1
|
Koga T, Hirakawa S, Nakagawa S, Ishibashi Y, Kashiwabara M, Miyawaki T. Systematization of a toxicity screening method based on a combination of chemical analysis and the delayed fluorescence algal growth inhibition test for use in emergency environmental surveys. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55447-55461. [PMID: 39230813 DOI: 10.1007/s11356-024-34821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
In recent years, heavy rainfall disasters linked to climate change have become more frequent, raising concerns about the release of chemicals stored in factories. Assessing chemical contamination during such emergencies therefore necessitates the development of a quick and easy method for evaluating hazardous contaminants in combination with toxicity testing. This study proposes a "toxicity screening" method that combines biological response testing and chemical analysis to systematically evaluate hazardous contaminants in emergency situations. The toxicity screening method evaluates the water quality in three steps, including water quality measurements and a delayed fluorescence (DF) assay, metal content measurements and a DF assay, and targeted screening analysis and a DF assay. The efficacy of this method was tested using industrial wastewater from 14 locations. Seven of the samples were non-toxic, while the other seven samples were toxic, displaying no observed effect concentration (NOEC) values ranging from 0.625 to 20%. Two toxic samples in the first phase possessed high total chlorine concentrations (0.4 mg L-1) and conductivities (2200 mS m-1), indicating that the main sources of toxicity were residual chlorine and a high salt concentration. In the second phase, metal content analysis identified metals as the toxicity cause in four samples. In the third phase, the organic contaminants were analyzed, and tri-n-octyl phosphate (TNOP) was detected at a concentration of 0.00027 mg L-1. The results of solid-phase extraction experiments and exposure tests with TNOP alone indicated that the contribution of TNOP to the toxicity was negligible and that chemicals not adsorbed on the solid-phase extraction cartridges were the cause of toxicity. The proposed method can therefore be considered effective for disaster-related water quality assessment, delivering results within 12 days.
Collapse
Affiliation(s)
- Toyokazu Koga
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan.
| | - Shusaku Hirakawa
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Shuhei Nakagawa
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Yuko Ishibashi
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Manabu Kashiwabara
- Fukuoka Research Commercialization Center for Recycling Systems, 2-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Takashi Miyawaki
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
2
|
Ma Y, Yang C, Yao Q, Li F, Mao L, Zhou X, Meng X, Chen L. Nontarget screening analysis of organic compounds in river sediments: a case study in the Taipu River of the Yangtze River Delta Region in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24547-24558. [PMID: 38446294 DOI: 10.1007/s11356-024-32761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Sediments are the vital fate of organic compounds, and the recognition of organic compounds in sediments is constructive in providing comprehensive and long-term information. In this study, a three-step nontarget screening (NTS) analysis workflow using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) revealed the extensive existence of organic compounds in the Taipu River sediment. Organic compounds (705) were detected and divided into four structure-related groups or eight use-related classes. In the Taipu River's mainstream, a significant difference was found in the composition profiles of the identified organic compounds among various sites, demonstrating the organic compounds were more abundant in the midstream and downstream than in the upstream. Meanwhile, the hydrodynamic force was recognized as a potential factor influencing organic compounds' occurrence. Based on multiple statistical analyses, the shipping and textile printing industries were considered the significant contributors to the identified organic compounds. Considering the principles of the priority substances and the current status of the substances, two traditional pollutants and ten emerging organic compounds were recognized as the priority organic compounds for the Taipu River. Conclusively, this study established a workflow for NTS analysis of sediment samples and demonstrated the necessity of NTS analysis to evaluate the impact of terrestrial emissions of organic compounds on the aquatic environment.
Collapse
Affiliation(s)
- Yu Ma
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| | - Qinglu Yao
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiangzhou Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Ling Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Lopez-Arago N, Munoz M, de Pedro ZM, Casas JA. Natural magnetite as an effective and long-lasting catalyst for CWPO of azole pesticides in a continuous up-flow fixed-bed reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29148-29161. [PMID: 38568307 PMCID: PMC11058975 DOI: 10.1007/s11356-024-33065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the impact of H2O2 dose (3.6-13.4 mg L-1), magnetite load (2-8 g), inlet flow rate (0.25-1 mL min-1), and initial micropollutant concentration (100-1000 µg L-1) over 300 h of continuous operation. Azole pesticide conversion values above 80% were achieved under selected operating conditions (WFe3O4 = 8 g, [H2O2]0 = 6.7 mg L-1, flow rate = 0.5 mL min-1, pH0 = 5, T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg L-1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.
Collapse
Affiliation(s)
- Neus Lopez-Arago
- Chemical Engineering Department, Universidad Autónoma de Madrid, Ctra. Colmenar Km 15, 28049, Madrid, Spain.
| | - Macarena Munoz
- Chemical Engineering Department, Universidad Autónoma de Madrid, Ctra. Colmenar Km 15, 28049, Madrid, Spain
| | - Zahara M de Pedro
- Chemical Engineering Department, Universidad Autónoma de Madrid, Ctra. Colmenar Km 15, 28049, Madrid, Spain
| | - Jose A Casas
- Chemical Engineering Department, Universidad Autónoma de Madrid, Ctra. Colmenar Km 15, 28049, Madrid, Spain
| |
Collapse
|
4
|
Lee S, Choi Y, Kang D, Jeon J. Proposal for priority emerging pollutants in the Nakdong river, Korea: Application of EU watch list mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122838. [PMID: 37918771 DOI: 10.1016/j.envpol.2023.122838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The Nakdong River, the longest in Korea, has received numerous pollutants from heavily industrialized and densely populated areas while being used as a drinking water source. A number of research have reported occurrences of emerging pollutants (EPs) in the river. The results requested efficient monitoring and systematic management strategies such as EU watch list under Water Framework Directive. The aim of this study is to propose a watch list through preliminary monitoring of the river and risk-based prioritization approach. As candidates for monitoring target, 632 substances were selected based on literature and database searches. Among them, 175 substances were subjected to target screening method whereas 457 were evaluated via suspect screening. A risk-based prioritization was applied to substances quantified through target screening based on concentrations, and a scoring-based prioritization was applied to substances tentatively identified through suspect screening. Sampling campaigns (n = 12) were conducted from October 2020 to September 2021, at 8 sampling sites along the river. As a result, 130 target substances were quantified above the LOQ. Among the 21 substances whose priority score was assigned through risk-based prioritization, telmisartan and iprobenfos were identified with very high environmental risk while candesartan, TBEP, imidacloprid, azithromycin and clotrimazole were classified with high or intermediate risk. As result of the scoring system for 39 tentatively identified substances, 6 substances (benzophenone, caprolactam, metolachlor oxanilic acid, heptaethylene glycol, octaethylene glycol and pentaethylene glycol), which were then confirmed with reference standards, showed a potential environmental risk. Those substances prioritized through target and suspect screening followed by scoring systems can be a subset for the watch list and potential targets for nationwide water quality monitoring program in the future.
Collapse
Affiliation(s)
- Sangyoon Lee
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Water Environmental Safety Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, South Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|
5
|
Ratchnashree SR, Karmegam N, Selvam M, Manikandan S, Deena SR, Subbaiya R, Vickram AS, Kim W, Govarthanan M. Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166563. [PMID: 37647970 DOI: 10.1016/j.scitotenv.2023.166563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The growing concentrations of micropollutants in aquatic ecosystems are a global water quality issue. Understanding micropollutants varied chemical composition and potency is essential to solving this complex issue. Micropollutants management requires identifying contaminants to reduce, optimal reduction targets, and the best wastewater recycling locations. Management requires appropriate technological measures. Pharmaceuticals, antibiotics, hormones, and other micropollutants can enter the aquatic environment from point and diffuse sources, with wastewater treatment plants (WWTPs) distributing them in urban areas. Micropollutants like pharmaceuticals and hormones may not be removed by conventional WWTPs. Micropollutants affect the EU, especially in densely populated areas where surface water is consumed. This review examines several technological options that can be integrated into existing treatment methods to address this issue. In this work, oxidation, activated carbon, and their combinations as potential solutions, considering their efficacy and cost were evaluated. This study illuminates micropollutants origin and physico-chemical properties, which affect distribution, persistence, and environmental impacts. Understanding these factors helps us develop targeted micropollutant mitigation strategies to protect water quality. This review can inform policy and decision-making to reduce micropollutant impacts on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- S R Ratchnashree
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India.
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
6
|
Bonnefille B, Karlsson O, Rian MB, Raqib R, Parvez F, Papazian S, Islam MS, Martin JW. Nontarget Analysis of Polluted Surface Waters in Bangladesh Using Open Science Workflows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6808-6824. [PMID: 37083417 PMCID: PMC10157886 DOI: 10.1021/acs.est.2c08200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nontarget mass spectrometry has great potential to reveal patterns of water contamination globally through community science, but few studies are conducted in low-income countries, nor with open-source workflows, and few datasets are FAIR (Findable, Accessible, Interoperable, Reusable). Water was collected from urban and rural rivers around Dhaka, Bangladesh, and analyzed by liquid chromatography high-resolution mass spectrometry in four ionization modes (electrospray ionization ±, atmospheric pressure chemical ionization ±) with data-independent MS2 acquisition. The acquisition strategy was complementary: 19,427 and 7365 features were unique to ESI and APCI, respectively. The complexity of water pollution was revealed by >26,000 unique molecular features resolved by MS-DIAL, among which >20,000 correlated with urban sources in Dhaka. A major wastewater treatment plant was not a dominant pollution source, consistent with major contributions from uncontrolled urban drainage, a result that encourages development of further wastewater infrastructures. Matching of deconvoluted MS2 spectra to public libraries resulted in 62 confident annotations (i.e., Level 1-2a) and allowed semiquantification of 42 analytes including pharmaceuticals, pesticides, and personal care products. In silico structure prediction for the top 100 unknown molecular features associated with an urban source allowed 15 additional chemicals of anthropogenic origin to be annotated (i.e., Level 3). The authentic MS2 spectra were uploaded to MassBank Europe, mass spectral data were openly shared on the MassIVE repository, a tool (i.e., MASST) that could be used for community science environmental surveillance was demonstrated, and current limitations were discussed.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Oskar Karlsson
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - May Britt Rian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Stefano Papazian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - M Sirajul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jonathan W Martin
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| |
Collapse
|
7
|
Shen C, Pan X, Wu X, Xu J, Dong F, Zheng Y. Predicting and assessing the toxicity and ecological risk of seven widely used neonicotinoid insecticides and their aerobic transformation products to aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157670. [PMID: 35908706 DOI: 10.1016/j.scitotenv.2022.157670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Neonicotinoid insecticides (NIs) are widely used worldwide, accounting for 25 % of the global insecticide market, and are easily transported into surrounding aquatic ecological environments after application. At present, >80 % of surface water is contaminated by NIs globally. Some transformation products (TPs) of NIs can exhibit greater toxicity to aquatic organism than their parent products. However, few studies have evaluated the toxicity and ecological risk of the TPs of NIs. In this study, we aimed to assess the toxicity and ecological risk of seven widely used NIs and their aerobic TPs to aquatic organisms using a prediction method. We found that partial aerobic TPs of NIs have greater toxicity to aquatic organisms than their parent products, and some of them could severely damage aquatic ecosystems. Meanwhile, acetamiprid, thiacloprid, and several other TPs of NIs with a chlorinated ring structure showed strong bioconcentration abilities, which could potentially harm aquatic organisms through the food chain. Moreover, the widespread use of NIs has certain aquatic ecological risks, which should be controlled and limited. This study comprehensively evaluated the ecological risk of seven widely used NIs and their aerobic TPs to aquatic organisms for the first time. Our results could provide an important reference for assessment of the aquatic environmental risk posed by NIs and pollution control.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; College of Plant Health and Medicine of Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yongquan Zheng
- College of Plant Health and Medicine of Qingdao Agricultural University, Qingdao 266109, PR China
| |
Collapse
|
8
|
Zhao J, Fang S, Liu G, Qi W, Bai Y, Liu H, Qu J. Role of ammonia-oxidizing microorganisms in the removal of organic micropollutants during simulated riverbank filtration. WATER RESEARCH 2022; 226:119250. [PMID: 36274354 DOI: 10.1016/j.watres.2022.119250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biodegradation plays an important role in the removal of organic micropollutants (OMPs) during riverbank filtration (RBF) for drinking water production. The ability of ammonia-oxidizing microorganisms (AOM) to remove OMPs has attracted increasing attention. However, the distribution of AOM in RBF and its role in the degradation of OMPs remains unknown. In this study, the behavior of 128 selected OMPs and the distribution of AOM and their roles in the degradation of OMPs in RBF were explored by column and batch experiments simulating the first meter of the riverbank. The results showed that the selected OMPs were effectively removed (82/128 OMPs, >70% removal) primarily by biodegradation and partly by adsorption. Inefficiently removed OMPs tended to have low molecular weights, low log P, and contain secondary amides, secondary sulfonamides, secondary ketimines, and benzyls. In terms of the microbial communities, the relative abundance of AOM increased from 0.1%-0.2% (inlet-sand) to 5.3%-5.9% (outlet-sand), which was dominated by ammonia-oxidizing archaea whose relative abundance increased from 23%-72% (inlet-sand) to 97% (outlet-sand). Comammox accounted for 23%-64% in the inlet-sand and 1% in the outlet-sand. The abundances of AOM amoA genes kept stable in the inlet-sand of control columns, while decreased by 78% in the treatment columns, suggesting the inhibition effect of allylthiourea (ATU) on AOM. It is observed that AOM played an important role in the degradation of OMPs, where its inhibition led to the corresponding inhibition of 32 OMPs (5/32 were completely suppressed). In particular, OMPs with low molecular weights and containing primary amides, secondary amides, benzyls, and secondary sulfonamides were more likely to be removed by AOM. This study reveals the vital role of AOM in the removal of OMPs, deepens our understanding of the degradation of OMPs in RBF, and offers valuable insights into the physiochemical properties of OMPs and their AOM co-metabolic potential.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Spurgeon D, Wilkinson H, Civil W, Hutt L, Armenise E, Kieboom N, Sims K, Besien T. Worst-case ranking of organic chemicals detected in groundwaters and surface waters in England. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155101. [PMID: 35461935 DOI: 10.1016/j.scitotenv.2022.155101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The Environment Agency has been using Gas Chromatography-Mass Spectrometry (GC-MS) and Accurate-mass Quadrupole Time-of-Flight (Q-TOF) / Liquid Chromatography-Mass Spectrometry (LC-MS) target screen analysis to semi-quantitatively measure organic substances in groundwater and surface water since 2009 for GC-MS and 2014 for LC-MS. Here we use this data to generate a worst-case "risk" ranking of the detected substances. Three sets of hazard values relating to effects on aquatic organisms, namely Water Framework Directive EQSs, NORMAN Network PNECs (hereafter NORMAN PNEC) and chronic Species Sensitivity Distribution (SSD) HC50s from Posthuma et al., (2019) were used for the assessment. These hazard values were compared to the highest measured concentration for each chemical to generate a worst-case hazard quotient (HQ). Calculated HQs for each metric were ranked, averaged and multiplied by rank for detection frequency to generate an overall ordering based on HQ and occurrence. This worst-case approach was then used to generate ranking lists for GC-MS and LC-MS detected substances in groundwater and surface water. Pesticides in the top 30 overall ranked list included more legacy pesticides in groundwater and more current use actives in surface water. Specific uses were linked to some high rankings (e.g. rotenone for invasive species control). A number of industrial and plastics associated chemicals were ranked highly in the groundwater dataset, while more personal care products and pharmaceuticals were highly ranked in surface waters. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) compounds were commonly highly ranked in both environmental compartments. The approach confirmed high rankings for some substance (e.g. selected pesticides) from previous prioritization exercises, but also identified novel substance for consideration (e.g. some PFAS compounds and pharmaceuticals). Overall our approach provided a simple approach using readily accessible data to identify substances for further and more detailed assessment.
Collapse
Affiliation(s)
- David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK.
| | - Helen Wilkinson
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Wayne Civil
- Environment Agency, Starcross Laboratory, Staplake Mount, Starcross, Devon EX6 8FD, UK.
| | - Lorraine Hutt
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Elena Armenise
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK; Environment Agency, Starcross Laboratory, Staplake Mount, Starcross, Devon EX6 8FD, UK
| | - Natalie Kieboom
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Kerry Sims
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Tim Besien
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| |
Collapse
|
10
|
Meza-González J, Hernández-Quiróz M, Rojo-Callejas F, Hjort-Colunga E, Mazari-Hiriart M, Valiente-Riveros E, Arellano-Aguilar O, Ponce de León-Hill C. Screening and Risk Evaluation of Organic Contaminants in an Urban Wetland Fed with Wastewater Effluents. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:114-121. [PMID: 33909117 DOI: 10.1007/s00128-021-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Wastewater release in an urban wetland in Mexico City entails discharging complex mixtures of hundreds of chemical substances into the aquatic system. Therefore, in order to identify the most important contaminants, a GC-MS screening method coupled with deconvolution software was used. LC50 values from ECOSAR and Toxic Units were obtained to identify the organic pollutants-of-concern and to pinpoint the most ecotoxic sites. The results showed that, even though the area has intensive farming, agrochemicals are not of concern. Industrial and domestic groups make up from about 30%-66% of the pollutants for all sites. Of the 189 identified substances, 17 were detected 44% of the time and the Toxic Unit showed that terbutol, coprostanol, and hexadecane were capable of generating considerable adverse effects on the aquatic ecosystem. Total Toxic Units for each site exhibited a decreasing trend as they distanced from the urban and agricultural area.
Collapse
Affiliation(s)
- Jorge Meza-González
- Posgrado en Ciencias del Mar y Limnología, Unidad de Posgrados, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Hernández-Quiróz
- Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Francisco Rojo-Callejas
- Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Erick Hjort-Colunga
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Marisa Mazari-Hiriart
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Omar Arellano-Aguilar
- Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | |
Collapse
|
11
|
Yang Y, Chang J, Wang D, Ma H, Li Y, Zheng Y. Thifluzamide exposure induced neuro-endocrine disrupting effects in zebrafish (Danio rerio). Arch Toxicol 2021; 95:3777-3786. [PMID: 34635929 DOI: 10.1007/s00204-021-03158-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Thifluzamide is widely used fungicide and frequently detected in aquatic system. In this study, the toxicity of fungicide thifluzamide to non-targeted aquatic organisms was investigated for neuroendocrine disruption potentials. Here, zebrafish embryos were exposed to a series of concentrations of thifluzamide for 6 days. The results showed that both the development of embryos/larvae and the behavior of hatched larvae were significantly affected by thifluzamide. Importantly, the decreased activity of acetylcholinesterase (AchE) and the increased contents of neurotransmitters such as serotonin (5-HT) and norepinephrine (NE), along with transcriptional changes of nervous system related genes were observed following 4 days exposure to thifluzamide. Besides, the decreased contents of triiodothyronine (T3) and thyroxine (T4) in whole body, as well as significant expression alteration in hypothalamic-pituitary-thyroid (HPT) axis associated genes were discovered in zebrafish embryos after 4 days of exposure to thifluzamide. Our results clearly demonstrated that zebrafish embryos exposed to thifluzamide could disrupt neuroendocrine, compromise behavior and induce developmental abnormality, suggesting impact of this fungicide on developmental programming in zebrafish.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jinhe Chang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Donghui Wang
- The State Key Laboratory of Protein and Plant Gene Research, National Teaching Center for Experimental Biology, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hao Ma
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
12
|
Liu Y, Tong L, Si N, Xing J, Zhang Q, Ma Q, Lv Q. Non-targeted identification of unknown chemical hazardous substances in infant teether toys by gas chromatography-Orbitrap high resolution mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112676. [PMID: 34419644 DOI: 10.1016/j.ecoenv.2021.112676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Chemical hazardous substances in teethers may migrate into infant's body through oral exposure, resulting in a potential health risk. In recent years, researchers have performed a series of studies for detecting target chemicals in teethers and other toys, but the presence of unknown chemicals has not been systematically investigated yet. This paper reports the non-targeted identification of unknown chemical hazards that may have migrated from teethers to infants based on gas chromatography-Orbitrap high resolution mass spectrometry. In view of the difficulties that may be encountered in the qualitative analysis of substances, several typical cases and the corresponding reliable solutions are given from the perspective of comprehensive score and retention index, isotope-aided qualitative analysis, chemical ionization identification formula, and fragment ion detail comparison for distinguishing isomers. Finally, 28 substances are identified in 10 teether samples. Among them, phenol, N-methylaniline, 1,6-dioxacyclododecane-7,12-dione and cyclohexanone have higher detection rates. This study not only has valuable reference for the identification of unknown substances, but also has positive guiding role in monitoring potential chemical hazards in toys and promoting the safety of products.
Collapse
Affiliation(s)
- Yahui Liu
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Lili Tong
- Tianjin Product Quality Inspection Technology Research Institute, Tianjin 300384, China
| | - Nianpeng Si
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | | | - Qing Zhang
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qing Lv
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|