1
|
Yang D, Jia X, Xia T, Zhang N, Su S, Tao Z, Wu Z, Liang J, Zhang L. Novel insight into deriving remediation goals of arsenic contaminated sites with multi-media-equivalent dose and local exposure parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136501. [PMID: 39581025 DOI: 10.1016/j.jhazmat.2024.136501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
The remediation goal (RG) for arsenic (As) calculated by the traditional method is approximately 0.45 mg·kg-1, significantly lower than the background values. This poses significant challenges for the management of As-contaminated sites. The present study focused on a typical glassworks site with an As contamination level of up to 298 mg·kg-1, predominantly existing as As (III), with a carcinogenic risk level as high as 8.6 × 10-5. We developed a novel method known as multi-media-equivalent dose (MMED), incorporating local exposure parameters, and investigated the impacts of site-specific bioaccessibility (from 6.9 % to 51.5 %) on the results. The RG of arsenic calculated via MMED was 34.4 mg·kg-1 and 54 mg·kg-1 when bioaccessibility was considered. Integrating with five exposure parameters across 31 provinces, the provincial remediation goals (PRGs) ranged from 15.1 to 31.7 mg·kg-1. The RG calculated using the new method were more aligned with the practical conditions of managing As-contaminated sites, with potential for broader implementation across various provinces.
Collapse
Affiliation(s)
- Danhua Yang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Xiaoyang Jia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Zhenghua Tao
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Zhiyuan Wu
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Jing Liang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Lina Zhang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| |
Collapse
|
2
|
Wang G, Li X, Deng J, Cao J, Meng H, Dong J, Zhang H. Assessing soil cadmium quality standards for different land use types: A global synthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136450. [PMID: 39541885 DOI: 10.1016/j.jhazmat.2024.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The contamination of cadmium (Cd) in soil has become an increasingly serious issue worldwide, presenting significant risks to human health, crop safety, and ecosystems. Despite its importance, there is a lack of standardized soil threshold values for use in regulating exposure to Cd-contaminated surface soil. By synthesizing soil environmental standards for Cd from 61 countries and 75 regions, this study analyzed and categorized these standards by land use types. The distribution of Cd quality standards among various countries was determined, based on available data primarily from the United States, Canada, Europe, Australia, and China. The established soil Cd quality standards were also determined for different land types, including lands for agricultural, residential, industrial, construction, commercial uses, and parks/green spaces. Using the ecological environment criteria - species sensitivity distribution (ECC-SSD) model, Cd levels were analyzed across different land use types, and it was determined that a log-logistic distribution was the best fitted model. Our findings indicated that soil Cd quality standards ranged from 0.11 to 5.20 mg/kg for agricultural land, 1.25 to 171.51 mg/kg for residential land, and 2.58 to 1845.26 mg/kg for industrial land, all within the 5-95 % percentile range. The 5 % hazard concentration (HC5) value was recommended as the latest national quality standards for each land type. This comprehensive assessment of global soil Cd quality standards provides valuable insight for decision-makers tasked with effectively managing and mitigating Cd pollution in soil.
Collapse
Affiliation(s)
- Guiyun Wang
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xianglan Li
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Jingfei Deng
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Jiameng Cao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Hao Meng
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Jingqi Dong
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Hongzhen Zhang
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China.
| |
Collapse
|
3
|
Tong F, Xu L, Zhang Y, Wu D, Hu F. Earthworm mucus contributes significantly to the accumulation of soil cadmium in tomato seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176169. [PMID: 39260500 DOI: 10.1016/j.scitotenv.2024.176169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Whether earthworm mucus affects Cd transport behavior in soil-plant systems remains uncertain. Consequently, this study thoroughly assessed the impacts of earthworm mucus on plant growth and physiological responses, plant Cd accumulation, translocation, and distribution, as well as soil characteristics and Cd fractionation in a soil-plant (tomato seedling) system. Results demonstrated that the earthworm inoculation considerably enhanced plant Cd uptake and decreased plant Cd translocation, the effects of which were appreciably less significant than those of the earthworm mucus. This suggested that earthworm mucus may play a crucial role in the way earthworms influence plant Cd uptake and translocation. Moreover, the artificial mucus, which contained identical inorganic nitrogen contents to those in earthworm mucus, had no significant effect on plant Cd accumulation or translocation, implying that components other than inorganic nitrogen in the earthworm mucus may have contributed significantly to the overall effects of the mucus. Compared with the control, the earthworm mucus most substantially increased the root Cd content, the Cd accumulation amount of root and whole plant, and root Cd BCF by 93.7 %, 221.3 %, 72.2 %, and 93.7 %, respectively, while notably reducing the Cd TF by 48.2 %, which may be ascribed to the earthworm mucus's significant impacts on tomato seedling growth and physiological indicators, its considerable influences on the subcellular components and chemical species of root Cd, and its substantial effects on the soil characteristics and soil Cd fractionation, as revealed by correlation analysis. Redundancy analysis further suggested that the most prominent impacts of earthworm mucus may have been due to its considerable reduction of soil pH, improvement of soil DOC content, and enhancement of the exchangeable Cd fraction in soil. This work may help better understand how earthworm mucus influences the transport behavior of metals in soil-plant systems.
Collapse
Affiliation(s)
- Fei Tong
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs/National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing 210014, China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Tang Y, Lyu T, Cao H, Zhang W, Zhang R, Liu S, Guo T, Zhou X, Jiang Y. Recommendations for the reference concentration of cadmium exposure based on a physiologically based toxicokinetic model integrated with a human respiratory tract model. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135323. [PMID: 39079294 DOI: 10.1016/j.jhazmat.2024.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Cadmium (Cd) poses a significant threat to human health. However, chronic toxicity parameters for inhalation exposure are lacking, especially for noncritical systemic toxic effects. A physiologically based toxicokinetic (PBTK) model can be used to extrapolate toxicity parameters across various exposure routes. We combined a PBTK model with a human respiratory tract (HRT) model, which is applicable to the general population and capable of simulating the deposition and clearance processes of various airborne Cd compounds in the respiratory tract. Monte Carlo analysis was used to simulate the distribution of sensitive parameters to reflect individual variability. Validation based on datasets from general and occupational populations showed that the improved model had acceptable or better predictive performance, outperforming the original model with a 14.45 % decrease in the root mean square error (RMSE). Using this PBTK-HRT model, we extrapolated toxicity parameters from oral exposure to inhalation exposure for four systemic toxic effects with doseresponse relationships but no known inhalation toxicity parameters, and ultimately recommended reference concentrations (RfCs) for four diseases (chronic kidney disease: 0.01 μg/m3, osteoporosis: 0.01 μg/m3, stroke: 0.04 μg/m3, diabetes mellitus: 0.13 μg/m3), contributing to a comprehensive assessment of the health risks of Cd inhalation exposure. ENVIRONMENTAL IMPLICATION: Cadmium (Cd), a heavy metal, can cause lung cancer, chronic kidney disease, and osteoporosis and pose a significant threat to human health. We combined a physiologically based toxicokinetic (PBTK) model with a human respiratory tract (HRT) model to achieve better predictive performance and wider applicability; this model was subsequently employed for route-to-route extrapolation of toxicity parameters. Additionally, for the first time, we focused on multiple subchronic and chronic systemic toxic effects in addition to critical effects and derived their reference concentrations (RfCs), which can be used to assess the health risk of Cd inhalation exposure more comprehensively and accurately.
Collapse
Affiliation(s)
- Yilin Tang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Tong Lyu
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Hongbin Cao
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Wei Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ruidi Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Siqi Liu
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Tianqing Guo
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xu Zhou
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanxue Jiang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
5
|
Perini JA, Silva YMHD, Silva MCD, Silva BP, Machado DE, Moreira MDFR. Cadmium Exposure and Noncommunicable Diseases in Environmentally Exposed Brazilian Population: Cross-Sectional Study without Association of GSTP1 Polymorphism. TOXICS 2024; 12:640. [PMID: 39330568 PMCID: PMC11435875 DOI: 10.3390/toxics12090640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Cadmium (Cd) is a toxic metal which is harmful to humans and the environment. Cd levels and adverse effects may be associated with genetic polymorphisms in genes involved in its toxicokinetics. This study investigated Cd levels in 198 residents of a condominium in Rio de Janeiro, Brazil, built on industrial steel slag waste and the influence of glutathione S-transferase pi isoform 1 (GSTP1) rs1695 A>G polymorphism. Polymorphism was genotyped using a validated TaqMan assay; Cd levels were measured in blood (BCd) and urine (UCd) by graphite furnace atomic absorption spectrometry. Associations were evaluated by multiple logistic regression, odds ratios (ORs), and 95% confidence intervals (CIs). The mean Cd levels were 0.70 ± 0.20 µg L-1 (BCd), 0.58 ± 0.57 µg L-1 (UCd), and 0.61 ± 0.65 µg g-1 in urine corrected by creatinine (UcCd), and the Cd results were above tolerable levels (BCd > 0.5 µg L-1) in 87.4% of subjects. Higher blood Cd levels (>0.69 µg L-1) were associated with respiratory disease (OR = 2.4; 95%CI = 1.2-5.0), as almost 30% of people with respiratory diseases had higher Cd levels. The GSTP1 rs1695AA genotype frequency was 38.1%, and there were no significant differences between the SNP and Cd levels. High Cd levels and a high prevalence of diseases highlight the importance of implementing public policies and the continuous monitoring of this at-risk population.
Collapse
Affiliation(s)
- Jamila Alessandra Perini
- Research Laboratory of Pharmaceutical Sciences (LAPESF), Rio de Janeiro State University (West Zone-UERJ-ZO), Rio de Janeiro 23070-200, RJ, Brazil
- Post-Graduation Program in Environmental Science and Technology, Rio de Janeiro State University (West Zone-UERJ-ZO), Rio de Janeiro 23070-200, RJ, Brazil
| | - Yasmin Marinho Henriques da Silva
- Research Laboratory of Pharmaceutical Sciences (LAPESF), Rio de Janeiro State University (West Zone-UERJ-ZO), Rio de Janeiro 23070-200, RJ, Brazil
- Post-Graduation Program in Environmental Science and Technology, Rio de Janeiro State University (West Zone-UERJ-ZO), Rio de Janeiro 23070-200, RJ, Brazil
| | - Mayara Calixto da Silva
- Research Laboratory of Pharmaceutical Sciences (LAPESF), Rio de Janeiro State University (West Zone-UERJ-ZO), Rio de Janeiro 23070-200, RJ, Brazil
| | - Beatriz Pegado Silva
- Research Laboratory of Pharmaceutical Sciences (LAPESF), Rio de Janeiro State University (West Zone-UERJ-ZO), Rio de Janeiro 23070-200, RJ, Brazil
| | - Daniel Escorsim Machado
- Research Laboratory of Pharmaceutical Sciences (LAPESF), Rio de Janeiro State University (West Zone-UERJ-ZO), Rio de Janeiro 23070-200, RJ, Brazil
| | - Maria de Fátima Ramos Moreira
- Center for Studies on Worker Health and Human Ecology (CESTEH), National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21041-210, RJ, Brazil
| |
Collapse
|
6
|
Humann-Guilleminot S, Fuentes A, Maria A, Couzi P, Siaussat D. Cadmium and phthalate impacts developmental growth and mortality of Spodoptera littoralis, but not reproductive success. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116605. [PMID: 38936052 DOI: 10.1016/j.ecoenv.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Our environment is increasingly polluted with various molecules, some of which are considered endocrine disruptors. Metals and phthalates, originating from industrial activities, agricultural practices, or consumer products, are prominent examples of such pollutants. We experimentally investigated the impacts of the heavy metal cadmium and the phthalate DEHP on the moth Spodoptera littoralis. More specifically, larvae were reared in laboratory conditions, where they were exposed to diets contaminated with either two doses of cadmium at concentrations of 62.5 µg/g or 125 µg/g, two doses of DEHP at 100 ng/g and 10 µg/g, or a combination of both low and high doses of the two compounds, with a control group for comparison. Our findings indicate that cadmium delays the developmental transition from larva to adult. Notably, the combination of cadmium and DEHP exacerbated this delay, highlighting a synergistic effect. In contrast, DEHP alone did not affect larval development. Additionally, we observed that cadmium exposure, both alone and in combination with DEHP, led to a lower mass at all larval stages. However, cadmium-exposed individuals that reached adulthood eventually reached a similar mass to those in other groups. Interestingly, while our results did not show any effect of the treatments on hatching success, there was a higher adult mortality rate in the cadmium-treated groups. This suggests that while moths may prioritize reproductive success, their survival at the adult stage is compromised by cadmium exposure. In conclusion, our study demonstrates the impact of cadmium on the development, mass, and adult survival of moths, and reveals synergistic effects when combined with DEHP. These results confirm cadmium as an endocrine disruptor, even at low doses. These insights underscore the importance of understanding the toxicological effects of low doses of pollutants like cadmium and DEHP, both individually and in combination.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annabelle Fuentes
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annick Maria
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Philippe Couzi
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France.
| |
Collapse
|
7
|
Ma X, Sha Z, Li Y, Si R, Tang A, Fangmeier A, Liu X. Temporal-spatial characteristics and sources of heavy metals in bulk deposition across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171903. [PMID: 38527555 DOI: 10.1016/j.scitotenv.2024.171903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
With the rapid development of industries, agriculture, and urbanization (including transportation and population growth), there has been a significant alteration in the emission and atmospheric deposition of heavy metal pollutants. This has consequently given rise to a range of ecological and environmental health issues. In this study, we conducted a comprehensive two-year investigation on the temporal and spatial distribution characteristics of heavy metals in atmospheric deposition across China based on the Nationwide Nitrogen Deposition Monitoring Network (NNDMN). The atmospheric bulk deposition of Lead (Pb), Arsenic (As), Nickel (Ni), Selenium (Se), Chromium (Cr) and Cadmium (Cd) were 6.32 ± 1.59, 4.49 ± 0.57, 1.31 ± 0.21, 1.05 ± 0.16, 0.60 ± 0.06 and 0.21 ± 0.03 mg m-2 yr-1, respectively, with a large variation among the different regions of China. The order for atmospheric deposition flux was Southwest China > Southeast China > North China > Northeast China > Qinghai-Tibet Plateau and rural area > urban area > background area. The concentrations of heavy metals in bulk deposition exhibit seasonal variation with higher levels observed during winter compared to summer and spring, which are closely associated with anthropogenic activities. The Positive Matrix Factorization (PMF) results indicated that combustion, industrial emissions and traffic are the primary contributors to atmospheric deposition of heavy metals. The single factor pollution index (Pi) of heavy metals is consistently below 1, and the composite pollution index (Ni) is 0.16 across China, indicating that atmospheric heavy metal deposition is at a pollution-free level. The comprehensive potential ecological risk index of heavy metals is 11.8, with Cd exhibiting the highest single factor potential ecological risk index at 7.09, suggesting that more attention should be paid to Cd deposition in China. The present study reveals the spatial-temporal distribution pattern of atmospheric heavy metals deposition in China, identifying regional source characteristics and providing a theoretical foundation and strategies for reducing emissions of atmospheric pollutants.
Collapse
Affiliation(s)
- Xin Ma
- State Laboratory of Nutrient Use and Management, College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Science and Engineering, China Agricultural University, Beijing 100193, China
| | - Zhipeng Sha
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, 650500 Kunming, China
| | - Yunzhe Li
- State Laboratory of Nutrient Use and Management, College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Science and Engineering, China Agricultural University, Beijing 100193, China
| | - Ruotong Si
- State Laboratory of Nutrient Use and Management, College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Science and Engineering, China Agricultural University, Beijing 100193, China
| | - Aohan Tang
- State Laboratory of Nutrient Use and Management, College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Science and Engineering, China Agricultural University, Beijing 100193, China
| | - Andreas Fangmeier
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Xuejun Liu
- State Laboratory of Nutrient Use and Management, College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Science and Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Zhao M, Wang H, Sun J, Cai B, Tang R, Song X, Huang X, Liu Y, Fan Z. Human health risks of heavy metal(loid)s mediated through crop ingestion in a coal mining area in Eastern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116305. [PMID: 38599158 DOI: 10.1016/j.ecoenv.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The heavy metal(loid)s (HMs) in soils can be accumulated by crops grown, which is accompanied by crop ingestion into the human body and then causes harm to human health. Hence, the health risks posed by HMs in three crops for different populations were assessed using Health risk assessment (HRA) model coupled with Monte Carlo simulation. Results revealed that Zn had the highest concentration among three crops; while Ni was the main polluting element in maize and soybean, and As in rice. Non-carcinogenic risk for all populations through rice ingestion was at an "unacceptable" level, and teenagers suffered higher risk than adults and children. All populations through ingestion of three crops might suffer Carcinogenic risk, with the similar order of Total carcinogenic risk (TCR): TCRAdults > TCRTeenagers > TCRChildren. As and Ni were identified as priority control HMs in this study area due to their high contribution rates to health risks. According to the HRA results, the human health risk was associated with crop varieties, HM species, and age groups. Our findings suggest that only limiting the Maximum allowable intake rate is not sufficient to prevent health risks caused by crop HMs, thus more risk precautions are needed.
Collapse
Affiliation(s)
- Menglu Zhao
- School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiaxun Sun
- Department of Geographical Sciences, University of Maryland, College Park 20742, United States
| | - Boya Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yafeng Liu
- School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
9
|
Zafar S, Ashraf A, Hayat S, Siddique MH, Waseem M, Hassan M, Qaisar H, Muzammil S. Isolation and characterization of novel cadmium-resistant Escherichia fergusonii ZSF-15 from industrial effluent for flocculant production and antioxidant enzyme activity. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:412. [PMID: 38565815 DOI: 10.1007/s10661-024-12545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Hira Qaisar
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
10
|
Lu X, Wang Z, Chen Y, Yang Y, Fan X, Wang L, Yu B, Lei K, Zuo L, Fan P, Liang T, Cho JW, Antoniadis V, Rinklebe J. Source-specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119056. [PMID: 37757688 DOI: 10.1016/j.jenvman.2023.119056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Contamination, hazard level and source of 10 widely concerned potentially toxic metal(loid)s (PTMs) Co, As, Pb, Cr, Cu, Zn, Ni, Mn, Ba, and V in fine dust with particle size below 63 μm (FD63) were investigated to assess the environmental quality of college campuses and influencing factors. PTMs sources were qualitatively analyzed using statistical methods and quantitatively apportioned using positive matrix factorization. Probabilistic contamination degrees of PTMs were evaluated using enrichment factor and Nemerow integrated enrichment factor. Eco-health risk levels of content-oriented and source-oriented for PTMs were evaluated using Monte Carlo simulation. Mean levels of Zn (643.8 mg kg-1), Pb (146.0 mg kg-1), Cr (145.9 mg kg-1), Cu (95.5 mg kg-1), and Ba (804.2 mg kg-1) in FD63 were significantly larger than soil background values. The possible sources of the concerned PTMs in FD63 were traffic non-exhaust emissions, natural source, mixed source (auto repair waste, paints and pigments) and traffic exhaust emissions, which accounted for 45.7%, 25.4%, 14.5% and 14.4% of total PTMs contents, respectively. Comprehensive contamination levels of PTMs were very high, mainly caused by Zn pollution and non-exhaust emissions. Combined ecological risk levels of PTMs were low and moderate, chiefly caused by Pb and traffic exhaust emissions. The non-cancer risks of the PTMs in FD63 to college students fell within safety level, while the carcinogenic PTMs in FD63 had a certain cancer risks to college students. The results of source-specific health risk assessment indicated that Cr and As were the priority PTMs, and the mixed source was the priority pollution source of PTMs in FD63 from college campuses, which should be paid attention to by the local government.
Collapse
Affiliation(s)
- Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yurong Chen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyao Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Woo Cho
- Department of Environment, Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| |
Collapse
|
11
|
Zhao L, Li T, Wang H, Fan YM, Xiao Y, Wang X, Wang S, Sun P, Wang P, Jiangcuo Z, Tong L, Wang L, Peng W. Association of co-exposure to metal(loid)s during pregnancy with birth outcomes in the Tibetan plateau. CHEMOSPHERE 2023; 342:140144. [PMID: 37704082 DOI: 10.1016/j.chemosphere.2023.140144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Maternal metal (loid)s exposure has been related to birth outcomes but the results are still inconclusive. Most previous studies have discussed the single metal (loid)s, neglecting the scene of co-exposure. We examined the associations of both single metal (loid)s and metal mixtures with birth outcomes in a birth cohort from the Tibetan Plateau, including body weight, body length, head circumference, small for gestational age (SGA), and Ponderal index (PI). In our analysis of 1069 women, we measured 29 metal (loid)s in urine samples in the third trimester. The associations of single metal (loid)s with categorical or continuous birth outcomes were evaluated using a generalized linear mixed-effects model or linear mixed-effects model, respectively. The least absolute shrinkage and selection operator, Bayesian kernel machine, and Quantile g-computation regression were used to explore the joint association. We also evaluated the interactive effects of ethnicity and altitude on the effect of metal (loid)s on birth outcomes. Copper (Cu) concentration in maternal urine was positively associated with SGA, birth weight, birth length, and head circumference in the single pollutant models. For instance, Cu was associated with an increased risk of SGA [OR (95% CI) = 1.56 (1.23, 1.97); P < 0.001]. We didn't find significant joint association of metal mixtures with birth outcomes except a positive association between the mixture of Cu, Magnesium (Mg), and Iron (Fe) with the risk of SGA when the exposure level was above its 80th percentile, and Cu dominated the adverse association in a non-linear manner. Living altitude modified the associations of Cu with SGA and the positive association was only found in participants living at high altitude. In conclusion, maternal urinary metal (loid)s, especially Cu, was the dominant harmful metal (loid)s when associated with SGA on the Tibetan Plateau.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China
| | - Tiemei Li
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China
| | - Haijing Wang
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China
| | - Yue-Mei Fan
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China
| | - Xuejun Wang
- Department of Anesthesiology, Qinghai Red Cross Hospital, Xining, China
| | - Shulin Wang
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China
| | - Pin Sun
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Pinhua Wang
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, China
| | | | - Li Tong
- Department of Traditional Chinese Medicine, Medical College of Qinghai University, Xining, China; Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Medical College, Qinghai University, Qinghai, China
| | - Liehong Wang
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, China.
| | - Wen Peng
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China; Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Medical College, Qinghai University, Qinghai, China.
| |
Collapse
|
12
|
Luo L, Li J, Sun Y, Lv Y, Liu J, Li Y, Zhang C, Zhang W. Maternal genetic intergenerational and transgenerational effects on hormone synthesis in ovarian granulosa cells of offspring exposed to cadmium during pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115278. [PMID: 37481859 DOI: 10.1016/j.ecoenv.2023.115278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
This study aimed to investigate the maternally inherited intergenerational and transgenerational effects of cadmium (Cd) exposure on steroid hormone synthesis in the ovarian granulosa cells (GCs) of offspring rats. F1 rats were obtained by mating adult female Sprague-Dawley rats with healthy adult male rats and were exposed to 0, 0.5, 2.0, and 8.0 mg/kg CdCl2 during pregnancy. The adult female rats (PND 56) were mated with healthy adult male rats to produce F2 and F3 rats. The serum progesterone (Pg) and estradiol (E2) levels of the F2 adult female rats were decreased, while those of F3 rats were significantly increased. Moreover, hormone synthesis-related genes had different expression patterns in the F2 and F3 generations. F2 and F3 rat ovarian GCs exhibited altered miRNA expression profiles and DNA methylation patterns. Validation of miRNAs that regulate hormone synthesis-related genes in the cAMP/PKA signaling pathway suggested that miR-124-3p was downregulated in F2 and F3 rats, while miR-133a-5p and miR-150-5p were upregulated in F2 rats and downregulated in F3 rats. In summary, 1) there are maternal genetic intergenerational (GCs hormone synthesis disorder) and transgenerational (GCs hormone synthesis function repair change) effects on hormone synthesis function changes in offspring GCs induced by Cd exposure during pregnancy. 2) Changes in miRNAs and DNA methylation modifications associated with the genetic effects of altered hormone synthesis function in offspring GCs induced by Cd exposure during pregnancy are important. 3) Under the current environmental level of Cd exposure, the possible risk of maternal genetic intergenerational and transgenerational effects of offspring ovarian toxicity should be strongly considered.
Collapse
Affiliation(s)
- Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jingwen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yake Lv
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
13
|
Zhang J, Guan H, Wang T, Du S, Xu J, Liu X. Enrichment of cadmium and selenium in soil-crop system and associated probabilistic health risks in black shale areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95988-96000. [PMID: 37561298 DOI: 10.1007/s11356-023-29173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Selenium (Se) is the essential component of selenoenzymes and contributes to antioxidant defenses. The capability of Se to antagonize the toxicity of heavy metals makes it an essential trace element for human and plant health. Soils derived from black shales are naturally enriched with Se; however, these soils often contain high geological cadmium (Cd), due to the weathering of black shales rich in Cd and Se. Cadmium, as a known Group I carcinogen, could induce damage to various organs. This therefore poses a major challenge for safe cultivation of Se-rich land resources. In this study, a total of 247 paired soil-crop samples were collected from a typical farmland derived from black shales. The concentrations of Cd and Se in the samples were analyzed by inductively coupled plasma mass spectroscopy and atomic fluorescence spectrometry. Monte Carlo simulation was applied to evaluate potential health risks associated with Cd exposure. Cadmium was the critical pollutant in the study area, with the average value of 1.53 mg/kg. Moreover, both children and adults living in the area had a significant non-carcinogenic health risk. Additional health risk assessments revealed that diet was the main contributor for both children and adults among the four pathways (diet > soil ingestion > soil dermal adsorption > soil inhalation). Furthermore, our results revealed that leguminous vegetables and maize were ideal for this site due to their high Se and low Cd accumulation abilities. These findings provide support for adjusting planting structure by variety screening to mitigate the health risk induced by Cd.
Collapse
Affiliation(s)
- Jiawen Zhang
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China
| | - Haoran Guan
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China
| | - Tong Wang
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jianming Xu
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China
| | - Xingmei Liu
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Sun Y, Zhang W, Li Y, Zhu J, Liu C, Luo L, Liu J, Zhang C. Multigenerational genetic effects of paternal cadmium exposure on ovarian granulosa cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115123. [PMID: 37315360 DOI: 10.1016/j.ecoenv.2023.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/20/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
To explore whether paternal cadmium (Cd) exposure causes ovarian granulosa cell (GC) apoptosis in offspring and the multigenerational genetic effects. From postnatal day 28 (PND28) until adulthood (PND56), SPF male Sprague-Dawley (SD) rats were gavaged daily with varying concentrations of CdCl2. (0, 0.5, 2, and 8 mg/kg). After treatment, the F1 generation was produced by mating with untreated female rats, and the F1 generation male rats were mated with untreated female rats to produce the F2 generation. Apoptotic bodies (electron microscopy) and significantly higher apoptotic rates (flow cytometry) were observed in both F1 and F2 ovarian GCs following paternal Cd exposure. Moreover, the mRNA (qRTPCR) or protein (Western blotting) levels of bax, bcl2, bcl-xl, caspase 3, caspase 8, and caspase 9 were changed to varying degrees. Apoptosis-related miRNAs (qRTPCR) and methylation modifications of apoptosis-related genes (bisulfite-sequencing PCR) in ovarian GCs were further detected. Compared with those of controls, the expression patterns of miRNAs in F1 and F2 offspring were different after paternal Cd exposure, while the average methylation level of apoptosis-related genes did not change significantly (except for individual loci). In summary, there are paternal genetic intergenerational and transgenerational effects on ovarian GC apoptosis induced by paternal Cd exposure. These genetic effects were related to the upregulation of BAX, BCL-XL, Cle-CASPASE 3, and Cle-CASPASE 9 in F1 and the upregulation of Cle-CASPASE 3 in F2 progeny. Important changes in apoptosis-related miRNAs were also observed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chenchen Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
15
|
Xue W, Zhang X, Zhang C, Wang C, Huang Y, Liu Z. Mitigating the toxicity of reactive oxygen species induced by cadmium via restoring citrate valve and improving the stability of enzyme structure in rice. CHEMOSPHERE 2023; 327:138511. [PMID: 36972869 DOI: 10.1016/j.chemosphere.2023.138511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
The mechanism of reactive oxygen species (ROS) burst in rice cells induced by cadmium (Cd) stress remains poorly understood. The present study shows that the burst of superoxide anions (O2·-) and hydrogen peroxide (H2O2) in roots and shoots led by Cd stress was attributed to the disturbance of citrate (CA) valve and the damage of antioxidant enzyme structure in the rice seedlings. Cd accumulation in cells altered the molecular structure of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) through attacking glutamate (Glu) and other residues, leading to the significant reduction of their activities in clearing O2·- and decomposing H2O2. Citrate supplementation obviously increased the activity of antioxidant enzymes and decreased ∼20-30% of O2·- and H2O2 contents in roots and shoots. Meanwhile, the synthesis of metabolites/ligands such as CA, α-ketoglutarate (α-KG) and Glu as well as the activities of related enzymes in CA valve were remarkably improved. The activities of antioxidant enzymes were protected by CA through forming stable hydrogen-bonds between CA and antioxidant enzymes, and forming the stable chelates between ligands and Cd. These findings indicate that exogenous CA mitigated the toxicity of ROS under Cd stress by the ways of restoring CA valve function to reduce the production of ROS, and improving the stability of enzyme structure to enhance antioxidant enzymes activity.
Collapse
Affiliation(s)
- Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
16
|
Li S, Liu R, Wu Y, Liang R, Zhou Z, Chen J, You Y, Guo P, Zhang Q. Elevated serum lead and cadmium levels associated with increased risk of dyslipidemia in children aged 6 to 9 years in Shenzhen, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27335-0. [PMID: 37148513 DOI: 10.1007/s11356-023-27335-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Exposure to heavy metals can influence on metabolism, but studies have not fully evaluated young children. We investigated the association between levels of serum lead (Pb), cadmium (Cd), chromium (Cr), and arsenic (As) and risk of dyslipidemia in children. A total of 4513 children aged 6 to 9 years at 19 primary schools in Shenzhen were enrolled. Overall, 663 children with dyslipidemia were matched 1:1 with control by sex and age, and levels of serum Pb, Cd, Cr, and As were detected by inductively coupled plasma-mass spectrometry. Demographic characteristics and lifestyle were covariates in the logistic regression to determine the association of heavy metal levels with risk of dyslipidemia. Serum Pb and Cd levels were significantly higher in children with dyslipidemia than controls (133.08 vs. 84.19 μg/L; 0.45 vs. 0.29 μg/L; all P < 0.05), but this association was not found in Cr and As. We found significant upward trends for the odds ratios (ORs) of dyslipidemia associated with increasing quartiles of Pb and Cd levels (highest quartile of serum Pb OR 1.86, 95% confidence interval (CI) 1.46-2.38; Cd OR 2.51, 95% CI 1.94-3.24). Elevated serum Pb and Cd levels were associated with increased risk of dyslipidemia among children.
Collapse
Affiliation(s)
- Shufan Li
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Ruiguo Liu
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Yueyang Wu
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Rimei Liang
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Zhijiang Zhou
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Jiaqi Chen
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Yingbin You
- Baoan Central Hospital of Shenzhen, No. 233, Xixiang Section, Guangshen Road, Baoan District, Shenzhen, 518102, Guangdong, People's Republic of China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Qing Y, Zheng J, Tang T, Li S, Cao S, Luo Y, Chen Y, He W, Wang J, Zhou Y, Xu C, Zhang W, Ping S, Jiang M, Li D, Ji Y, Yang S, Du J, Li Y. Risk assessment of combined exposure to lead, cadmium, and total mercury among the elderly in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114874. [PMID: 37054469 DOI: 10.1016/j.ecoenv.2023.114874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Lead (Pb), cadmium (Cd) and total mercury (THg) are toxic heavy metals (THMs) that are widely present in the environment and can cause substantial health problems. However, previous risk assessment studies have rarely focused on the elderly population and have usually targeted a single heavy metal, which might underestimate the long-term accumulative and synergistic effects of THMs in humans. Based on the food frequency questionnaire and inductively coupled plasma mass spectrometry, this study assessed external and internal exposures to Pb, Cd and THg in 1747 elderly people in Shanghai. Probabilistic risk assessment with the relative potential factor (RPF) model was used to assess the neurotoxicity and nephrotoxicity risks of combined THMs exposures. The mean external exposures of Pb, Cd and THg in Shanghai elderly were 46.8, 27.2 and 4.9 μg/day, respectively. Plant-based foods are the main source of Pb and THg exposure, while Cd is mainly from animal-based foods. The mean concentrations of Pb, Cd and THg were 23.3, 1.1 and 2.3 μg/L in the whole blood, and 6.2, 1.0 and 2.0 μg/L in the morning urine, respectively. Combined exposure to THMs leading to 10.0 % and 7.1 % of Shanghai elderly at risk of neurotoxicity and nephrotoxicity. The results of this study have important implications for understanding the profiles of Pb, Cd and THg exposure in the elderly living in Shanghai and provide data support for risk assessment and control of nephrotoxicity and neurotoxicity from combined THMs exposure in the elderly.
Collapse
Affiliation(s)
- Ying Qing
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | | | - TianRan Tang
- Guizhou Meteorological Observatory, Guizhou 550081, China
| | - Shichun Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shiyu Cao
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yingyi Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yanfeng Chen
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Wenting He
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Jutao Wang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yang Zhou
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chenchen Xu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Weiwen Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Siyuan Ping
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Meng Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Dan Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yunhe Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 201203, China.
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China.
| |
Collapse
|
18
|
Zhao M, Wang H, Sun J, Tang R, Cai B, Song X, Huang X, Huang J, Fan Z. Spatio-temporal characteristics of soil Cd pollution and its influencing factors: A Geographically and temporally weighted regression (GTWR) method. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130613. [PMID: 36584651 DOI: 10.1016/j.jhazmat.2022.130613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Soil Cd pollution is the result of the combined influence of various human activities over a long period of time, and then quantifying the influence is essential for the prevention and control. Based on published literature data during 2000-2020, this study investigated the pollution characteristics and influencing factors of soil Cd in the Yangtze River Delta. The results were as follows: (1) The average Cd concentration was higher than the Chinese soil criteria value (0.30 mg/kg), and the proportion of Cd concentration exceeding its background value was 87.43%. (2) The assessment results using Contamination factor (CF) and Geo-accumulation index (Igeo) indicated that the soil Cd pollution risk could not negligible in the study area. (3) The pollution center shifted significantly owing to the combined effect of human activities. (4) The main influencing factors of Cd pollution obtained by Geographically and temporally weighted regression (GTWR) model were GDP per capita, Consumption of chemical fertilizer, Output value of primary industry, and Output value of secondary industry, but there were significant differences in the dominant factors for different provinces. Our findings contribute to the current understanding of the relationship between Cd pollution and human activities, and provide a scientific basis for pollution control.
Collapse
Affiliation(s)
- Menglu Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiaxun Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Boya Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jian Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
19
|
Zhang Y, Liu Z, Wang Z, Gao H, Wang Y, Cui M, Peng H, Xiao Y, Jin Y, Yu D, Chen W, Wang Q. Health risk assessment of cadmium exposure by integration of an in silico physiologically based toxicokinetic model and in vitro tests. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130191. [PMID: 36272375 DOI: 10.1016/j.jhazmat.2022.130191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a common environmental pollutant that can damage multiple organs, including the kidney. To prevent renal effects, international authorities have set health-based guidance values of Cd from epidemiological studies. To explore the health risk of Cd exposure and whether human equivalent doses (HEDs) derived from in vitro tests match the current guidance values, we integrated renal tubular epithelial cell-based assays with a physiologically based toxicokinetic model combined with the Monte Carlo method. For females, the HEDs (μg/kg/week) derived from KE2 (DNA damage), KE3 (cell cycle arrest), and KE4 (apoptosis) were 0.20 (2.5th-97.5th percentiles: 0.09-0.48), 0.52 (0.24-1.26), and 2.73 (1.27-6.57), respectively; for males the respective HEDs were 0.23 (0.10-0.49), 0.60 (0.27-1.30), and 3.11 (1.39-6.78). Among them, HEDKE4 (female) was close to the tolerable weekly intake (2.5 μg/kg/week) set by the European Food Safety Authority. The margin of exposure (MOE) derived from HEDKE4 (female) indicated that risks of renal toxicity for populations living in cadmium-contaminated regions should be of concern. This study provided a new approach methodology (NAM) for environmental chemical risk assessment using in silico and in vitro methods.
Collapse
Affiliation(s)
- Yangchun Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziwei Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuqing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Honghao Peng
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
20
|
Gong R, Pu X, Cheng Z, Ding J, Chen Z, Wang Y. The association between serum cadmium and diabetes in the general population: A cross-sectional study from NHANES (1999-2020). Front Nutr 2022; 9:966500. [PMID: 36570173 PMCID: PMC9768494 DOI: 10.3389/fnut.2022.966500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Associations between serum cadmium and diabetes had been reported in previous studies, however there was still considerable controversy regarding associations. Studies in general population that investigated the effects of serum cadmium on diabetes were currently lacking. We designed this cross-sectional study among U.S. adults under high and low cadmium exposure to assess associations between serum cadmium and diabetes. Methods This cross-sectional study analyzed 52,593 adults who aged more than 20 years and participated in the National Health and Nutrition Examination Survey (NHANES), 1999-2020. The missing values and extreme values in the covariables were filled by multiple interpolation. Univariate logistics regression, multivariate logistics regression and smooth fitting curves were used to analyze the association between serum cadmium and diabetes. Simultaneously, sensitivity analysis was carried out by converting the serum cadmium from continuous variable to categorical variable. The stratification logistics regression model was used to analyze whether there were special groups in each subgroup to test the stability of the results. Results In this cross-sectional study, serum cadmium levels were negatively correlated with the occurrence of diabetes in the low serum cadmium exposure group (OR = 0.811, 95% CI 0.698, 0.943; P = 0.007). There was no association between serum cadmium level and the occurrence of diabetes in the high serum cadmium exposure group (OR = 1.01, 95% CI 0.982, 1.037; P = 0.511). These results were consistent across all the subgroups (P for interaction >0.05). Conclusion Serum cadmium was negatively associated diabetes among the representative samples of the whole population in the United States under the normal level of serum cadmium exposure. However, there was no association between serum cadmium level and the occurrence of diabetes in the high serum cadmium exposure group. This study promoted an update of new preventative strategy targeting environment for the prevention and control of diabetes in the future.
Collapse
Affiliation(s)
| | - Xiaolu Pu
- Qinghai University, Xining, Qinghai, China
| | - Zhenqian Cheng
- Department of Clinical Nutrition, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jie Ding
- Department of Clinical Nutrition, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Zhenghao Chen
- University of Electronic Science and Technology of China, Chengdu, Sichuan, China,*Correspondence: Zhenghao Chen
| | - Yongjun Wang
- Department of Clinical Nutrition, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China,National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China,Yongjun Wang
| |
Collapse
|
21
|
Li D, Zhang Q, Sun D, Yang C, Luo G. Accumulation and risk assessment of heavy metals in rice: a case study for five areas of Guizhou Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84113-84124. [PMID: 35776312 DOI: 10.1007/s11356-022-21739-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the concentration and accumulation abilities of five heavy metals (Cd, Hg, As, Pb, Cr) in rice were assessed and their human health risk to local citizens had been evaluated. Soil and rice samples (125 samples) were collected from Guiyang (GY), Qiannan (QN), Bijie (BJ), Tongren (TR), and Zunyi (ZY) in Guizhou Province. Heavy metals were measured by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. The mean concentrations of Cd, Hg, As, Pb, and Cr were 0.58, 0.65, 12.31, 38.70, and 87.30 mg/kg in soil and were 0.05, 0.005, 0.11, 0.07, and 0.34 mg/kg in rice, respectively. The bioconcentration factors (BCF) decreased with the order Cd > Hg > As > Cr > Pb. Non-carcinogenic risk in this study was evaluated using the method of the hazard quotient (HQ) and hazard index (HI). The mean HQ values for Cd, Hg, Pb, and Cr were all lower than the standard limit (1.0) for children and adults, except As with the mean HQ for children of 2.79. The mean HI values for children and adults were 4.22 and 1.42, which exceeded 1.0. The mean carcinogenic risk (CR) values of As and Pb for children and adults were higher than the upper limit of the acceptable range (1 × 10-4) established by the United States Environmental Protection Agency (USEPA). In a conclusion, the non-carcinogenic and carcinogenic risks induced by heavy metals for children were higher than that for adults. This study revealed that consumption of rice in study areas may pose potential non-carcinogenic and carcinogenic risks to humans, and As was the largest contributor.
Collapse
Affiliation(s)
- Dashuan Li
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Qinghai Zhang
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Dali Sun
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chaolian Yang
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Guofei Luo
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
22
|
Perini JA, da Silva MC, Correa LV, Silva YM, Borges RM, Moreira MDFR. Chronic Cadmium Exposure and Genetic Polymorphisms of MMP-2 and MMP-9 in a Population Exposed to Steel Slag in the State of Rio de Janeiro, Brazil: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15304. [PMID: 36430020 PMCID: PMC9691087 DOI: 10.3390/ijerph192215304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Genetic polymorphisms in the matrix metalloproteinases (MMPs) family genes may be associated with cadmium (Cd) levels and its adverse effects. This study investigated the impact of MMP-2 and MMP-9 polymorphisms on Cd levels in 238 residents of a condominium in Rio de Janeiro, Brazil, built over an industrial steel slag waste. Polymorphisms were genotyped using TaqMan validated assays, and the Cd levels were measured in blood (BCd) and urine (UCd) samples by atomic absorption spectrometry. Associations were evaluated by linear correlation coefficients and multiple logistic regression, using odds ratios (OR) and 95% confidence intervals (CI). Mean age was 50 ± 15 years; 58% were female, 69% non-smokers. Mean concentrations for BCd and UCd were 0.70 ± 0.2 μg L-1 and 0.56 ± 0.55 μg L-1, respectively. Smoking status was associated with BCd ≥ 0.70 μg L-1 (OR = 2.9; 95% CI = 1.6-5.9). MMP-9 rs17576 A > G was associated with BCd ≥ 0.70 μg L-1 (OR = 2.11; 95% CI = 1.10-4.05) and UCd ≥ 0.56 μg L-1 (OR = 3.38; 95% CI = 1.82-7.65). Knowing possible individual predisposing factors is essential to understand Cd toxicity, and to improve the monitoring of high-risk populations.
Collapse
Affiliation(s)
- Jamila A. Perini
- Laboratório de Pesquisa de Ciências Farmacêuticas—LAPESF, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Estado do Rio de Janeiro (UERJ), Av. Manuel Caldeira de Alvarenga, 1.203, Rio de Janeiro 23070-200, RJ, Brazil
| | - Mayara C. da Silva
- Laboratório de Pesquisa de Ciências Farmacêuticas—LAPESF, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Estado do Rio de Janeiro (UERJ), Av. Manuel Caldeira de Alvarenga, 1.203, Rio de Janeiro 23070-200, RJ, Brazil
| | - Lorena V. Correa
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro 21041-210, RJ, Brazil
| | - Yasmin M. Silva
- Laboratório de Pesquisa de Ciências Farmacêuticas—LAPESF, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Estado do Rio de Janeiro (UERJ), Av. Manuel Caldeira de Alvarenga, 1.203, Rio de Janeiro 23070-200, RJ, Brazil
| | - Renato M. Borges
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro 21041-210, RJ, Brazil
| | - Maria de Fátima R. Moreira
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro 21041-210, RJ, Brazil
| |
Collapse
|
23
|
Požgajová M, Navrátilová A, Kovár M. Curative Potential of Substances with Bioactive Properties to Alleviate Cd Toxicity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12380. [PMID: 36231680 PMCID: PMC9566368 DOI: 10.3390/ijerph191912380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have led to alarming cadmium (Cd) pollution. Cd is a toxic heavy metal without any known physiological function in the organism, leading to severe health threat to the population. Cd has a long half-life (10-30 years) and thus it represents serious concern as it to a great extent accumulates in organs or organelles where it often causes irreversible damage. Moreover, Cd contamination might further lead to certain carcinogenic and non-carcinogenic health risks. Therefore, its negative effect on population health has to be minimalized. As Cd is able to enter the body through the air, water, soil, and food chain one possible way to defend and eliminate Cd toxicities is via dietary supplements that aim to eliminate the adverse effects of Cd to the organism. Naturally occurring bioactive compounds in food or medicinal plants with beneficial, mostly antioxidant, anti-inflammatory, anti-aging, or anti-tumorigenesis impact on the organism, have been described to mitigate the negative effect of various contaminants and pollutants, including Cd. This study summarizes the curative effect of recently studied bioactive substances and mineral elements capable to alleviate the negative impact of Cd on various model systems, supposing that not only the Cd-derived health threat can be reduced, but also prevention and control of Cd toxicity and elimination of Cd contamination can be achieved in the future.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
24
|
Żmudzińska A, Puścion-Jakubik A, Bielecka J, Grabia M, Soroczyńska J, Mielcarek K, Socha K. Health Safety Assessment of Ready-to-Eat Products Consumed by Children Aged 0.5-3 Years on the Polish Market. Nutrients 2022; 14:2325. [PMID: 35684125 PMCID: PMC9183086 DOI: 10.3390/nu14112325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Toxic elements have a negative impact on health, especially among infants and young children. Even low levels of exposure can impair the normal growth and development of children. In young children, all organs and metabolic processes are insufficiently developed, making them particularly vulnerable to the effects of toxic elements. The aim of this study is to estimate the concentration of toxic elements in products consumed by infants and young children. The health risk of young children due to consumption of ready-made products potentially contaminated with As (arsenic), Cd (cadmium), Hg (mercury), and Pb (lead) was also assessed. A total of 397 samples (dinners, porridges, mousses, snacks "for the handle", baby drinks, dairy) were analyzed for the content of toxic elements. Inductively coupled plasma mass spectrometry (ICP-MS) was used to assess As, Cd, and Pb concentration. The determination of Hg was performed by atomic absorption spectrometry (AAS). In order to estimate children's exposure to toxic elements, the content of indicators was also assessed: estimated daily intake (EDI), estimated weekly intake (EWI), provisional tolerable weekly intake (PTWI), provisional tolerable monthly intake (PTMI), the benchmark dose lower confidence limit (BMDL), target hazard quotient (THQ), hazard index (HI), and cancer risk (CR). The average content of As, Cd, Hg, and Pb for all ready-made products for children is: 1.411 ± 0.248 µg/kg, 2.077 ± 0.154 µg/kg, 3.161 ± 0.159 µg/kg, and 9.265 ± 0.443 µg/kg, respectively. The highest content As was found in wafer/crisps (84.71 µg/kg); in the case of Cd, dinners with fish (20.15 µg/kg); for Hg, dinners with poultry (37.25 µg/kg); and for Pb, fruit mousse (138.99 µg/kg). The results showed that 4.53% of the samples attempted to exceed Pb, and 1.5% exceeded levels of Hg. The highest value of THQ was made in the case of drinks, for Cd and Pb in mousses for children, and Hg for dairy products. The THQ, BMDL, and PTWI ratios were not exceeded. The analyzed ready-to-eat products for children aged 0.5-3 years may contain toxic elements, but most of them appear to be harmless to health.
Collapse
Affiliation(s)
- Anita Żmudzińska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (A.P.-J.); (J.B.); (M.G.); (J.S.); (K.M.); (K.S.)
| | | | | | | | | | | | | |
Collapse
|
25
|
Filippini T, Wise LA, Vinceti M. Cadmium exposure and risk of diabetes and prediabetes: A systematic review and dose-response meta-analysis. ENVIRONMENT INTERNATIONAL 2022; 158:106920. [PMID: 34628255 DOI: 10.1016/j.envint.2021.106920] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cadmium exposure has been associated with increased diabetes risk in several studies, though there is still considerable debate about the magnitude and shape of the association. OBJECTIVE To perform a systematic review and meta-analysis of observational studies investigating the relation between cadmium exposure and risk of type 2 diabetes and prediabetes, and to summarize data on the magnitude and shape of the association. DATA SOURCE After conducting an online literature search through October 1, 2021, we identified 42 eligible studies investigating the association between cadmium exposure and risk of diabetes and prediabetes. STUDY ELIGIBILITY CRITERIA We included studies that assessed cadmium exposure through biomarker levels; examined type 2 diabetes or prediabetes among outcomes; and reported effect estimates for cadmium exposure for meta-analysis only. STUDY APPRAISAL AND SYNTHESIS METHODS Studies were evaluated using ROBINS-E risk of bias tool. We quantitively assessed the relation between exposure and study outcomes using one-stage dose-response meta-analysis with a random effects meta-analytical model. RESULTS In the meta-analysis, comparing highest-versus-lowest cadmium exposure levels, summary relative risks (RRs) for type 2 diabetes were 1.24 (95% confidence interval 0.96-1.59), 1.21 (1.00-1.45), and 1.47 (1.01-2.13) for blood, urinary, and toenail matrices, respectively. Similarly, there was an increased risk of prediabetes for cadmium concentrations in both urine (RR = 1.41, 95% CI: 1.15-1.73) and blood (RR = 1.38, 95% CI: 1.16-1.63). In the dose-response meta-analysis, we observed a consistent linear positive association between cadmium exposure and diabetes risk, with RRs of 1.25 (0.90-1.72) at 2.0 µg/g of creatinine. Conversely for blood cadmium, diabetes risk appeared to increase only above 1 µg/L. Prediabetes risk increased up to approximately 2 µg/g creatinine above which it reached a plateau with RR of 1.42 (1.12-1.76) at 2 µg/g creatinine. LIMITATIONS AND CONCLUSIONS This analysis provides moderate-certainty evidence for a positive association between cadmium exposure (measured in multiple matrices) and risk of both diabetes and prediabetes.
Collapse
Affiliation(s)
- Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, USA
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, USA.
| |
Collapse
|
26
|
Pan J, Guan M, Xu P, Chen M, Cao Z. Salicylic acid reduces cadmium (Cd) accumulation in rice (Oryza sativa L.) by regulating root cell wall composition via nitric oxide signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149202. [PMID: 34346363 DOI: 10.1016/j.scitotenv.2021.149202] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The effects of salicylic acid (SA) on cadmium (Cd) accumulation, Cd subcellular distribution, cell wall composition and Cd adsorption in Cd-stressed rice seedlings were examined. The interaction between SA and nitric oxide (NO) signaling in regulating cell wall composition under Cd exposure was also investigated. Our results showed that 5 μmol·L-1 Cd treatment significantly decreased plant height, root length and plant dry weight by 40.1%, 46.1% and 21.3% (p < 0.05), respectively, and the inhibitory effects of Cd on the growth parameters were alleviated by exogenous SA. Application of SA remarkably decreased Cd concentrations in roots and shoots of rice seedlings by 48.0% and 19.6%, respectively, and increased the distribution ratio of Cd in the root cell wall fraction (from 35.7% to 40.6%) compared with Cd treatment alone. The reduced Cd accumulation in rice plants could be attributed to that SA application promoted pectin synthesis and demethylesterification, thereby increasing Cd deposition in the root cell wall. Moreover, SA application promoted lignin biosynthesis to strengthen the cell wall and prevent Cd from entering the root cells. In addition, NO might be involved in SA-induced pectin synthesis, pectin demethylesterification and lignin biosynthesis as a downstream signaling molecule, contributing to reduced Cd accumulation in Cd-stressed rice seedlings. The results provide deep insights into the mechanisms of exogenous SA action in reducing Cd accumulation in rice plants.
Collapse
Affiliation(s)
- Jiuyue Pan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Meiyan Guan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ping Xu
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Mingxue Chen
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhenzhen Cao
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
27
|
Zhang L, Zhou H, Chen X, Liu G, Jiang C, Zheng L. Study of the micromorphology and health risks of arsenic in copper smelting slag tailings for safe resource utilization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112321. [PMID: 33991933 DOI: 10.1016/j.ecoenv.2021.112321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 05/04/2023]
Abstract
Slag tailings are produced by "cooling-grinding-ball milling-flotation" and other processes of slag, while slag is produced by the flash smelting of the original ore. The utilization and environmental hazards of arsenic in slag tailings have become a focus of attention. This study on slag tailings reveals the presence of arsenic in copper smelting tailings from the mineralogy and leaching perspectives, and the noncarcinogenic and carcinogenic risks of arsenic to the human body were assessed by using the USEPA health risk model. The surface particles of the slag tailings were unevenly dispersed, and the mineral crystals were relatively complete. A small amount of secondary minerals had grown on the mineral surface. Most of the fine particles adhered to the surface of the main mineral to form inclusions. The mineral composition of the slag tailings was dominated by maghemite (Fe3O4) and fayalite (Fe2SiO4), and the arsenic-bearing minerals were unevenly distributed, where As (Ⅴ) fine particles were embedded in maghemite, amorphous phase and fayalite. There was a large amount of residual arsenic in the slag tailing particles, and the leaching content of arsenic in the toxicity leaching procedure was always lower than the limit of 5 mg/L. The health risk to the exposed population was evaluated by the USEPA health risk model. Since the exposed population in the industrial land is mainly adults, it is determined that the tailings will not cause harm to children's health. In this evaluation, the exposure duration (length of service of the workers) of 30 years, exposure frequency of 314 d/y and body weight of 60 kg (average weight of the workers) were taken as the parameters of three exposure pathways: hand-oral ingestion, respiratory system inhalation and skin contact. Therefore, longer activity time of the workers in the tailing workshop corresponds to a higher HI (hazard index). Although the arsenic in the slag tailings had a certain degree of bioavailability, it was not sufficient to adversely affect human health.
Collapse
Affiliation(s)
- Liqun Zhang
- School of Resources and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, PR China; School of Earth and Space Sciences, CAS Key Laboratory of Crust-Mantle Materials and the Environments, University of Science and Technology of China, Hefei 230026, PR China
| | - Huihui Zhou
- School of Earth and Space Sciences, CAS Key Laboratory of Crust-Mantle Materials and the Environments, University of Science and Technology of China, Hefei 230026, PR China
| | - Xing Chen
- School of Resources and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, PR China
| | - Guijian Liu
- School of Earth and Space Sciences, CAS Key Laboratory of Crust-Mantle Materials and the Environments, University of Science and Technology of China, Hefei 230026, PR China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, PR China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, PR China.
| |
Collapse
|