1
|
Salazar MJ, Cáceres-Mago K, Becerra AG. Role of arbuscular mycorrhizal fungi in lead translocation from Bidens pilosa L. plants to soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121626. [PMID: 38944957 DOI: 10.1016/j.jenvman.2024.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Bidens pilosa frequently forms a symbiotic association with arbuscular mycorrhizal fungi (AMF). This plant species can grow in Pb-polluted soils, accumulating Pb in its tissues. The aims of the study were to determine whether Pb accumulated in the tissues of B. pilosa can be transferred to the soil through AMF and to compare the role of AMF communities that have a history of exposure to the contaminant with those that have never been exposed. The experiment combined plants with and without Pb accumulated in their tissues, and inoculated with AMF collected from the rhizosphere of B. pilosa in soils contaminated and not contaminated with Pb. The results showed that AMF participate in the removal of Pb that had entered the plant and release it into the soil, as evidenced by the presence of Pb in the AMF spores and in the glomalin produced by AMF. We propose that Pb accumulation in AMF spores would be a protection mechanism that interrupts Pb uptake by the plant; however, that mechanism would not be fully exploited in detoxification, whereas the production of Pb-enriched glomalin could be an important detoxification mechanism to eliminate Pb already taken up by plants. AMF with a history of Pb exposure achieved only higher rates of root colonization, while AMF without previous exposure showed higher Pb concentration in the spores and higher glomalin production, and successfully removed Pb from both the roots and aboveground parts of the plant. The use of AMF communities not adapted to Pb may be a more effective option for microbe-mediated phytoremediation methods in which detoxification mechanisms are desirable.
Collapse
Affiliation(s)
- M Julieta Salazar
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| | - Karla Cáceres-Mago
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| | - Alejandra G Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| |
Collapse
|
2
|
Yang Y, Chen W, Meng D, Ma C, Li H. Investigation of arsenic contamination in soil and plants along the river of Xinzhou abandoned gold mine in Qingyuan, China. CHEMOSPHERE 2024; 359:142350. [PMID: 38759813 DOI: 10.1016/j.chemosphere.2024.142350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The exploitation of mineral resources is very important for economic development, but disorderly exploitation poses a serious threat to the ecological environment. However, investigations on the advantages of plant species and environmental pollution in polluted mining areas are limited. Thus, a survey was conducted to evaluate the impacts of abandoned mines on the surrounding ecological environment along rivers in polluted areas and to determine the Arsenic (As) pollution status in soil and plants. The results showed that the soil and vegetation along the river in the survey area were seriously polluted by As. The total As content of the 15 samples was significantly greater than the national soil background value (GB 15618-2018), and degree of pollution was nonlinearly related to the distance from the mine source, R2 = 0.9844. B. bipinnata, P. vittata and B. nivea were predominant with degrees of dominance of 0.01-0.33, 0.05-0.11, and 0.06-0.14 respectively. The As enrichment capacities of Juncus and P. vittata were significantly greater than those of the other plants, while the bioaccumulation factors (BCFs) were 21.81 and 7.04, respectively.
Collapse
Affiliation(s)
- Yanan Yang
- The Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety / College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Weizhen Chen
- The Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety / College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Dele Meng
- The Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety / College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Chongjian Ma
- The Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region / Henry Fork School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Huashou Li
- The Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety / College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; The Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region / Henry Fork School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China.
| |
Collapse
|
3
|
Wang J, Lu X, Jing Q, Zhang B, Ye J, Zhang H, Xiao Z, Zhang J. Spatiotemporal characterization of heavy metal and antibiotics in the Pearl River Basin and pollutants removal assessment using invasive species-derived biochars. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131409. [PMID: 37104950 DOI: 10.1016/j.jhazmat.2023.131409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Rivers play essential roles in human civilization, while anthropogenic activities have deteriorated their resilience and functionalities. Combating contamination is one of the priorities for building the river's resilience and providing safe water and habitats for livelihoods, wildlife preservation, and food production. We collected 174 water and sediment samples from the upstream to the estuary of the Pearl River (PR), characterized the heavy metal and antibiotics contamination levels, and analyzed the spatiotemporal distribution by compiling historical datasets extracted from published research papers and governmental documents. We also assessed the feasibility of removing PR water heavy metals and antibiotics using biochars derived from two invasive plants, Bidens pilosa L. and Lantana camara. According to our findings, heavy metals and antibiotics in water and sediment increased towards the downstream region of the Pearl River Delta (PRD). The water and sediment samples obtained from the Dongguan and Shenzhen regions exhibited the most elevated levels of heavy metals, whereas the samples from the Huizhou region demonstrated the highest levels of antibiotics. Compared with previously published PRD sediment heavy metals (1976-2011) and antibiotics contamination data (2006-2017), we found that some heavy metals and all measured antibiotics contents in sediment substantially reduced (80-100%). Cu, Zn, Cr, and As significantly polluted the sediment in PRD. Shenzhen had the highest Index of geo-accumulation (Igeo) for Cu, Zn, and Cr, while Zhaoqing had the highest Igeo for As. The dominant antibiotics were Ciprofloxacin, Doxycycline, Norfloxacin, Ofloxacin, Oxytetracycline, and Tetracycline. Invasive plant-derived biochars showed high antibiotic removal capacity but failed to reduce most PR water heavy metals since these invasive plants are potential heavy metal hyperaccumulators. The spatial distribution of heavy metal and antibiotics concentration/content in water and sediment samples is primarily affected by anthropogenic activities such as industrialization, aquaculture, pharmaceutical, and agricultural practice. Our study provides insights into the extensive freshwater watersheds' decontamination and green policymaking.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China; Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Xuening Lu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China
| | - Qinglin Jing
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China
| | - Bowen Zhang
- Faculty of Science, Hong Kong Baptist University, Hongkong, People's Republic of China
| | - Jiehong Ye
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China
| | - Huicheng Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China
| | - Zeheng Xiao
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, People's Republic of China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, People's Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Shi X, Tan W, Ling Q, Pei F, Luo S, Qin P, Yuan H, Huang L, Yu F. Metagenomics combined with metabolomics reveals the effect of Enterobacter sp. inoculation on the rhizosphere microenvironment of Bidens pilosa L. in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132033. [PMID: 37453352 DOI: 10.1016/j.jhazmat.2023.132033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Metagenomics analysis was performed to determine the effects of Enterobacter sp. FM-1 (FM-1) on key genera as well as functional genes in the rhizosphere of Bidens pilosa L. (B. pilosa L.). Moreover, metabolomics was used to reveal the differences among rhizosphere metabolites after FM-1 inoculation. FM-1 inoculation significantly increased the activity of enzymes associated with the carbon cycle in soil; among them, invertase activity increased by 5.52 units compared to a control. Specifically, the relative abundance of beneficial genera increased significantly, such as Lysobacter (0.45-2.58 unit increase) in low-contamination soils (LC) and Pseudomonas (31.17-45.99 unit increase) in high-contamination soils (HC). Comparison of different transformation processes of the C cycle revealed that inoculation of FM-1 increased the abundance of functional genes related to the carbon cycle in LC soil. In contrast, the nitrogen cycling pathway was significantly elevated in both the LC and HC soils. FM-1 inoculation reduced HM resistance gene abundance in the rhizosphere soil of B. pilosa L. in the LC soil. Moreover, FM-1 and B. pilosa L. interactions promoted the secretion of rhizosphere metabolites, in which lipids and amino acids played important roles in the phytoremediation process. Overall, we explored the rhizosphere effects induced by plantmicrobe interactions, providing new insights into the functional microbes and rhizosphere metabolites involved in phytoremediation.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Weilan Tan
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qiujie Ling
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fengmei Pei
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Shiyu Luo
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Peiqing Qin
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Huijian Yuan
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Liuan Huang
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China.
| |
Collapse
|
5
|
Phytochemical-Based Evidence of the Health Benefits of Bidens Pilosa Extracts and Cytotoxicity. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
Purpose
Bidens pilosa L. is traditionally used as a flavouring agent in foods, in the treatment of diseases, in agriculture as a biopesticide and herbicide, and in the phytoremediation of soils contaminated with heavy metals. The vast range of uses of B. pilosa for a variety of purposes is questionable, hence motivating the objectives of this study, which are to assess the cytotoxicity, health benefits, and/or risks of B. pilosa using chemical-based evidence.
Methods
A real-time cell analysis (xCELLigence system), ultra-high-performance liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer, high-performance liquid chromatography with a diode array detector, and chemical-based spectrophotometric methods were adopted in the study.
Results
High concentrations of the ethanol extracts exhibited cytotoxic activity on HepG2 (cancerous), and Vero (non-cancerous) cell lines, whereas the water extracts promoted cell proliferation at selected concentrations. The chemical profiling enabled the separation as well as characterisation of 137 phytochemicals. These were mainly phenolic acids, flavonoids, fatty acids, coumarins, and furanocoumarins. There was no toxic compound identified.
Conclusion
The ethanol extracts are generally more potent and exhibit stronger antioxidant activity and cytotoxicity, probably due to the presence of more flavonoids and phenolic acids, validating the uses of B. pilosa and its relevance as a source of functional phytochemicals.
Collapse
|
6
|
Lyu Y, Li G, He Y, Li Y, Tang Z. Occurrence and distribution of organic ultraviolet absorbents in soils and plants from a typical industrial area in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157383. [PMID: 35843326 DOI: 10.1016/j.scitotenv.2022.157383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Organic ultraviolet absorbents (UVAs) have attracted increasing concern due to their ubiquity, bioaccumulation, and potential toxicity. However, available information on their occurrence and transfer in terrestrial environment is still extremely insufficient. In this study, we investigated twelve UVAs in the soils and five terrestrial plant species from a typical industrial area in South China, and found their total concentrations were 5.87-76.1 (median 13.1) and 17.9-269 (median 82.9) ng/g dry weight, respectively. Homosalate was dominant in soils while benzophenone and octrizole were predominant in plants, likely due to their complex sources and bioaccumulation preferences. The bioaccumulation factors (BAFs) were further evaluated based on the ratios of UVA concentrations in plants and soils. The observed BAFs of UVAs were compound and species-specific, and most of them were much >1.0, indicating the chemicals could be transferred from soils to plants. To the best of our knowledge, this is the first report of organic UVAs in field soil-plant systems, providing information that may improve our understanding of the bioaccumulability of these chemicals in terrestrial environment and the associated risks. More studies are needed to investigate the transfer and bioaccumulation of such chemicals in soils and terrestrial biota.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Guanghui Li
- Chongqing Engineering Research Center for Soil Contamination Control and Remediation, Chongqing 400067, China.
| | - Ying He
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
7
|
Kalinhoff C, Calderón NT. Mercury Phytotoxicity and Tolerance in Three Wild Plants during Germination and Seedling Development. PLANTS 2022; 11:plants11152046. [PMID: 35956524 PMCID: PMC9370237 DOI: 10.3390/plants11152046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
By examining plant responses to heavy metal stress during the early stages of the life cycle, we can predict their tolerance and survival in polluted areas as well as their potential for bioremediation. The objective of our study was to evaluate the effect of exposure to mercury (Hg) on the germination and in vitro development of three plant species: Bidens pilosa, Taraxacum officinale (Asteraceae), and Heliocarpus americanus (Malvaceae). These are wild ecotypes adapted to local edaphoclimatic conditions in southern Ecuador, an area which has been historically affected by artisanal and small-scale gold mining (SSGM). For comparison, we additionally used a known Hg-tolerant plant, Lactuca sativa (Asteraceae). We tested biorelevant concentrations of Hg, equivalent to those occurring in soils affected by SSGM, i.e., up to 4.0 mg/L of Hg. The relative inhibitory effects of the treatments (0.6, 2.0, and 4.0 mg/L of Hg) on the germination percentage were most evident in T. officinale, followed by B. pilosa, while L. sativa and H. americanus were not affected. In terms of the time needed to reach 50% germination (T50), B. pilosa exposed to higher concentrations of Hg showed an increase in T50, while H. americanus showed a significant reduction compared to the control treatment. The reduction in radicle length at 4.0 mg/L Hg compared to the control was more evident in L. sativa (86%) than in B. pilosa (55.3%) and H. americanus (31.5%). We concluded that, in a scenario of Hg contamination in the evaluated concentration range, the grass B. pilosa and the tree H. americanus could have a higher probability of establishment and survival.
Collapse
|
8
|
da Silva Junior EC, Duran NM, de Lima Lessa JH, Ribeiro PG, de Oliveira Wadt LH, da Silva KE, de Lima RMB, Batista KD, Guedes MC, de Oliveira RC, de Carvalho HWP, dos Reis AR, Lopes G, Guimarães Guilherme LR. Unraveling the accumulation and localization of selenium and barium in Brazil nuts using spectroanalytical techniques. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Genotoxicity and Cytotoxicity Induced in Zygophyllum fabago by Low Pb Doses Depends on the Population’s Redox Plasticity. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lead (Pb) soil contamination remains a major ecological challenge. Zygophyllum fabago is a candidate for the Pb phytostabilisation of mining tailings; nevertheless, the cytogenotoxic effects of low doses of Pb on this species are still unknown. Therefore, Z. fabago seeds collected from non-mining (NM) and mining (M) areas were exposed to 0, 5 and 20 µM Pb for four weeks, after which seedling growth, Pb cytogenotoxic effects and redox status were analyzed. The data revealed that Pb did not affect seedling growth in M populations, in contrast to the NM population. Cell cycle progression delay/arrest was detected in both NM and M seedlings, mostly in the roots. DNA damage (DNAd) was induced by Pb, particularly in NM seedlings. In contrast, M populations, which showed a higher Pb content, exhibited lower levels of DNAd and protein oxidation, together with higher levels of antioxidants. Upon Pb exposure, reduced glutathione (GSH) and non-protein thiols were upregulated in shoots and were unaffected/decreased in roots from the NM population, whereas M populations maintained higher levels of flavanols and hydroxycinnamic acids in shoots and triggered GSH in roots and shoots. These differential organ-specific mechanisms seem to be a competitive strategy that allows M populations to overcome Pb toxicity, contrarily to NM, thus stressing the importance of seed provenance in phytostabilisation programs.
Collapse
|