1
|
Wang G, Li C, Liu S, Xing Z, Guo P, Hao Z, Li M, Wang H, Rong G, Liu Y. Disclosing phototransformation mechanisms of decabromodiphenyl ether (BDE-209) in different media by simulated sunlight: Implication by compound-specific stable isotope analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14980-14989. [PMID: 38286932 DOI: 10.1007/s11356-024-32203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
As one of the typical brominated flame retardants, decabromodiphenyl ether (BDE-209) has been widely detected in environment. However, scarce information was available on BDE-209 phototransformation mechanisms in various media. In this study, compound-specific stable isotope analysis was first applied to investigate BDE-209 phototransformation in n-hexane, MeOH:H2O (v:v, 8:2), and simulated seawater by simulated sunlight. BDE-209 transformation followed pseudo-first-order kinetic, with degradation rate in the following of n-hexane (2.66 × 10-3 min-1) > simulated seawater (1.83 × 10-3 min-1) > MeOH:H2O (1.41 × 10-3 min-1). Pronounced carbon isotope fractionation was first observed for BDE-209 phototransformation, with carbon isotope enrichment factors (εC) of -1.01 ± 0.14‰, -1.77 ± 0.26‰, -2.94 ± 0.38‰ in n-hexane, MeOH:H2O and simulated seawater, respectively. Combination analysis of products and stable carbon isotope, debromination with cleavage of C-Br bonds as rate-limiting step was the main mechanism for BDE-209 phototransformation in n-hexane, debromination and hydroxylation with cleavage of C-Br bonds as rate-limiting steps in MeOH:H2O, and debromination, hydroxylation and chlorination in simulated seawater. This present study confirmed that stable carbon isotope analysis was a robust method to discovery the underlying phototransformation mechanisms of BDE-209 in various solutions.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China.
| | - Chuanyuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Pengxu Guo
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Zixuan Hao
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Maojiao Li
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Guangzhi Rong
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| |
Collapse
|
2
|
Wang G, Wang X, Liu Y, Liu S, Xing Z, Guo P, Li C, Wang H. Novel Insights into Uptake, Translocation, and Transformation Mechanisms of 2,2',4,4'-Tetra Brominated Diphenyl Ether (BDE-47) in Wheat ( Triticum aestivum L.): Implication by Compound-Specific Stable Isotope and Transcriptome Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15266-15276. [PMID: 37773091 DOI: 10.1021/acs.est.3c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The uptake, translocation, and transformation of 2,2',4,4'-tetra brominated diphenyl ether (BDE-47) in wheat (Triticum aestivum L.) were comprehensively investigated by hydroponic experiments using compound-specific stable isotope analysis (CSIA) and transcriptome analysis. The results indicated that BDE-47 was quickly adsorbed on epidermis of wheat roots and then absorbed in roots via water and anion channels as well as an active process dependent on energy. A small fraction of BDE-47 in roots was subjected to translocation acropetally, and an increase of δ13C values in shoots than roots implied that BDE-47 in roots had to cross at least one lipid bilayer to enter the vascular bundle via transporters. In addition, accompanied by the decreasing concentrations, δ13C values of BDE-47 showed the increasing trend with time in shoots, indicating occurrence of BDE-47 transformation. OH-PBDEs were detected as transformation products, and the hydroxyl group preferentially substituted at the ortho-positions of BDE-47. Based on transcriptome analysis, genes encoding polybrominated diphenyl ether (PBDE)-metabolizing enzymes, including cytochrome P450 enzymes, nitrate reductases, and glutathione S-transferases, were significantly upregulated after exposure to BDE-47 in shoots, further evidencing BDE-47 transformation. This study first reported the stable carbon isotope fractionation of PBDEs during translocation and transformation in plants, and application of CSIA and transcriptome analysis allowed systematically characterize the environmental behaviors of pollutants in plants.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Xu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Pengxu Guo
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Chuanyuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| |
Collapse
|
3
|
Feng JR, Deng QX, Ni HG. Photodegradation of phthalic acid esters under simulated sunlight: Mechanism, kinetics, and toxicity change. CHEMOSPHERE 2022; 299:134475. [PMID: 35381265 DOI: 10.1016/j.chemosphere.2022.134475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The photodegradation of two phthalic acid esters (PAEs), dimethyl phthalate (DMP) and di-n-octyl phthalate (DOP), under simulated sunlight in aqueous or organic phases (n-hexane (HEX) and dichloromethane (DCM)) was investigated. The mean photodegradation rates were ranked by half-lives as follows: DOP in DCM (3.77 h) < DMP in DCM (9.62 h) < DOP in H2O (3.99 days) < DMP in H2O (19.2 days) < DOP in HEX (21.0 days) < DMP in HEX (>30 days). Compound-specific stable isotope analysis (CSIA) combined with intermediate analysis was employed to explore the involved initial photoreaction mechanism. C-O bond cleavage, chlorine radical adduction to the aromatic ring, competing reactions of chlorine radical adduction to the aromatic ring and side chain, and a singlet oxygen-mediated pathway were mainly responsible for initial photodegradation mechanism of PAEs in H2O, DMP in DCM, DOP in DCM, and DOP in HEX, respectively. Furthermore, distinct isotope fractionation patterns of PAEs photodegradation open the possibility of using CSIA to differentiate the involved solvents in the field. More toxic and recalcitrant intermediates emerged during the photodegradation of DMP in DCM, while the risk to human health was reduced during the photochemical transformation of DOP in organic solvents.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Cao Y, Gao Y, Hu X, Zeng Y, Luo X, Li G, An T, Mai B. Insight into phototransformation mechanism and toxicity evolution of novel and legacy brominated flame retardants in water: A comparative analysis. WATER RESEARCH 2022; 211:118041. [PMID: 35030361 DOI: 10.1016/j.watres.2022.118041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The novel brominated flame retardants (NBFRs) have become widespread as a consequence of the prohibition on the use of polybrominated diphenyl ethers (PBDEs). However, the transformation mechanism and potential environmental risk are largely unclear. In this study, we have explored the phototransformation behavior of the most abundant NBFRs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) in water under ultraviolet (UV) irradiation. Meanwhile, the legacy 2,2',4,4',6,6'-hexabromodiphenyl ether (BDE155) with similar structure was investigated contrastively. Results show that novel BTBPE is more persistent than legacy BDE155, with nearly four times slower photodegradation rate constants (0.0120 min-1and 0.0447 min-1, respectively). 18 products are identified in the phototransformation of BTBPE. Different from the only debrominated products formed in legacy BDE155 transformation, the ether bond cleavage photoproducts (e.g. bromophenols) are also identified in novel BTBPE transformation. Compound-specific stable isotope analysis (CSIA) confirms the phototransformation mechanism is mainly via debromination accompanying with the breaking of ether bond. Computational toxicity assessment implies that transformation products of BTBPE still have the high kidney risks. Especially the bromophenols formed via the ether bond cleavage could significantly increase the health effects on skin irritation. This study emphasizes the importance of understanding the photolytic behavior and potential risks of novel NBFRs and other structurally similar analogues.
Collapse
Affiliation(s)
- Ya Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xinyi Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
5
|
Wang G, Liu Y, Wang X, Dong X, Jiang N, Wang H. Application of dual carbon-bromine stable isotope analysis to characterize anaerobic micro-degradation mechanisms of PBDEs in wetland bottom-water. WATER RESEARCH 2022; 208:117854. [PMID: 34800854 DOI: 10.1016/j.watres.2021.117854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), one kind of persistent organic pollutants, were widely detected in coastal wetlands. Microbial reductive debromination is one of the most important attenuation processes for PBDEs in anaerobic environment, whereas the underlying reaction mechanisms remain elusive. Dual-element stable isotope analysis was recently recognized to distinguish different reaction mechanism for degradation of organic pollutants. In this study, the dual carbon-bromine isotope effects associated with the anaerobic microbial degradation were first investigated to characterize the reaction mechanisms for BDE-47 and BDE-153. Presence of lower brominated congeners indicated stepwise debromination as the main degradation pathway, with the preferential removal of bromine in para position > meta/ortho position. The pronounced isotope fractionation was observed for both carbon and bromine, with similar carbon (εC) and bromine isotope enrichment factor (εBr) between BDE-47 (εC = -5.98‰, εBr = -2.44‰) and BDE-153 (εC = -5.57‰, εBr = -2.06‰) during the microbial degradation. Compared to εC and εBr, the correlation of carbon and isotope effects (ΛC/Br = Δδ81Br/Δδ13C) was almost the same between BDE-47 (0.436) and BDE-153 (0.435), indicating the similar reaction mechanism. The calculated carbon and bromine apparent kinetic isotope effects (AKIEC and AKIEBr) were 1.0773 and 1.0098 for BDE-47 and 1.0716 and 1.0125 for BDE-153, within range reported for degradation of halogenated compounds following nucleophilic substitution. Combination analysis of degradation products, ΛC/Br and AKIE, all the results pointed to that the anaerobic reductive debromination of BDE-47 and BDE-153 followed the nucleophilic aromatic substitution, with the addition of cofactor to the benzene ring concomitant with dissociation of carbon-bromine bond via the inner-sphere electron transfer, and the cleavage of C-Br bond was the rate-determining step. This study contributed to the development of dual carbon-bromine isotope analysis as a robust approach to probe the fate of PBDEs in contaminated sites.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian 116026, China.
| | - Xu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xu Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Na Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
6
|
Huang C, Zeng Y, Cao Y, Zhu C, Ren Z, Liu YE, Gao S, Tian Y, Luo X, Mai B. Mechanistic Aspects Regarding the Ultraviolet Degradation of Polychlorinated Biphenyls in Different Media: Insights from Carbon and Chlorine Isotope Fractionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7731-7740. [PMID: 34003641 DOI: 10.1021/acs.est.1c00726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the carbon and chlorine isotope fractionation during ultraviolet-photolysis of polychlorinated biphenyls (PCBs, including PCB18, PCB77, PCB110, and PCB138) in n-hexane (Hex), methanol/water (MeOH/H2O), and silica gel was first investigated to explore their mechanistic processes. We observed a significant variation in ΛCl-C (εCl/εC) for the same PCBs in different photochemical systems, implying that PCB degradation processes in various photoreaction systems could differ. Although all substrates showed normal apparent carbon/chlorine kinetic isotope effects (C-/Cl-AKIE >1), the putative inverse C-AKIE of nondechlorinated pathways was suggested by 13C depletion of the average carbon isotope composition of PCB138 and corresponding dechlorinated products in MeOH/H2O, which might originate from the magnetic isotope effect. Significant negative correlations were found between C-AKIE and relative disappearance quantum yields ("Φ") of ortho-dechlorinated substrates (PCB18, PCB110, and PCB138) in Hex and MeOH/H2O. However, the C-AKIE and "Φ" of PCB77 (meta/para-dechlorinated congener) obviously deviated from the above correlations. Furthermore, significantly different product-related carbon isotope enrichment factors of PCB77 in Hex were found. These results demonstrated the existence of dechlorination position-specific and masking effects in carbon isotope fractionations.
Collapse
Affiliation(s)
- Chenchen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ya Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuhong Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihe Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yankuan Tian
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|