses of St-CTA and ATP. By combination of the apparent dewatering performance and the changes in the contents and distributions of the extracellular polymeric substance (EPS) fractions and components, sludge flocs, and microstructures of sludge cakes, the dewatering mechanisms were discussed in detail. St-CTA in conjunction with ATP can exhibit an enhanced dewaterability of sludge and the water content in final sludge cake can be stably reduced below 80% owing to the synergistic effects of St-CTA and ATP. In addition to the efficient charge neutralization of St-CTA, ATP not only acts as a skeleton builder in the sludge dewatering process which makes the sludge flocs more compact and improves the filterability and permeability, but also tightly interacts with the proteins in EPS of the sludge which reduces the protein content and further enhances the dewatering effect. This study provides an economical, green, and effective way to further improve the dewaterability of sludge.
Collapse
|
12
|
Yan Y, Zhang Y, Gao J, Qin L, Liu F, Zeng W, Wan J. Intracellular and extracellular sources, transformation process and resource recovery value of proteins extracted from wastewater treatment sludge via alkaline thermal hydrolysis and enzymatic hydrolysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158512. [PMID: 36063951 DOI: 10.1016/j.scitotenv.2022.158512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Excess sludge contains a large amount of protein and can be recycled to prepare industrial foaming agents, foliar fertilizers and other high value-added products. The optimization and effects of sludge protein extraction using the common processes of alkaline thermal hydrolysis (ATH) and enzymatic hydrolysis (EH) have been widely studied. This study focused on the protein extraction mechanisms of ATH and EH by comparing the ratio of intracellular to extracellular proteins extracted and the transformation of protein during the hydrolysis process. The extracellular protein content was 82.6 ± 5.07 mg/g VSS, and the content of intracellular protein extracted using ATH and EH was 376.9 mg/g VSS and 127.9 mg/g VSS, respectively. The ratio of intracellular to extracellular proteins extracted by ATH and EH was 4.5 and 1.5, respectively, indicating that ATH had a much better wall-breaking effect that allowed it to extract abundant intracellular proteins. The protein content obtained from ATH continuously increased over time, and approximately 38 % of proteins were further hydrolyzed to polypeptides. In contrast, the relatively low protein content extracted by EH possibly limited subsequent polypeptide hydrolysis, but subsequent hydrolysis to amino acids was not noticeably affected and was linearly correlated with the amount of protein extracted. An analysis of the recycling convenience and value of extracted proteins showed that the sludge dewatering performance increased by 86.7 % and 45.5 % after ATH and EH treatment, respectively, which was conducive to the subsequent separation of the protein solution. The protein extracted by ATH, with a large amount of peptides, would be beneficial to prepare industrial foaming agents, while the protein extracted by EH was rich in free amino acids and could be used to prepare foliar fertilizer.
Collapse
Affiliation(s)
- Yixin Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yajing Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Lei Qin
- Central Plains Environmental Protection Co., Ltd., Zhengzhou 450001, China
| | - Fan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wei Zeng
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
13
|
Yan Y, Liu F, Gao J, Wan J, Ding J, Li T. Enhancing enzyme activity via low-intensity ultrasound for protein extraction from excess sludge. CHEMOSPHERE 2022; 303:134936. [PMID: 35569633 DOI: 10.1016/j.chemosphere.2022.134936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Rich protein within excess sludge could be recovered to prepare high value-added products such as liquid fertilizer and foaming agents. Low-intensity ultrasonication was adopted to help extract sludge protein by improving enzyme activity. Alkaline protease was added to the sludge for ultrasonic irradiation, and the maximum enzyme activity at 3500 kJ/kg TS was approximately 21% higher than that without ultrasonication. The protein extraction effect, specific resistance of sludge (SRS) and economics of low-intensity ultrasound-assisted enzymatic hydrolysis (LUEH) were compared with those of single enzymatic hydrolysis (EH) and HUEH under optimal conditions. The protein extraction rates of HUEH and LUEH were both higher than that of EH. Although the protein extraction rate of LUEH was 13.6% lower than that of HUEH, the amino acid content was similar because the low-intensity ultrasonic radiation promoted the enzyme activity and thereby enhanced the protein hydrolysis capacity. After hydrolysis, the SRS of LUEH was lower than that of HUEH, indicating that LUEH possessed a better dewatering performance, which was beneficial to the subsequent separation of the protein solution. The amount consumed by LUEH was approximately 20% lower than that consumed by HUEH and 17.3% lower than that consumed by EH. In addition, the enzyme dosage was reduced by approximately 38.5% with LUEH. Therefore, the total cost of LUEH was less than that of EH and HUEH, indicating that LUEH is more economically feasible for the extraction of protein from excess sludge.
Collapse
Affiliation(s)
- Yixin Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Fan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Jingyu Ding
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Tiantian Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
14
|
Boukid F. The realm of plant proteins with focus on their application in developing new bakery products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:101-136. [PMID: 35595392 DOI: 10.1016/bs.afnr.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant proteins are spreading due to growing environmental, health and ethical concerns related to animal proteins. Proteins deriving from cereals, oilseeds, and pulses are witnessing a sharp growth showing a wide spectrum of applications from meat and fish analogues to infant formulations. Bakery products are one of the biggest markets of alternative protein applications for functional and nutritional motives. Fortifying bakery products with proteins can secure a better amino-acids profile and a higher protein intake. Conventional plant proteins (i.e., wheat and soy) dominate the bakery industry, but emerging sources (i.e., pea, chickpea, and faba) are also gaining traction. Each protein brings specific functional properties and nutritional value. Therefore, this chapter gives an overview of the main features of plant proteins and discusses their impact on the quality of bakery products.
Collapse
Affiliation(s)
- Fatma Boukid
- Food Safety and Functionality Programme, Food Industry Area, Institute of Agriculture and Food Research and Technology (IRTA), Monells, Catalonia, Spain.
| |
Collapse
|
15
|
Yang B, Qin Y, He X, Li H, Ma J. The removal of ammonia nitrogen via heterotrophic assimilation by a novel Paracoccus sp. FDN-02 under anoxic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152236. [PMID: 34896137 DOI: 10.1016/j.scitotenv.2021.152236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A novel strain FDN-02 was isolated from a sequencing batch biofilm reactor. FDN-02 was identified as Paracoccus sp., and the Genbank Sequence_ID was MW652628. Comparing with the removal efficiency of ammonia nitrogen (NH4+-N) by bacterium FDN-02 under different growth conditions, the optimal initial pH, carbon source, and C/N ratio were 7.0, sucrose, and 16, respectively. The maximum removal efficiency and rate of NH4+-N were respectively 96.2% and 10.06 mg-N/L/h within 8 h under anoxic condition when the concentration of NH4+-N was 44.87 mg/L. Specifically, 71.9% of NH4+-N was utilized by strain FDN-02 through heterotrophic assimilation to synthetize organic nitrogen, and approximately 24.1% of NH4+-N was lost in the form of gaseous nitrogen without the emission of nitrous oxide. Bacterium FDN-02 was also found to be a denitrifying organism, and nitrate nitrogen and nitrite nitrogen of lower concentrations were removed by denitrification after the enlargement of biomass. Further investigation showed that the biomass after the removal of NH4+-N by strain FDN-02 had resource utilization potential, and the contents of proteins and amino acids were 635 and 192.97 mg/g, respectively, especially for the usage as an alternative nutrient source for livestock and organic fertilizers. This study provided a promising environmentally friendly biological treatment method for the removal of NH4+-N in the wastewater.
Collapse
Affiliation(s)
- Biqi Yang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yuyang Qin
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xianglong He
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hongjing Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Cao DQ, Tian F, Wang X, Zhang WY, Hao XD, Wang QH. Recovery of polymeric substances from excess sludge: Surfactant-enhanced ultrasonic extraction and properties analysis. CHEMOSPHERE 2021; 283:131181. [PMID: 34146882 DOI: 10.1016/j.chemosphere.2021.131181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/12/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The recovery of polymeric substances from excess sludge is gaining significant research interest in future wastewater treatment technologies. We present a surfactant-enhanced ultrasonic method to extract mixed polymeric substances with typical functional groups from excess sludge. Four potential reasons were revealed for the higher efficiency upon ultrasonication with surfactant: low surface tension, damage of non-covalent bonds between extracellular polymeric substances and cells, enhanced dissolution of polymeric substances, and release of intracellular polymeric substances caused by cell lysis. The increase in extraction efficiency after the addition of cetyltrimethylammonium bromide and sodium dodecyl sulfate reached the maximum of 76.5% and 53.1%, respectively. The contents of polysaccharides, proteins, and DNA were approximately 50% of the total polymeric substances, and the content of protein was higher than that of polysaccharide; the concentration change of the surfactant had a minimal effect on these contents. For the polymeric substances extracted via ultrasonication with surfactant, the size was smaller than that for the non-surfactant extraction; moreover, the contents of metals decreased significantly (Al: 0.18% → 0%; Na: 0.15% → 0%; Ca: 0.24% → 0.11%), which was probably caused by the interaction between the surfactant and metal ions in the excess sludge. The surfactant had a negligible effect on the properties of polymeric substances, adsorption capacity of polymeric substances for heavy metal ions, and dewatering performance of sludge. The recycled polymeric substances may be used as a substitute for commercial adsorbents of heavy metal ions. Thus, the obtained results provide further insight into the recovery of polymeric substances from excess sludge via the surfactant-enhanced ultrasonic method.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Feng Tian
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xin Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Qun-Hui Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
17
|
Zheng K, Li H, Wang S, Wang Y, Li A, Feng X, Li J. Enhanced proteins and amino acids production based on ammonia nitrogen assimilation and sludge increment by the integration of bioadsorption with anaerobic-anoxic-oxic (AAO) process. CHEMOSPHERE 2021; 280:130721. [PMID: 33962293 DOI: 10.1016/j.chemosphere.2021.130721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Poor effect of contaminants removal efficiency and low organic matter content of activated sludge are common in wastewater treatment plants (WWTPs) in China due to the low-strength wastewater. An anaerobic-anoxic-oxic (AAO) and an adsorption/AAO (A/AAO) combined system were established simultaneously to conduct a comparative study for realizing the conversion of carbon source in influent and the enrichment and recovery of proteins and amino acids through the assimilation of ammonia nitrogen. The experimental results showed that 63.5% of the organic matter in influent was adsorbed and flocculated in adsorption process, and the removal rates of chemical oxygen demand, total nitrogen and total phosphorus in A/AAO process were 88.7%, 77.1%, and 93.0% respectively, which were remarkably better than those in AAO process owing to the addition of improved carbon source. Ammonia assimilation rate of A/AAO process was 26.7% higher than that of AAO process, which implied that the ammonia used to synthesize sludge protein was prominently increased. Furthermore, intracellular proteins and amino acids in A/AAO process were 20% higher than those of AAO process, and the quality was equivalent with fish meal or soybean meal as feed. In addition, the microbial community analysis based on 16S rDNA was conducted. Dechloromonas, Zoogloea, Nitrospira, and Flavobacterium were the main genera, and played important roles in nutrient removal and ammonia nitrogen assimilation. The integration of adsorption process was significant to low-strength wastewater treatment and the improvement of excess sludge quality, which is a prospective inspiration for the resource recovery-based wastewater treatment process.
Collapse
Affiliation(s)
- Kaikai Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huaibo Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| | - Yan Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Aimin Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xuan Feng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
18
|
Izydorczyk G, Mikula K, Skrzypczak D, Trzaska K, Moustakas K, Witek-Krowiak A, Chojnacka K. Agricultural and non-agricultural directions of bio-based sewage sludge valorization by chemical conditioning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47725-47740. [PMID: 34278553 PMCID: PMC8410704 DOI: 10.1007/s11356-021-15293-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
This literature review outlines the most important-agricultural and non-agricultural-types of sewage sludge management. The potential of waste sludge protein hydrolysates obtained by chemical sludge conditioning was reported. The discussed areas include acidic and alkaline hydrolysis, lime conditioning, polyelectrolyte dewatering and other supporting techniques such as ultrasounds, microwave or thermal methods. The legislative aspects related to the indication of the development method and admission to various applications based on specified criteria were discussed. Particular attention was devoted to the legally regulated content of toxic elements: cadmium, lead, nickel, mercury, chromium and microelements that may be toxic: copper and zinc. Various methods of extracting valuable proteins from sewage sludge have been proposed: chemical, physical and enzymatic. While developing the process concept, you need to consider extraction efficiency (time, temperature, humidity, pH), drainage efficiency of post-extraction residues and directions of their management. The final process optimization is crucial. Despite the development of assumptions for various technologies, excess sewage sludge remains a big problem for sewage treatment plants. The high costs of enzymatic hydrolysis, thermal hydrolysis and ultrasonic methods and the need for a neutralizing agent in acid solubilization limit the rapid implementation of these processes in industrial practice.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Krzystof Trzaska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| |
Collapse
|
19
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
20
|
Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. WATER 2020. [DOI: 10.3390/w12051431] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advancement of science has facilitated increase in the human lifespan, reflected in economic and population growth, which unfortunately leads to increased exploitation of resources. This situation entails not only depletion of resources, but also increases environmental pollution, mainly due to atmospheric emissions, wastewater effluents, and solid wastes. In this scenario, it is compulsory to adopt a paradigm change, as far as the consumption of resources by the population is concerned, to achieve a circular economy. The recovery and reuse of resources are key points, leading to a decrease in the consumption of raw materials, waste reduction, and improvement of energy efficiency. This is the reason why the concept of the circular economy can be applied in any industrial activity, including the wastewater treatment sector. With this in view, this review manuscript focuses on demonstrating the challenges and opportunities in applying a circular economy in the water sector. For example, reclamation and reuse of wastewater to increase water resources, by paying particular attention to the risks for human health, recovery of nutrients, or highly added-value products (e.g., metals and biomolecules among others), valorisation of sewage sludge, and/or recovery of energy. Being aware of this situation, in the European, Union 18 out of 27 countries are already reusing reclaimed wastewater at some level. Moreover, many wastewater treatment plants have reached energy self-sufficiency, producing up to 150% of their energy requirements. Unfortunately, many of the opportunities presented in this work are far from becoming a reality. Still, the first step is always to become aware of the problem and work on optimizing the solution to make it possible.
Collapse
|
21
|
Yan Y, Qin L, Gao J, Nan R, Gao J. Protein extraction and sludge dewatering performance of ultrasound-assisted enzymatic hydrolysis of excess sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18317-18328. [PMID: 32185736 DOI: 10.1007/s11356-020-08208-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Excess sludge contains a high amount of protein, which can be recovered to prepare protein foaming agents and other products with high added value. Enzymatic hydrolysis (EH) is a promising technology for the recovery of protein from excess sludge, and ultrasound has been identified as a potential method to assist in sludge disintegration. Ultrasonic pretreatment was combined with alkaline protease hydrolysis to extract protein from excess sludge produced by A2/O treatment (S1) and an oxidation ditch treatment (S2), and the extraction effects and changes in sludge dewatering performance were studied. The effects of the six factors ultrasonic power density, ultrasonication time, enzyme dose, pH, hydrolysis temperature and hydrolysis time were analyzed. The results showed that the ultrasound-enhanced enzymatic method could effectively extract sludge protein. Although the extraction efficiencies for the different municipal sludges were different, their extraction conditions were relatively similar. Considering the protein extraction rate and sludge dewatering performance, the selected extraction conditions were as follows: ultrasonic power density, 1 W/mL; ultrasonication time, 20 min; enzyme dose, 3500 U/g; pH 11; hydrolysis temperature, 60 °C; and hydrolysis time, 3 h. Under these conditions, the protein extraction rate (Rp) of S1 and S2 reached 55.9% and 52.3%, respectively. Moreover, the improvement in sludge dewatering performance (Dw) of S1 and S2 was 49.5% and 52.4%, respectively. Comparison of the protein, polypeptide, and amino acid contents obtained from ultrasound-assisted enzymatic hydrolysis (UEH), EH, and ultrasonic hydrolysis (UH) further demonstrated the beneficial effect of ultrasound application on enzymatic hydrolysis.
Collapse
Affiliation(s)
- Yixin Yan
- School of Water Conservancy Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Lei Qin
- School of Water Conservancy Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Jianlei Gao
- School of Water Conservancy Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China.
| | - Ruiqi Nan
- Zhengzhou Yuanzhihe Environmental Protection Technology Company, Zhengzhou, 450001, Henan, China
| | - Jingqing Gao
- School of Water Conservancy Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| |
Collapse
|