1
|
Yu Y, Liu M, Wang S, Zhang C, Zhang X, Liu L, Xue S. Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation. Molecules 2024; 29:4535. [PMID: 39407464 PMCID: PMC11477601 DOI: 10.3390/molecules29194535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Polychlorinated naphthalenes (PCNs) are a new type of persistent organic pollutant (POP) characterized by persistence, bioaccumulation, dioxin-like toxicity, and long-range atmospheric transport. Focusing on one type of PCN, monochlorinated naphthalenes (CN-1, CN-2), this study aimed to examine their photodegradation in the environment. In this work, CN-1 and CN-2 were employed as the model pollutants to investigate their photodegradation process under UV-C irradiation. Factors like the pH, initial concentrations of CN-1, and inorganic anions were investigated. Next, the roles of hydroxyl radicals (•OH), superoxide anion radicals (O2•-), and singlet oxygen (1O2) in the photodegradation process were discussed and proposed via theory computation. The results show that the photodegradation of CN-1 and CN-2 follows pseudo-first-order kinetics. Acidic conditions promote the photodegradation of CN-1, while the effects of pH on the photodegradation of CN-2 are not remarkable. Cl-, NO3-, and SO32- accelerate the photodegradation of CN-1, whereas the effect of SO42- and CO32- is not significant. Additionally, the contributions of •OH and O2•- to the photodegradation of CN-1 are 20.47% and 38.80%, while, for CN-2, the contribution is 16.40% and 16.80%, respectively. Moreover, the contribution of 1O2 is 15.7%. Based on DFT calculations, C4 and C6 of the CN-1 benzene ring are prioritized attack sites for •OH, while C2 and C9 of CN-2 are prioritized attack sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Liu
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| | - Shuang Xue
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| |
Collapse
|
2
|
Ding WQ, Labiadh L, Xu L, Li XY, Chen C, Fu ML, Yuan B. Current advances in the detection and removal of organic arsenic by metal-organic frameworks. CHEMOSPHERE 2023; 339:139687. [PMID: 37541439 DOI: 10.1016/j.chemosphere.2023.139687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Arsenic (As) is a highly toxic heavy metal and has been widely concerned for its hazardous environmental impact. Aromatic organic arsenic (AOCs) has been frequently used as an animal supplement to enhance feed utilization and prevent dysentery. The majority of organic arsenic could be discharged from the body and evolve as highly toxic inorganic arsenic that is hazardous to the environment and human health via biological conversion, photodegradation, and photo-oxidation. Current environmental issues necessitate the development and application of multifunctional porous materials in environmental remediation. Compared to the conventional adsorbent, such as activated carbon and zeolite, metal-organic frameworks (MOFs) exhibit a number of advantages, including simple synthesis, wide variety, simple modulation of pore size, large specific surface area, excellent chemical stability, and easy modification. In recent years, numerous scientists have investigated MOFs related materials involved with organic arsenic. These studies can be divided into three categories: detection of organic arsenic by MOFs, adsorption to remove organic arsenic by MOFs, and catalytic removal of organic arsenic by MOFs. Here, we conduct a critical analysis of current research findings and knowledge pertaining to the structural characteristics, application methods, removal properties, interaction mechanisms, and spectral analysis of MOFs. We summarized the application of MOFs in organic arsenic detection, adsorption, and catalytic degradation. Other arsenic removal technologies and conventional substances are also being investigated. This review will provide relevant scientific researchers with references.
Collapse
Affiliation(s)
- Wen-Qing Ding
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Lazhar Labiadh
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Lei Xu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Xiao-Ying Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Chen Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| |
Collapse
|
3
|
Yang T, An L, Zeng G, Jiang M, Li J, Liu C, Jia J, Ma J. Efficient removal of p-arsanilic acid and arsenite by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. WATER RESEARCH 2023; 241:120091. [PMID: 37262947 DOI: 10.1016/j.watres.2023.120091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
The widespread occurrence of p-arsanilic acid (p-ASA) in natural environments poses big threats to the biosphere due to the generation of toxic inorganic arsenic (i.e., As(III) and As(V), especially As(III) with higher toxicity and mobility). Oxidation of p-ASA or As(III) to As(V) followed by precipitation of total arsenic using Fe-based advanced oxidation processes demonstrated to be a promising approach for the treatment of arsenic contamination. This study for the first time investigated the efficiency and inherent mechanism of p-ASA and As(III) oxidation by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. p-ASA was rapidly degraded by the Fe(II)/PAA process within 20 s at neutral to acidic pHs under different conditions, while it was insignificantly degraded by PAA oxidation alone. Lines of evidence suggested that hydroxyl radicals and organic radicals generated from the homolytic OO bond cleavage of PAA contributed to the degradation of p-ASA in the Fe(II)/PAA process. p-ASA was mainly oxidized to As (V), NH4+, and p-aminophenol by the Fe(II)/PAA process, wherein the aniline group and its para position were the most vulnerable sites. As(III) of concern was likely generated as an intermediate during p-ASA oxidation and it could be readily oxidized to As(V) by the Fe(II)/PAA process as well as PAA alone. The in-depth investigation demonstrated that PAA alone was effective in the oxidation of As(III) under varied conditions with a stoichiometric molar ratio of 1:1. Efficient removal (> 80%) of total arsenic during p-ASA oxidation by Fe(II)/PAA process or during As(III) oxidation by PAA process with additional Fe(III) in synthetic or real waters were observed, mainly due to the adsorptive interactions of amorphous ferric (oxy)hydroxide precipitates. This study systematically investigates the oxidation of p-ASA and As(III) by the Fe(II)/PAA and PAA processes, which is instructive for the future development of arsenic remediation technology.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Maoju Jiang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China.
| | - Changyu Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Prasai Joshi T, Koju R, Cheng H, Qi Z, Liu R, Bai Y, Hu C, Peng J, Joshi DR. High efficient removal of 4-aminophenylarsonic acid from aqueous solution via enhanced FeOOH using Mn(VII). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60694-60703. [PMID: 37037935 DOI: 10.1007/s11356-023-26587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Efficient removal of 4-aminophenylarsonic acid from contaminated water sources is essential to mitigate arsenic pollution. We proposed a competent technique to achieve 4-aminophenylarsonic acid removal via adsorption on enhanced α-FeOOH using various concentrations of Mn(VII). The elimination rate of 4-aminophenylarsonic acid applying FeOOH with Mn(VII) was dependent on acidic conditions. More than 99.9% of 4-aminophenylarsonic acid was eliminated in a 6-min reaction time under acidic conditions. The reaction of 4-aminophenylarsonic acid was fast at 4.0 and 5.0 pH, with its complete oxidation into arsenate and the liberation of manganese Mn(II) in the initial stage of the reaction. Similarly, the reaction rate constant (kobs) decreased from 0.7048 ± 0.02 to 0.00155 ± 0.00007 as the pH increased from 4.0 to 9.0. Oxidation capacity was considerably enhanced via the removal of electrons from 4-aminophenylarsonic acid to Mn(VII) after the creation of its radical intermediate and further change in Mn(III) to Mn(II) in the solution. The results showed that Mn(VII) played a crucial role in 4-aminophenylarsonic acid degradation at a low pH (e.g., 4.0), and the oxidation process proceeded in different manners, namely, electron transfer, hydroxylation, and ring-opening. These results illustrated that Mn(VII) is an effective, economic purification process to mitigate 4-aminophenylarsonic acid generated from poultry waste.
Collapse
Affiliation(s)
- Tista Prasai Joshi
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, 44700, Nepal
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rashmi Koju
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hanyang Cheng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zenglu Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Dev Raj Joshi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Central Department of Microbiology, Tribhuvan University, Kirtipur, 44613, Nepal
| |
Collapse
|
5
|
Tyutereva YE, Novikov MV, Snytnikova OA, Pozdnyakov IP. How to measure quantum yield of hydroxyl radical during photolysis of natural Fe(III) carboxylates? CHEMOSPHERE 2022; 298:134237. [PMID: 35259360 DOI: 10.1016/j.chemosphere.2022.134237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The efficiency of oxidative species generation is one of the crucial parameters for the application of any system based on advanced oxidation processes (AOPs). This paper presents an approach to the correct determination of quantum yields of the hydroxyl radical upon UV photolysis of natural Fe(III) carboxylates, which are widely used in the works devoted to Environmental Chemistry and Water Treatment. The approach is based on the use of [FeOH]2+ hydroxocomplex as a reference system with the well-known quantum yield of hydroxyl radical and benzene as a selective trap for the •OH radical. For the first time, the quantum yields of the •OH radical have been determined for the most popular Fe(III) oxalate photosystem in the wide range of initial parameters (pH, excitation wavelength, concentration of oxalate and Fe(III) ions). Also the oxidation potential of Fe(III) oxalate photosystem was tested on a set of persistent organic herbicides, and quantum yields of the photodegradation of herbicides were compared with the quantum yield of the •OH radical. The Fe(III) oxalate photosystem is recommended as a suitable system for the generation of •OH radical at neutral pH under UV radiation.
Collapse
Affiliation(s)
- Yuliya E Tyutereva
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Mikhail V Novikov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Olga A Snytnikova
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation; International Tomography Center SB RAS, 3a Institutskaya str., 630090, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
6
|
Erokhin SE, Snytnikova OA, Novikov MV, Fedunov RG, Grivin VP, Yanshole VV, Xu J, Wu F, Plyusnin VF, Pozdnyakov IP. Probing reactions between imipramine and hydroxyl radical with the photolysis of iron(III) oxalate: Implications for the indirect photooxidation of tricyclic antidepressants in waters. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Tyutereva YE, Sherin PS, Polyakova EV, Grivin VP, Plyusnin VF, Shuvaeva OV, Xu J, Wu F, Pozdnyakov IP. Synergetic effect of potassium persulfate on photodegradation of para-arsanilic acid in Fe(III) oxalate system. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Liu X, Liu T, Zhou H, Hu W, Yao B, Li J, Yang Y, Zhi D, Du S, Zhou Y. High-efficiency degradation of p-arsanilic acid and arsenic immobilization with iron encapsulated B/N-doped carbon nanotubes at natural solution pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147152. [PMID: 33933762 DOI: 10.1016/j.scitotenv.2021.147152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
p-arsanilic acid (p-ASA) is still widely applied as feed additive in many countries. Accompanied with chemical reactions in the environment, p-ASA will release more toxic inorganic arsenic. In order to safely and efficiently treat p-ASA flow washing into the environment, iron encapsulated B/N-doped carbon nanotubes (Fe@C-NB) were fabricated and used as the catalyst for the degradation of p-ASA. The calcination temperature and the dose of the iron salt have significant effects on the structure and properties of the catalysts. We have produced a series of catalysts of the same type to facilitate the degradation of p-ASA. Under optimal conditions of material (Fe@C-NB) syntheses, both 95% degradation of p-ASA and 86% total arsenic immobilization can be obtained with oxidant (Peroxymonosulfate, PMS) and catalyst (Fe@C-NB) treatment after 60 min. The effects of oxidant types (peroxydisulfate (PDS), PMS, hydrogen peroxide (H2O2)), amount, initial solution pH, inorganic anion, and other reaction conditions were studied in the p-ASA removal. In this Fenton-like reaction, the Fe@C-NB exhibits high efficiency and excellent stability without complex preparation methods; besides, the advantages of short reaction time and natural reaction conditions in Fe@C-NB/PMS system will promote the practical application of Fenton-like.
Collapse
Affiliation(s)
- Xin Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Tianhao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hao Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenyong Hu
- College of Biological Resources and Environmental Science, Jishou University, Hunan 416000, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Juan Li
- Hunan BEWG Well-point Environmental Technology Co., Ltd., Changsha 410128, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Shizhi Du
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
9
|
Keerthana SP, Yuvakkumar R, Ravi G, Mustafa AEZMA, Al-Ghamdi AA, Soliman Elshikh M, Velauthapillai D. PVP influence on Mn-CdS for efficient photocatalytic activity. CHEMOSPHERE 2021; 277:130346. [PMID: 33780675 DOI: 10.1016/j.chemosphere.2021.130346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment is the most serious problem in this upcoming era. A harmful effluent like organic dyes, heavy metals, acids from industries mixed in wastewater is deteriorating the environment. To get rid of these poisonous materials and to recycle wastewater for domestic purposes, there are many steps which included photocatalytic dye degradation. PVP assisted Mn-CdS nanoparticles was prepared by novel hydrothermal technique. The characteristic behavior of pure and PVP (1% and 2%) assisted Mn-CdS samples were studied by further analysis. The structural, optical, vibrational, morphological, chemical composition behavior of synthesized pristine and surfactant induced Mn-CdS nanoparticles were analyzed. UV-Vis spectra revealed the optical behavior of the prepared pure and PVP (1% and 2%) assisted Mn-CdS samples. The bandgap obtained was 2.2, 2.06 and 1.99 eV for pure Mn-CdS, 1% PVP-Mn-CdS and 2% PVP- Mn-CdS. The narrow bandgap is one of the advantage of the material. Mn-CdS, 1% PVP-(Mn-CdS) and 2% PVP- (Mn-CdS) morphology were further investigated by Scanning Electron Microscopic studies (SEM). The surfactant (PVP) was added to enhance the morphology development and decrease agglomeration on the surface and the SEM images revealed a clear evidence for enhancement of morphology in all three samples. 2% PVP-(Mn-CdS) sample showed a good development in morphology when compared with other two samples and the best sample showed formation of nanorods below the surface of nanoparticles. Further, Mn-CdS, 1% PVP-(Mn-CdS) and 2% PVP- (Mn-CdS) was indulged to investigate the cationic degradation. The photocatalytic activities of three samples were carried out with loading different amount of the catalysts and 30 mg catalyst 2% PVP- (Mn-CdS) loaded dye solution showed a considerable degradation of methylene blue dye. The 30 mg catalyst (2% PVP-Mn-CdS) showed 98% efficiency under visible light irradiation for about 2 h. The best candidate, 30 mg catalyst (2% PVP-Mn-CdS) investigated for its reusability. The catalyst showed almost 98% of efficiency up to three cycles which confirmed the level of potential of the sample. 2% PVP-(Mn-CdS) sample would be promising candidate in wastewater treatment. It can be further utilized for removing dyes from wastewater in wastewater remediation process.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, 11495, Saudi Arabia.
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|