1
|
Montenegro D, Cortés-Cortés G, Balbuena-Alonso MG, Warner C, Camps M. Wolbachia-based emerging strategies for control of vector-transmitted disease. Acta Trop 2024; 260:107410. [PMID: 39349234 DOI: 10.1016/j.actatropica.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Dengue fever is a mosquito-transmitted disease of great public health importance. Dengue lacks adequate vaccine protection and insecticide-based methods of mosquito control are proving increasingly ineffective. Here we review the emerging use of mosquitoes transinfected with the obligate intracellular bacterium Wolbachia pipientis for vector control. Wolbachia often induces cytoplasmic incompatibility in its mosquito hosts, resulting in infertile progeny between an infected male and an uninfected female. Wolbachia infection also suppresses the replication of pathogens in the mosquito, a process known as "pathogen blocking". Two strategies have emerged. The first one releases Wolbachia carriers (both male and female) to replace the wild mosquito population, a process driven by cytoplasmic incompatibility and that becomes irreversible once a threshold is reached. This suppresses disease transmission mainly by pathogen blocking and frequently requires a single intervention. The second strategy floods the field population with an exclusively male population of Wolbachia-carrying mosquitoes to generate infertile hybrid progeny. In this case, transmission suppression depends largely on decreasing the population density of mosquitoes driven by infertility and requires continued mosquito release. The efficacy of both Wolbachia-based approaches has been conclusively demonstrated by randomized and non-randomized studies of deployments across the world. However, results conducted in one setting cannot be directly or easily extrapolated to other settings because dengue incidence is highly affected by the conditions into which the mosquitoes are released. Compared to traditional vector control methods, Wolbachia-based approaches are much more environmentally friendly and can be effective in the medium/long term. On the flip side, they are much more complex and cost-intensive operations, requiring a substantial investment, infrastructure, trained personnel, coordination between agencies, and community engagement. Finally, we discuss recent evidence suggesting that the release of Wolbachia-transinfected mosquitoes has a moderate potential risk of spreading potentially dangerous genes in the environment.
Collapse
Affiliation(s)
- Diego Montenegro
- Corporación Innovation Hub, Monteria 230001, Colombia; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Grupo de Investigación: Salud y Tecnología 4.0. Fundación Chilloa, Santa Marta 470001, Colombia
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - María Guadalupe Balbuena-Alonso
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Caison Warner
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
2
|
Bianco KA, Martini CN, Tejedor MJ, Paredes MG, Kristoff G. Multi-biomarker approach to evaluate the toxicity of chlorpyrifos (active ingredient and a commercial formulation) on different stages of Biomphalaria straminea. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109923. [PMID: 38615808 DOI: 10.1016/j.cbpc.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Biomphalaria straminea is a freshwater gastropod native to South America and used in toxicological assessments. Our aim was to estimate 48 h-LC50 and sub-chronic effects after the exposure to low concentrations of chlorpyrifos as commercial formulation (CF) and active ingredient (AI) on B. straminea adult, embryos and juveniles. Concentrations between 1 and 5000 μg L-1 were chosen for acute exposures and 0.1 and 1 μg L-1 for the sub-chronic one. After 14 days biochemical parameters, viability and sub-populations of hemocytes, reproductive parameters, embryotoxicity and offspring' survival were studied. Egg masses laid between day 12 and 14 were separated to continue the exposure and the embryos were examined daily. Offspring' survival and morphological changes were registered for 14 days after hatching. 48 h-LC50, NOEC and LOEC were similar between CF and AI, however the CF caused more sub-lethal effects. CF but not the AI decreased carboxylesterases, catalase and the proportion of hyalinocytes with respect to the total hemocytes, and increased superoxide dismutase and the % of granulocytes with pseudopods. Also CF caused embryotoxicity probably due to the increase of embryos' membrane permeability. Acetylcholinesterase, superoxide dismutase, hemocytes sub-populations, the time and rate of hatching and juveniles' survival were the most sensitive biomarkers. We emphasize the importance of the assessment of a battery of biomarkers as a useful tool for toxicity studies including reproduction parameters and immunological responses. Also, we highlight the relevance of incorporating the evaluation of formulations in order to not underestimate the effects of pesticides on the environment.
Collapse
Affiliation(s)
- Karina Alesia Bianco
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Claudia Noemí Martini
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - María José Tejedor
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina
| | - María Gimena Paredes
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Gisela Kristoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Bianco KA, Bernal-Rey DL, Menendez-Helman RJ, Kristoff G. Lethality and Acetylcholinesterase Inhibition in a Native Invertebrate Species Exposed to Water Samples of an Impacted Stream (Reconquista River Basin, Argentina). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:108. [PMID: 37284983 DOI: 10.1007/s00128-023-03742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The study of multiple biomarkers in bioindicator species is a useful tool to evaluate water quality in addition to physicochemical analysis. The aim of this work was to study the toxicity of water samples from two sites with different anthropogenic impacts (R: near a residential area and FP: close to horticultural farms and industrial waste treatment plants) from Las Catonas sub-basin (Reconquista River basin) in the native gastropod Biomphalaria straminea. Some physicochemical parameters and chlorpyrifos concentration were measured in water samples. Snails were exposed in laboratory conditions 48 h to the water samples and neurotoxicity, behavior, lethality and acetylcholinesterase, carboxylesterase, glutathione S-transferase, glutathione reductase and catalase activities were measured. In water from FP, chlorpyrifos was detected and conductivity and pH were higher than in R. Lethality (60%) and a decrease (30%) in acetylcholinesterase were observed in snails exposed to FP indicating that water contamination causes high toxicity in B. straminea.
Collapse
Affiliation(s)
- Karina A Bianco
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos Y Otros Modelos (EEAINM), Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Universidad de Buenos Aires, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daissy L Bernal-Rey
- Laboratorio de Enzimología, Estrés Oxidativo Y Metabolismo (LEEM), Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Universidad de Buenos Aires, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Renata J Menendez-Helman
- Laboratorio de Enzimología, Estrés Oxidativo Y Metabolismo (LEEM), Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Universidad de Buenos Aires, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gisela Kristoff
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos Y Otros Modelos (EEAINM), Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Universidad de Buenos Aires, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Wang T, Marle P, Slaveykova VI, Schirmer K, Liu W. Comparative study of the sensitivity of two freshwater gastropods, Lymnaea stagnalis and Planorbarius corneus, to silver nanoparticles: bioaccumulation and toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119999. [PMID: 36030959 DOI: 10.1016/j.envpol.2022.119999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Metal-based nanoparticles (NPs) are considered detrimental to aquatic organisms due to their potential accumulation. However, little is known about the mechanisms underlying these effects and their species-specificity. Here we used stable silver (Ag) NPs (20 nm, from 10 to 500 μg/L) with a low dissolution rate (≤2.4%) to study the bioaccumulation and biological impacts in two freshwater gastropods: Lymnaea stagnalis and Planorbarius corneus. No mortality was detected during the experiments. Ag bioaccumulation showed a dose-related increase with an enhanced concentration in both species after 7d exposure. L. stagnalis displayed a higher accumulation for AgNPs than P. corneus (e.g., up to 18- and 15-fold in hepatopancreas and hemolymph, respectively) which could be due to the more active L. stagnalis having greater contact with suspended AgNPs. Furthermore, the hepatopancreas and stomach were preferred organs for bioaccumulation compared to the kidney, mantle and foot. Regarding biological responses, the hemolymph rather than hepatopancreas appeared more susceptible to oxidative stress elicited by AgNPs, as shown by significantly increasing lipid peroxidation (i.e., formation of malondialdehyde). Neurotoxicity was detected in L. stagnalis when exposed to high concentrations (500 μg/L). Comparison with impacts elicited by dissolved Ag revealed that the effects observed on AgNPs exposure were mainly attributable to NPs. These results highlighted the relationship between the physiological traits, bioaccumulation, and toxicity responses of these two species to AgNPs and demonstrated the necessity of species-specificity considerations when assessing the toxicity of NPs.
Collapse
Affiliation(s)
- Ting Wang
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland
| | - Pierre Marle
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland; University of Lyon, CNRS UMR5023 LEHNA, Villeurbanne Cedex 69622, France
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland; School of Architecture, Civil and Environmental Engineering, EPFL Lausanne, Lausanne, Switzerland
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmenatal Biogeochemistry and Ecotoxicology, CH-1211Geneva, Switzerland.
| |
Collapse
|
5
|
Paredes MG, Bianco KA, Menéndez-Helman RJ, Kristoff G. Aquatic Contamination in Lugano Lake (Lugano Lake Ecological Reserve, Buenos Aires, Argentina) Cause Negative Effects on the Reproduction and Juvenile Survival of the Native Gastropod Biomphalaria straminea. Front Physiol 2022; 13:954868. [PMID: 35910565 PMCID: PMC9329693 DOI: 10.3389/fphys.2022.954868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Lugano Lake is located in an Ecological Reserve of Buenos Aires City. Biomonitoring of its water quality is essential due to its importance as a place for recreation and protection of native species. Biomphalaria straminea is a native hermaphrodite aquatic gastropod that inhabits different freshwater bodies of Argentina and was recently selected as a potential bioindicator. We propose this study as a first approach to assessing specific organisms’ use in biomonitoring of urban wild reserves, and the usefulness of reproduction assays. B. straminea survival, behavior, reproduction success and offspring survival after the exposure to water samples from Lugano Lake (L1, L2, and L3) were evaluated. Temperature, pH, conductivity and dissolved oxygen were registered in situ. Samples were transported to the laboratory and chemical analysis and bioassays were performed using 20 snails per site. A control group with tap water was added. Egg masses were separated, exposed individually and observed daily using a stereoscopic microscope. After hatching, juveniles were placed in tap water and offspring survival was registered at the first, second, third and fourth months after the beginning of the assay. High levels of conductivity, turbidity and nutrients were obtained. Ammonium and nitrite were higher than the guideline level for the protection of aquatic life. During the bioassay 20% of the snails (L2 and L3) showed abnormally protruding of the head-food region. The number of eggs and embryonated eggs per mass did not differ between treatments. Egg masses exposed to water samples from the lake presented overlapping and abnormal eggs and arrested embryos. Besides, low % of hatching (L1: 33%, L2: 42%, and L3: 16%) and juvenile survival after the first (L1:14%; L2:78%) and second month (L1: 60%) were noted. In the control group, 85% of hatching and 100%–90% of survival were observed. Our results suggests the presence of pollutant in the lake. B. straminea seems to be a sensitive local species. Biomphalaria spp. reproduction assays can provide a valuable endpoint for toxicity and risk assessments and a usefulness tool for biomonitoring water quality.
Collapse
Affiliation(s)
- María Gimena Paredes
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos y Otros Modelos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Alesia Bianco
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos y Otros Modelos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Renata J. Menéndez-Helman
- Laboratorio de Enzimología, Estrés Oxidativo y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gisela Kristoff
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos y Otros Modelos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Gisela Kristoff,
| |
Collapse
|
6
|
Guo D, Luo L, Kong Y, Kuang Z, Wen S, Zhao M, Zhang W, Fan J. Enantioselective neurotoxicity and oxidative stress effects of paclobutrazol in zebrafish (Danio rerio). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105136. [PMID: 35772839 DOI: 10.1016/j.pestbp.2022.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Paclobutrazol is a widely used chiral plant growth regulator and its enantioselective toxicity in aquatic organisms is less explored till now. Herein, the enantioselective neurotoxicity of paclobutrazol mediated by oxidative stress in zebrafish were investigated. The oxidative stress parameters and neurotoxic biomarkers changed significantly in each exposure group, and paclobutrazol showed enantioselective toxicity in zebrafish. Firstly, (2R, 3R)-paclobutrazol exhibited a stronger oxidative stress in zebrafish than (2S, 3S)-enantiomer (P < 0.05). Then, activities of acetylcholinesterase, calcineurin, and total nitric oxide synthase in (2R, 3R)-paclobutrazol treatments were 0.61-0.89, 1.24-1.53, and 1.21-1.35-fold stronger (P < 0.05) than those in (2S, 3S)-enantiomer treatments, respectively. Next, the content variations of four neurotransmitters in zebrafish exposed to (2R, 3R)-paclobutrazol were significantly larger than those in (2S, 3S)-enantiomer treatments (P < 0.05). Moreover, (2R, 3R)-paclobutrazol had stronger binding with the receptors than (2S, 3S)-enantiomer through molecular docking. The integrated biomarker response values further demonstrated that (2R, 3R)-paclobutrazol showed stronger toxicity to zebrafish than (2S, 3S)-enantiomer. Furthermore, the neurotoxicity of paclobutrazol can be interpreted as the mediating effect of oxidative stress in zebrafish through correlation analysis, and an adverse outcome pathway for the nervous system in zebrafish induced by paclobutrazol was proposed. This work will greatly extend our understanding on the enantioselective toxic effects of paclobutrazol in aquatic organisms.
Collapse
Affiliation(s)
- Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Lulu Luo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiyang Kuang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Siyi Wen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Jiang J, He B, Wei Y, Cui J, Zhang Q, Liu X, Liu D, Wang P, Zhou Z. The toxic effects of combined exposure of chlorpyrifos and p, p'-DDE to zebrafish (Danio rerio) and tissue bioaccumulation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106194. [PMID: 35623197 DOI: 10.1016/j.aquatox.2022.106194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Pesticides are widely used and frequently detected in the environment. The evaluation on the toxic effects of the co-exposure of two or more pesticides or related metabolites could reflect the real situation of the exposing risks. In this study, zebrafish was used as a model to investigate the potential toxic interactions of chlorpyrifos and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) on the survival rate, oxidative stress response and neurotoxicity, as well as their bioaccumulation and distribution in tissues. Co-exposure of chlorpyrifos and p,p'-DDE resulted in significant additive acute toxic effects on adult zebrafish with model deviation ratio (MDR) = 1.64. Both 7-day short-term at 1% LC50 and 35-day long-term at 0.5% LC50 co-exposure of chlorpyrifos with p,p'-DDE (50 and 100 µg/L) significantly reduced the survival rate of zebrafish colony to 75 and 82.5%. Co-exposure of chlorpyrifos and p,p'-DDE contributed to increased activity of antioxidant enzyme CAT, SOD and GST and excessive MDA generation, and decreased activity of CarE, CYP450 and AChE, compared with either single exposure of them. In co-exposure, the bioaccumulation of chlorpyrifos and p,p'-DDE was significantly different from the single exposure group. Overall, this study unraveled the potential toxic interaction of chlorpyrifos and p,p'-DDE on zebrafish and provided reference for environmental risk assessment of pesticide mixture.
Collapse
Affiliation(s)
- Jiangong Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Bingying He
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yimu Wei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Qiang Zhang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
8
|
Subba M, Keough MJ, Kellar C, Long S, Miranda A, Pettigrove VJ. Potamopyrgus antipodarum has the potential to detect effects from various land use activities on a freshwater ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117563. [PMID: 34147782 DOI: 10.1016/j.envpol.2021.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/17/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Identifying risks to ecosystems from contaminants needs a diversity of bioindicators, to understand the effects of these contaminants on a range of taxa. Molluscs are an ideal bioindicator because they are one of the largest phyla with extremely high ecological and economic importance. The aim of this study was to evaluate if laboratory bred Potamopyrgus antipodarum has the potential to show the impact of contaminants from various land use activities and degree of pollution on a freshwater ecosystem. We assessed the impact of contaminants arising from runoff and direct discharges in Merri Creek by measuring organism level responses (survival, growth, and reproduction), and sub-organism level responses (glutathione S-transferase (GST) activity, lipid peroxidation (LPO) activity and catalase (CAT) activity) in snails after 28-d of deployment at nine sites in Merri Creek and one site in Cardinia Creek. In Merri Creek, the top two sites were reference sites (with low impact from human activities), while the rest were impact sites (impacted by various anthropogenic land uses). Cardinia Creek (an additional reference site) had lower human activity. High concentrations of heavy metals, nutrients, and/or synthetic pyrethroids (bifenthrin) dominated these sites, which are likely to have contributed towards the negative responses observed in the snails. There was little influence from environmental conditions and site location on the endpoints because we found a similar response at an additional reference site compared to the reference sites in Merri Creek. At the organism level, reproduction increased and/or reduced, while CAT was affected at the sub-organism level. Potamopyrgus antipodarum has the potential to be a sensitive bioindicator for Australian conditions because the snails responded to varying concentrations of contaminants across different land use activities and showed similar sensitivity to P. antipodarum found in other regions of the globe and other bioindicators.
Collapse
Affiliation(s)
- Maita Subba
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Michael J Keough
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claudette Kellar
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Sara Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Ana Miranda
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Vincent J Pettigrove
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| |
Collapse
|
9
|
Rodrigues CC, Caixeta MB, Araújo PS, Gonçalves BB, Araújo OA, Silva LD, Rocha TL. Gonadal histopathology and inflammatory response in the freshwater snail exposed to iron oxide nanoparticles and ferric chloride: Insights into reproductive nanotoxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105910. [PMID: 34273771 DOI: 10.1016/j.aquatox.2021.105910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Considering that most animals in an aquatic ecosystem are invertebrates, concerns about the ecotoxicological impact of emerging pollutants, such as nanomaterials, in these populations are relevant, which can lead to loss of aquatic biodiversity. However, knowledge concerning the effects of iron-based nanoparticles (IONPs) at cell and tissue-levels on freshwater gastropods remains limited. Thus, the present study aimed to analyse the histopathological changes and inflammatory response in the freshwater snail Biomphalaria glabrata after chronic exposure to gluconic-acid functionalized IONPs (GLA-IONPs) in comparison with their dissolved counterpart (FeCl3). Snails were exposed to both iron forms (1.0, 2.5, 6.25, and 15.62 mg L-1) for 28 days, and the qualitative and quantitative histopathological assessment on hermaphrodite gonads was conducted, following by analysis of histopathological indices and inflammatory responses. Results showed that both iron forms (GLA-IONPs and FeCl3) induced several gonadal histopathologies in the snails, mainly atresic acini, vacuolization of pre-vitellogenic oocytes, and atresic oocytes in a concentration-dependent pattern. GLA-IONPs induced a more intense inflammatory response and high frequency of vacuolized vitellogenic oocytes in comparison with FeCl3. Environmentally relevant concentration (2.5 mg L-1) of GLA-IONPs and FeCl3 induced high gonadal histopathological indices, indicating their potential reproductive toxicity. The current study showed that the chronic exposure of snails to GLA-IONPs and their dissolved counterpart (FeCl3) induced several gonadal histopathological changes and inflammatory responses in B. glabrata, confirming their potential risk to aquatic biodiversity.
Collapse
Affiliation(s)
- Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Olacir Alves Araújo
- Laboratory of Chemistry and Molecular Modelling, Campus of Exact and Technological Science, State University of Goiás, Anápolis, Goiás, Brazil
| | - Luciana Damacena Silva
- Laboratory of Host-Parasite Interactions, State University of Goiás, Anápolis, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|