1
|
Jeong Y, Mok S, Kim S, Lee I, Lee G, Kho Y, Choi K, Kim KT, Moon HB. Comparison of urinary exposure profiles to phthalates and bisphenol analogues in kindergartens in Korea: Impact of environmental choices on children's health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117391. [PMID: 39603221 DOI: 10.1016/j.ecoenv.2024.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Phthalates and bisphenols (BPs) are well-known endocrine disrupting chemicals (EDCs) that are widely used in diverse consumer and personal care products. Despite their vulnerability, children are frequently exposed to phthalates and BPs in their surrounding environments. Although pre-school children spend most of their time in kindergarten, no comprehensive assessment of children' exposure to EDCs has been conducted according to the type of kindergarten. In this study, the urinary concentrations of phthalate metabolites and BPs were determined in Korean children attending conventional and eco-friendly kindergartens. The exposure levels and contaminant profiles were investigated according to kindergarten type and their association with oxidative stress was assessed. Di-(2-ethylhexyl) phthalate (DEHP) metabolites, such as mono-(2-ethyl-5-carboxypentyl) phthalate (median: 47.1 ng/mL) and mono-[(2-carboxymethyl)hexyl] phthalate (8.45 ng/mL) had the highest levels, indicating that they were the primary contaminants to which the children were exposed. Urinary concentrations of phthalate metabolites and bisphenol A (BPA) were higher in children from conventional kindergarten than an eco-friendly kindergarten. Conversely, bisphenol S (BPS) concentrations were significantly higher in children from the eco-friendly kindergarten than in those from conventional kindergartens, implying that eco-friendly plastic products might contain BPS as a replacement for BPA. The estimated daily intakes of BPA for all children exceeded the new tolerable daily intake proposed by the European Food Safety Authority. Malondialdehyde levels were significantly associated with the urinary concentrations of certain phthalate metabolites, indicating potential adverse health outcomes from phthalate exposure in children. The study highlights the need for targeted interventions to reduce EDC exposure in children, especially in settings where alternative chemicals may still pose health risks.
Collapse
Affiliation(s)
- Yunsun Jeong
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sori Mok
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunmi Kim
- Chemical Analysis Center, Chemical Platform Technology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Inae Lee
- Department of Public Health, Keimyung University, Daegu 42601, Republic of Korea
| | - Gowoon Lee
- Department of Safety Engineering, Korea National University of Transportation, Chungbuk 27469, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
2
|
Mok S, Lee S, Lee N, Kim S, Choi K, Park J, Kho Y, Moon HB. Nationwide human biomonitoring strategy in Korea: Prioritization of novel contaminants using GC/TOF-MS with suspect and non-target screening. CHEMOSPHERE 2024; 369:143814. [PMID: 39608654 DOI: 10.1016/j.chemosphere.2024.143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
According to global regulations on hazardous chemicals, numerous alternatives have been manufactured and used in various consumer products. Suspect and non-target analyses are advanced analytical techniques used for identifying novel contaminants. In the present study, suspect and non-target analytical approaches using a gas chromatography coupled to a time-of-flight mass spectrometer were applied to identify novel contaminants in 40 pooled serum samples from a sub-population (n = 400) of the 2015-2017 national biomonitoring program. Suspect screening analysis was performed using an in-house library based on retention times and quantifier and qualifier ions for 222 contaminants, including persistent organic pollutants and emerging contaminants. Non-target analysis was performed by matching deconvoluted mass spectra to the spectral library from the National Institute of Standards and Technology. The suspect screening analysis identified organochlorinated pesticides, organophosphate esters, phthalate esters, and alternative plasticizers. Among the 68 compounds identified in the non-target analysis, siloxanes, novel organophosphate esters, and UV ink photoinitiators were considered candidates for future inclusion in the biomonitoring program based upon significant human exposure. Our findings demonstrate the feasibility of suspect and non-target analysis to identify novel contaminants to prioritize for inclusion within a national human biomonitoring program.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Nahyun Lee
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
3
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Phthalate exposure during pregnancy and its association with thyroid hormones: A prospective cohort study. Int J Hyg Environ Health 2024; 261:114421. [PMID: 39002474 DOI: 10.1016/j.ijheh.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Phthalate esters (PAEs) possess endocrine-disrupting properties. Studies in humans have indicated that in utero phthalate exposure affects maternal thyroid hormones, which are essential for fetal growth and development. However, these studies also reported inconsistent results on the relationship between phthalates and thyroid hormones. This prospective cohort study aimed to assess phthalate exposure across the three trimesters of pregnancy and its association with thyroid hormone levels. From 2019 to 2022, we recruited 672 pregnant women, and two urine samples and one blood sample were collected from each participant during the pregnancy. We examined the urine samples from 663, 335, and 294 women in the first, second, and third trimester, respectively, for the following seven phthalate metabolites: monoethyl phthalate (MEP) from diethyl phthalate (DEP); mono-n-butyl phthalate (MnBP) and mono-iso-butyl phthalate (MiBP) from dibutyl phthalate (DBP); monobenzyl phthalate (MBzP) from butyl benzyl phthalate; and three di(2-ethylhexyl) phthalate (DEHP) metabolites, mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP). Additionally, we examined the levels of free thyroxine (FT4), thyroid-stimulating hormone (TSH), and total triiodothyronine (TT3) in the serum samples of the following participants: 596, 627, and 576 in the first trimester; 292, 293, and 282 in the second trimester; and 250, 250, and 248 in the third trimester, respectively. Other than MBzP, which was detected in 25%-33% of the samples, other metabolites were detectable in >86% of urine samples, indicating widespread exposure to DEP, DBP, and DEHP. The detected phthalate exposure levels in our cohort were significantly higher than those reported in other countries. Metabolite levels varied across the trimesters, implying changes in exposure and metabolism throughout pregnancy. The observed variability in urinary concentrations of phthalate metabolites, which ranged from poor to moderate, underscores the importance of taking multiple measurements during pregnancy for precise exposure assessment. Using a linear mixed model, we analyzed the effects of repeated phthalate exposure on thyroid hormone levels while adjusting for potential confounders. We observed significant linear trends in FT4, TSH, and, to a lesser extent, TT3 across quartiles of specific phthalate metabolites. Comparing the highest to the lowest quartiles, we found a significant increase in FT4 levels, ranging from 2 to 3.7%, associated with MEP; MECPP; MEHHP; and the sum of seven metabolites (∑7PAE), three DEHP metabolites (∑3DEHP), two DBP metabolites (∑DBP), and both low molecular weight (∑LMW) and high molecular weight metabolites. Increased TSH levels (5%-16%) were observed for all phthalate metabolites (except MEHHP) and their molar sums, including ∑7PAE. For TT3, a significant increase was observed with MEP (2.2%) and a decrease was observed with ∑DBP (-2.7%). A higher TSH/FT4 ratio was observed with the highest quartiles (third or fourth) of several phthalate metabolites: MEP (8.8%), MiBP (8.7%), MnBP (22.2%), ∑7PAE (15.3%), ∑DBP (16.4%), and ∑LMW (18.6%). These hormonal alterations, most notably in the second and third trimesters, suggest that phthalate exposure may impact fetal growth and development by affecting maternal thyroid function.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Lin YJ, Chen HC, Chang JW, Huang HB, Chang WT, Huang PC. Exposure characteristics and cumulative risk assessment of bisphenol A and its substitutes: the Taiwan environmental survey for toxicants 2013. Front Public Health 2024; 12:1396147. [PMID: 38846618 PMCID: PMC11153798 DOI: 10.3389/fpubh.2024.1396147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results Our study found that the median level of BPA was significantly higher in adults (9.63 μg/g creatinine) than in minors (6.63 μg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.
Collapse
Affiliation(s)
- Yu-Jung Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| |
Collapse
|
5
|
Yoshida N, Lyu Z, Kim S, Park N, Hitomi T, Fujii Y, Kho Y, Choi K, Harada KH. Temporal trends in exposure to parabens, benzophenones, triclosan, and triclocarban in adult females in Kyoto, Japan, from 1993 to 2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37050-37059. [PMID: 38758445 DOI: 10.1007/s11356-024-33627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Products used in daily life can contain chemicals such as parabens, benzophenones, triclosan, and triclocarban that have potential endocrine-disrupting effects. Little is known about the temporal trends of exposure levels to some of these chemicals in Japan. Our study assessed the intake and risk associated with exposure to commonly used chemicals. We measured the concentrations of five parabens, four benzophenones, and triclosan and triclocarban in 133 single spot urine samples. The urine samples were collected in 1993, 2000, 2003, 2009, 2011, and 2016 from healthy female residents in Kyoto, Japan. With the exception of methylparaben, ethylparaben, and butylparaben, there were no significant fluctuations in the concentrations of target chemicals over the study period; however, methylparaben, ethylparaben, and butylparaben showed temporal changes in concentrations. Methylparaben concentrations peaked in 2003 with a median value of 309 μg/g creatinine, ethylparaben concentrations peaked in 1993 with a median value of 17.3 μg/g creatinine, and butylparaben showed a decline, with the median values becoming non-detectable in 2009 and 2016. We calculated estimated daily intakes and hazard quotients for each chemical. In the analysis of total samples, 2.3% (3 samples) for butylparaben and 0.8% (1 sample) for propylparaben were found to surpass a hazard quotient of 1. Overall, 3% (n = 4) of the study participants exceeded a hazard index of 1. The potential health risks associated with exposure to butylparaben and propylparaben emphasize the need for further monitoring and research.
Collapse
Affiliation(s)
- Nao Yoshida
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Korea
| | - Nayoun Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Korea
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Korea
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
6
|
Wu X, Liu S, Wen L, Tan Y, Zeng H, Liang H, Weng X, Wu Y, Yao H, Fu Y, Yang Z, Li Y, Chen Q, Zeng Z, Fei Q, Wang R, Jing C. Association between phthalates and sleep problems in the U.S. adult females from NHANES 2011-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1961-1976. [PMID: 36973994 DOI: 10.1080/09603123.2023.2196056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
There is little research on the relationship between phthalates exposure and sleep problems in adult females, with existing studies only assessing the association between exposure to individual phthalates with sleep problems. We aimed to analyse the relationship between phthalates and sleep problems in 1366 US females aged 20 years and older from the 2011-2014 National Health and Nutrition Examination Survey (NHANES) by age stratification. Multivariate logistic regression showed that the fourth quartile of MECPP increased the risk of sleep problems in females aged 20-39 compared with the reference quartile (OR: 1.87, 95% CI: 1.14, 3.08). The WQS index was significantly associated with the sleep problems in females aged 20-39. In the BKMR, a positive overall trend between the mixture and sleep problems in females aged 20-39. In this study, we concluded that phthalates might increase the risk of sleep problems in females aged 20-39.
Collapse
Affiliation(s)
- Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Health Department of Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Huixian Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yingyin Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhiyu Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zurui Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | | | | | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Wang H, Gao R, Liang W, Wei S, Zhou Y, Wang Z, Lan L, Chen J, Zeng F. Large-scale biomonitoring of bisphenol analogues and their metabolites in human urine from Guangzhou, China: Implications for health risk assessment. CHEMOSPHERE 2023; 338:139601. [PMID: 37480947 DOI: 10.1016/j.chemosphere.2023.139601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Bisphenol analogues (BPs) are ubiquitous in the environment and have gained significant attention regarding their associated health risks. However, there is a lack of comprehensive biomonitoring data on BPs and their metabolites in human urine. To address this, we conducted a study evaluate the exposure to BPs in the general population of Guangzhou, China. A total of 1440 urine samples were collected from volunteers and analyzed for the presence of BPs and their metabolites after being pooled into 36 groups based on age and gender. The findings revealed the common detection of ten free-form BPs, as well as the urinary metabolites of BPA and BPS, in the pooled urine samples. BPA was the predominant free-form compound, constituting 50% of the total BPs. The primary urinary metabolites of BPA and BPS are BPA-G and BPS-G, respectively, indicating glucuronidation as their primary metabolic pathway. The composition of urinary metabolites of BPA and BPS varied by age and sex, while the concentration of total BPs in urine was not significantly associated with age and sex. Enzymatic hydrolysis yielded a mean amplification of individual BPs concentrations in urine samples ranging from 1.8 times (BPA) to 4.6 times (BPS). Based on the outcomes, it was estimated that conjugated forms accounted for 96.9%, 96.2%, 94.7%, 94.1%, 92.6%, 89.1%, 87.3%, 87.2%, 87.1% and 85.8% of BPP, BPAF, BPZ, BPE, BPAP, BPF, BPA, BPC, BPS and BPF, respectively, in the pooled urine samples. Preliminary risk assessments indicated that the estimated daily intake of BPA was much higher than the latest proposed tolerable daily intake. Due to the unavailability of health-based guideline values for alternative BPs, some of them exhibit daily intakes comparable to BPA, implying that greater attention should be paid to health risks associated with exposure to BPs.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zhuo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jinfeng Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
8
|
Lyu Z, Harada KH, Kim S, Fujitani T, Hitomi T, Pan R, Park N, Fujii Y, Kho Y, Choi K. Temporal trends in bisphenol exposures and associated health risk among Japanese women living in the Kyoto area from 1993 to 2016. CHEMOSPHERE 2023; 316:137867. [PMID: 36642136 DOI: 10.1016/j.chemosphere.2023.137867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bisphenols, and especially bisphenol A, are widely used as components of epoxy resins and polycarbonate. Widespread detection and potential health risks have led to bisphenol A being replaced by other alternatives, including structurally similar bisphenol analogs. Several bisphenol analogs are suspected to have similar adverse health consequences. This study examined the temporal trends in bisphenol exposure among a group of Japanese women from 1993 to 2016, and assessed the associated health risks. METHODS We used archived single spot urine samples of healthy Japanese women living in the Kyoto area (n = 133) collected in 1993, 2000, 2003, 2009, 2011, and 2016. We measured the concentrations of 10 bisphenols in these samples. RESULTS A sharp increase in the detection rates of bisphenol F was observed after 2000. There was a distinct downward trend in urinary bisphenol A concentrations and an upward trend in bisphenol E concentrations after 2009. While the hazard index for all measured bisphenols was below 1 in all subjects, bisphenol F was determined as the most important risk driver after 2000, rather than bisphenol A. DISCUSSION Trends of decreasing bisphenol A and increasing bisphenol E exposure especially after 2011, along with no significant change in the sum of all bisphenol analogs in urine, provide clear evidence that bisphenol A has been replaced by other bisphenols in the study population. We found no significant change in the total exposure to bisphenols during the study period. Bisphenol F might become the most important bisphenol in terms of risk, while cumulative risks due to all bisphenol exposure were deemed insignificant. Considering the accumulating evidence indicating adverse effects at lower exposure levels, further studies are warranted to assess exposure and risk from bisphenol A analogs.
Collapse
Affiliation(s)
- Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan.
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Rui Pan
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan; Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nayoun Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Wang H, Gao R, Liang W, Wei S, Zhou Y, Zeng F. Assessment of BPA and BPS exposure in the general population in Guangzhou, China - Estimation of daily intakes based on urinary metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120375. [PMID: 36220574 DOI: 10.1016/j.envpol.2022.120375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Human exposure to bisphenol A (BPA) and bisphenol S (BPS) has garnered considerable global health concerns. In this paper, the daily intake (DI) of BPA and BPS in the general population of Guangzhou, China, were back-calculated using the biomarkers BPA glucuronides (BPA-G) and BPS glucuronides (BPS-G), respectively. The biomarkers are preferable to total BPA and BPS measurements because they are not susceptible to external contamination. A total of 1440 urine samples were gathered from the general population in Guangzhou, China, which were classified by age and sex into 36 pooled urine samples. 100% and 98% of pooled urine samples contained BPA-G and BPS-G at median values of 1.57 and 0.38 ng/mL, respectively. Based on urinary BPA-G and BPS-G concentrations, we determined the median DI of BPA and BPS to be 31.07 and 7.37 ng/(kg bw*d), respectively, and the highest values to be 106.77 ng/(kg bw*d) and 18.19 ng/(kg bw*d), respectively. Furthermore, our results showed that for the entire dataset, the DI of BPA and BPS were considerably greater in males than in females (p < 0.01)and declined significantly with age (p < 0.05). For risk assessment, the estimated DIs of BPA and BPS were much lower than the European Food Safety Authority' s (EFSA) the temporary acceptable reference dose of 4 μg/(kg bw*d) advised for BPA, suggesting that the exposure risk of BPA and BPS for Guangzhou population is within a controllable safety range. This is the first study to investigate BPA and BPS exposure in the general population of Guangzhou, China, on the basis of urinary metabolites.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China.
| |
Collapse
|
10
|
Tchen R, Tan Y, Boyd Barr D, Barry Ryan P, Tran V, Li Z, Hu YJ, Smith AK, Jones DP, Dunlop AL, Liang D. Use of high-resolution metabolomics to assess the biological perturbations associated with maternal exposure to Bisphenol A and Bisphenol F among pregnant African American women. ENVIRONMENT INTERNATIONAL 2022; 169:107530. [PMID: 36148711 PMCID: PMC9664380 DOI: 10.1016/j.envint.2022.107530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Human and animal exposure to bisphenol A (BPA) has been associated with adverse developmental and reproductive effects. The molecular mechanisms by which BPA exposure exerts its effects are not well-understood, even less known about its analogues bisphenol F (BPF). To address these knowledge gaps, we conducted an untargeted metabolome-wide association study (MWAS) to identify metabolic perturbations associated with BPA/BPF exposures in a pregnant African American cohort. METHODS From a subset of study participants enrolled in the Atlanta African American Maternal-Child cohort, we collected both urine samples, for targeted exposure assessment of BPA (N = 230) and BPF (N = 48), and serum samples, for high-resolution metabolomics (HRM) profiling (N = 230), during early pregnancy (8-14 weeks' gestation). Using an established untargeted HRM workflow consisting of MWAS modeling, pathway enrichment analysis, and chemical annotation and confirmation, we investigated the potential metabolic pathways and features associated with BPA/BPF exposures. RESULTS The geometric mean creatinine-adjusted concentrations of urinary BPA and BPF were 0.85 ± 2.58 and 0.70 ± 4.71 µg/g creatinine, respectively. After false positive discovery rate correction at 20 % level, 264 and 733 unique metabolic features were significantly associated with urinary BPA and BPF concentrations, representing 10 and 12 metabolic pathways, respectively. Three metabolic pathways, including steroid hormones biosynthesis, lysine and lipoate metabolism, were significantly associated with both BPA and BPF exposure. Using chemical standards, we have confirmed the chemical identity of 16 metabolites significantly associated with BPA or BPF exposure. CONCLUSIONS Our findings support that exposure to BPA and BPF in pregnant women is associated with the perturbation of aromatic amino acid metabolism, xenobiotics metabolism, steroid biosynthesis, and other amino acid metabolism closely linked to stress responses, inflammation, neural development, reproduction, and weight regulation.
Collapse
Affiliation(s)
- Rachel Tchen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
11
|
Aimuzi R, Huang S, Luo K, Ma S, Huo X, Li G, Tian Y, Zhang J, Yu Y. Levels and health risks of urinary phthalate metabolites and the association between phthalate exposure and unexplained recurrent spontaneous abortion: a large case-control study from China. ENVIRONMENTAL RESEARCH 2022; 212:113393. [PMID: 35504341 DOI: 10.1016/j.envres.2022.113393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Phthalate acid esters (PAEs) are environmental endocrine disruptors that can interfere with endocrine processes and cause adverse reproductive outcomes. The link between PAE exposure and unexplained recurrent spontaneous abortion (URSA) remains unknown. In this study, nine urinary metabolites of PAEs (mPAEs) were measured in 594 URSA cases and 569 healthy controls. The measured mPAEs were ubiquitously detected and present at higher levels (median: 203 ng/mL) in the URSA cases than in the controls (median: 161 ng/mL). Multiple logistic regression analysis showed that URSA was associated with higher concentrations of mono (2-ethyl-5-hydroxyhexyl) phthalate (mEHHP), mono (2-ethylhexyl) phthalate (mEHP), and mono-ethyl phthalate (mEP) and lower concentrations of mono-isobutyl phthalate (miBP). Moreover, a quantile-based g-computation (QGC) model revealed a positive association between mPAEs mixture and URSA. The URSA cases showed significantly higher concentrations of di-(2-ethylhexyl) phthalate (DEHP) than the controls. This was consistent with the health risk assessment, which suggested that DEHP is the main contributors to potential non-carcinogenic risk. DEHP accounted for over 80% of total risk. The large case-control study results suggest that PAE exposure may increase the risk of URSA, and that policy-makers and public health experts should pay more attention to DEHP exposure.
Collapse
Affiliation(s)
- Ruxianguli Aimuzi
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Senyuan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kai Luo
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaona Huo
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Tian
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Mok S, Lim JE, Lee A, Kim S, Kim S, Lee I, Kho Y, Park J, Kim S, Choi K, Moon HB. Within- and between-person variability of urinary phthalate metabolites and bisphenol analogues over seven days: Considerations of biomonitoring study design. ENVIRONMENTAL RESEARCH 2022; 209:112885. [PMID: 35131323 DOI: 10.1016/j.envres.2022.112885] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Urine was used as a part of a human biomonitoring study based on the excretion kinetics of less-persistent contaminants, such as phthalates and bisphenol A (BPA). Despite the advantages of being non-invasive and easy to collect, urine can show a large variability of concentrations of phthalate metabolites and BPA within a person depending on sampling time. Therefore, it is essential to assess the variability of urinary concentrations for comprehensive sampling design in the context of exposure and risk assessments. In this study, 18 phthalate metabolites and eight BPs were measured in all spot urine (n = 401) collected from 12 participants for seven consecutive days to evaluate within- and between-person variabilities. The intraclass correlation coefficients (ICCs) for all spot urines were poor for monomethyl phthalate (ICC: 0.002) and BPA (0.121) but were moderate for monoethyl phthalate (0.514) and monobenzyl phthalate (0.462). Based on the results of di (2-ethylhexyl) phthalate (DEHP) metabolites, the half-life and differences in metabolic capability seem to affect the ICCs. Urinary mono (2-ethylhexyl) phthalate (MEHP), a primary metabolite of DEHP, was suggested as a short-term exposure marker of DEHP in our study. Creatinine- and specific gravity-adjusted concentrations of phthalate metabolites and BPs resulted in increased ICCs, implying requirements for randomly collected spot urine. Most analytes in the first morning voids (FMVs) were correlated significantly with those in the daily composites, suggesting the feasibility of FMVs to estimate the daily exposure dose. This study facilitates a more comprehensive sampling design and data interpretation strategy for human biomonitoring studies.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Aram Lee
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sungmin Kim
- Department of Health, Environment and Safety, Eulji University, Seongnam, 34824, Republic of Korea
| | - Sunmi Kim
- Chemical Safety Research Center, Chemical Platform Technology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, 34824, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
13
|
Wang H, Tang S, Zhou X, Gao R, Liu Z, Song X, Zeng F. Urinary concentrations of bisphenol analogues in the south of China population and their contribution to the per capital mass loads in wastewater. ENVIRONMENTAL RESEARCH 2022; 204:112398. [PMID: 34800536 DOI: 10.1016/j.envres.2021.112398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol analogues (BPs) are heavily used and negatively affect the health of human beings, however, there is little knowledge regarding human exposure to BPs other than BPA. This study aims to assess human exposure to BPs through investigating pooled urine and wastewater samples. Twenty-four pooled urine samples were prepared from 960 specimens (classified by age and gender). Wastewater samples were collected from six major wastewater treatment plants (WWTPs) in Guangzhou, South of China. BPA, BPS, and BPAF were widely detected in urine samples, with a median concentration of 0.96, 0.42, and 0.15 μg/L, respectively. Median urinary levels of BPA and BPS were higher in males than females (p > 0.05). In addition, BPA and BPS urinary levels in young adults (15-30 years old) were greater than those in children (0-15 years old) (p > 0.05). Nevertheless, most of the BPs were detected in wastewater samples, of which BPA and BPS were predominant BPs, with a median concentration of 1.0 and 0.29 μg/L. The average per capital mass loads of ΣBPs on the weekdays of mix typed WWTP was much higher than those of the weekends. Nonetheless, the average loads of ΣBPs on the weekdays of domestic WWTP was slightly lower than those of the weekends. This indicated that important sources of BPs might include industrial wastewater and household cleaning products. Urinary BPA, BPS, and BPAF accounted for less than 5% per capital mass loads in wastewater, suggesting that much of the BPA, BPS, and BPAF in municipal wastewater originate non-human excretion. Hence, the wastewater-based epidemiology (WBE) approach based on parent compounds is not available for assessing human exposure to BPs, neither for other industrial chemicals with diverse sources in municipal wastewater. These results contributes to the development of an efficient surveillance system which can provide insight in the trends of human exposure of BPs.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering. Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Xi Zhou
- Guangdong Institute of Analysis, Guangdong Academy of Science, Guangzhou, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China
| | - Zehua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006; Guangdong, China
| | - Xiaofei Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006; Guangdong, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, China.
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China.
| |
Collapse
|
14
|
Effects of BPZ and BPC on Oxidative Stress of Zebrafish under Different pH Conditions. Molecules 2022; 27:molecules27051568. [PMID: 35268669 PMCID: PMC8912005 DOI: 10.3390/molecules27051568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
To further understand the toxic effects of bisphenol Z (BPZ) and bisphenol C (BPC) on aquatic organisms, zebrafish (Danio rerio) were exposed to 0.02 mg/L BPZ and BPC mixed solution in the laboratory for 28 days. The impacts of BPZ and BPC on the activity of the antioxidant enzymes, expression of antioxidant genes, and estrogen receptor genes in zebrafish under different pH conditions were studied. The changes of glutathione peroxidase (GSH-Px), reduced glutathione (GSH), total superoxide dismutase (T-SOD), catalase (POD), and malondialdehyde (MDA) in the zebrafish were detected by spectrophotometry. The mRNA relative expression levels of CAT, GSH, SOD, ERa, and ERb1 in the experimental group were determined by fluorescence quantitative PCR. The results showed that SOD activity and MDA content were inhibited under different pH conditions, and the activities of GSH, GSH-Px, and POD were induced. The activities of POD and GSH induced in the neutral environment were stronger than those in an acidic and alkaline environment. The mRNA relative expression levels of SOD and GSH were consistent with the activities of SOD and GSH. The mRNA relative expression levels of CAT were induced more strongly in the neutral environment than in acidic and alkaline conditions, the mRNA relative expression levels of ERa were induced most weakly in a neutral environment, and the mRNA relative expression levels of ERb1 were inhibited the most in a neutral environment.
Collapse
|
15
|
Tarafdar A, Sirohi R, Balakumaran PA, Reshmy R, Madhavan A, Sindhu R, Binod P, Kumar Y, Kumar D, Sim SJ. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127097. [PMID: 34488101 DOI: 10.1016/j.jhazmat.2021.127097] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (or BPA) is a toxic endocrine disrupting chemical that is released into the environment through modern manufacturing practices. BPA can disrupt the production, function and activity of endogenous hormones causing irregularity in the hypothalamus-pituitary-gonadal glands and also the pituitary-adrenal function. BPA has immuno-suppression activity and can downregulate T cells and antioxidant genes. The genotoxicity and cytotoxicity of BPA is paramount and therefore, there is an immediate need to properly detect and remediate its influence. In this review, we discuss the toxic effects of BPA on different metabolic systems in the human body, followed by its mechanism of action. Various novel detection techniques (LC-MS, GC-MS, capillary electrophoresis, immunoassay and sensors) involving a pretreatment step (liquid-liquid microextraction and molecularly imprinted solid-phase extraction) have also been detailed. Mechanisms of various remediation strategies, including biodegradation using native enzymes, membrane separation processes, photocatalytic oxidation, use of nanosorbents and thermal degradation has been detailed. An overview of the global regulations pertaining to BPA has been presented. More investigations are required on the efficiency of integrated remediation technologies rather than standalone methods for BPA removal. The effect of processing operations on BPA in food matrices is also warranted to restrict its transport into food products.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - R Reshmy
- Department of Chemistry, Bishop Moore College, Mavelikkara 690110, Kerela, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerela, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
16
|
Lifestyle Habits and Exposure to BPA and Phthalates in Women of Childbearing Age from Northern Italy: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189710. [PMID: 34574636 PMCID: PMC8469822 DOI: 10.3390/ijerph18189710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022]
Abstract
Background: Endocrine-disrupting chemicals (EDCs) are compounds that interfere with aspects of hormonal signaling. Considerable attention has been paid to their biological effects especially in women of childbearing age or during pregnancy as EDCs have been reported to cross the placenta becoming concentrated in the fetus' circulation. Lifestyle habits, daily consumption of packaged foods and use of healthcare/cosmetic products are associated with increased EDCs levels. This cross-sectional research examined the EDCs levels and the lifestyle determinants of EDC exposure in a cohort of reproductive-age women from Northern Italy. Methods: Forty-five women (median age: 36, IQR: 30-38) were evaluated for urinary bisphenol A (BPA) and phthalates levels and also studied for EDCs' major determinants of daily exposure; food frequency/dietary, physical activity, smoking habits and weight status. Results: Although 100% of women seemed to have been exposed to common sources of EDCs, they reported a healthy lifestyle. The multivariable model described a positive and significant association between consumption of sauces/dressings in plastic containers and monoethyl phthalate exposure (p = 0.037). Conclusions: Since reproductive age encompasses a critical window for future health and functioning of the "mothers-to-be" and their children, future studies on prenatal dietary BPA and phthalate exposure and the role of consumer product choices in reducing such exposure are recommended.
Collapse
|
17
|
Huang S, Qi Z, Ma S, Li G, Long C, Yu Y. A critical review on human internal exposure of phthalate metabolites and the associated health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116941. [PMID: 33756240 DOI: 10.1016/j.envpol.2021.116941] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Phthalates (PAEs) are popular synthetic chemicals used as plasticizers and solvents for various products, such as polyvinyl chloride or personal care products. Human exposure to PAEs is associated with various diseases, resulting in PAE biomonitoring in humans. Inhalation, dietary ingestion, and dermal absorption are the major human exposure routes. However, estimating the actual exposure dose of PAEs via an external route is difficult. As a result, estimation by internal exposure has become the popular analytical methods to determine the concentrations of phthalate metabolites (mPAEs) in human matrices (such as urine, serum, breast milk, hair, and nails). The various exposure sources and patterns result in different composition profiles of PAEs in biomatrices, which vary from country to country. Nevertheless, the mPAEs of diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP), and di-(2-ethylhexyl) phthalate (DEHP) are predominant in the urine. These mPAEs have greater potential health risks for humans. Children have been observed to exhibit higher exposure risks to several mPAEs than adults. Besides age, other influencing factors for phthalate exposure are gender, jobs, and residential areas. Although many studies have reported biological monitoring of PAEs, only a few reviews that adequately summarized the reports are available. The current review appraised available studies on mPAE quantitation in human biomatrices and estimated the dose and health risks of phthalate exposure. While some countries lack biomonitoring data, some countries' data do not reflect the current PAE exposure. Thence, future studies should involve frequent PAE biomonitoring to accurately estimate human exposure to PAEs, which will contribute to health risk assessments of human exposure to PAEs. Such would aid the formulation of corresponding regulations and restrictions by the government.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China.
| |
Collapse
|