1
|
López L, Lozano K, Cruz J, Flores K, Fernández-Vega L, Cunci L. Measurement of neuropeptide Y with molecularly imprinted polypyrrole on carbon fiber microelectrodes. Neuropeptides 2024; 104:102413. [PMID: 38335798 PMCID: PMC10940184 DOI: 10.1016/j.npep.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The measurement of neuropeptides using small electrodes for high spatial resolution would provide us with localized information on the release of neuromolecules. The release of Neuropeptide Y (NPY) is related to different neurological diseases such as stress, obesity, and PTSD, among others. In this conference paper, we electrodeposited polypyrrole on carbon fiber microelectrodes in the presence of NPY to develop a molecularly imprinted polypyrrole sensitive to NPY. Optimization of the electrodeposition process resulted in the full coverage of the polymer with nucleation sites on the carbon fiber ridges, achieving completion by the seventh cycle. Electrodeposition was performed for five cycles, and using cyclic voltammetry (CV), we studied the change in the oxidation current peak for polypyrrole due to the presence of NPY. We also observed a change in capacitance due to the presence of NPY, which was studied by electrochemical impedance spectroscopy (EIS). A linear correlation was found between the oxidation peak and the concentration of NPY between 50 ng/mL and 1000 ng/mL. In addition, a linear correlation was also found between microelectrode capacitance and the concentration of NPY between 50 ng/mL and 1000 ng/mL at 100 kHz.
Collapse
Affiliation(s)
- Luis López
- Department of Chemistry, University of Puerto Rico - Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, PR 00931, United States
| | - Kelly Lozano
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, PR 00778, United States
| | - John Cruz
- Department of Chemistry, University of Puerto Rico - Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, PR 00931, United States
| | - Krystal Flores
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, PR 00778, United States
| | - Lauren Fernández-Vega
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, PR 00778, United States
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico - Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, PR 00931, United States.
| |
Collapse
|
2
|
Al-Ithawi WKA, Khasanov AF, Kovalev IS, Nikonov IL, Platonov VA, Kopchuk DS, Santra S, Zyryanov GV, Ranu BC. TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers. Polymers (Basel) 2023; 15:1853. [PMID: 37112002 PMCID: PMC10142995 DOI: 10.3390/polym15081853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanochemically induced methods are commonly used for the depolymerization of polymers, including plastic and agricultural wastes. So far, these methods have rarely been used for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical polymerization offers numerous advantages such as less or no solvent consumption, the accessibility of novel structures, the inclusion of co-polymers and post-modified polymers, and, most importantly, the avoidance of problems posed by low monomer/oligomer solubility and fast precipitation during polymerization. Consequently, the development of new functional polymers and materials, including those based on mechanochemically synthesized polymers, has drawn much interest, particularly from the perspective of green chemistry. In this review, we tried to highlight the most representative examples of transition-metal (TM)-free and TM-catalyzed mechanosynthesis of some functional polymers, such as semiconductive polymers, porous polymeric materials, sensory materials, materials for photovoltaics, etc.
Collapse
Affiliation(s)
- Wahab K. A. Al-Ithawi
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- Energy and Renewable Energies Technology Center, University of Technology—Iraq, Baghdad 10066, Iraq
| | - Albert F. Khasanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor S. Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor L. Nikonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Vadim A. Platonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Dmitry S. Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Brindaban C. Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Baig U, Waheed A. An efficient and simple strategy for fabricating a polypyrrole decorated ceramic-polymeric porous membrane for purification of a variety of oily wastewater streams. ENVIRONMENTAL RESEARCH 2023; 219:114959. [PMID: 36535398 DOI: 10.1016/j.envres.2022.114959] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
A ceramic-polymeric membrane was fabricated through in-situ oxidative polymerization of pyrrole (Py) on alumina (Al2O3) ceramic ultrafiltration support. The establishment of polypyrrole (PPy) active layer on the ceramic support led to a new PPy coated ceramic-polymeric membrane. Various salient features such as surface wettability, surface morphology, composition and functional goups of PPy coated ceramic-polymeric membrane were determined by various characterization techniques water contact angle (WCA), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) analysis and attenuated total reflectance fourier transform infrared (ATR-FTIR). The PPy coated ceramic-polymeric membrane showed superhydrophilic nature owing to its under water oil contact angle of ≥160° (superoleophobic). Thanks to stable deposition of PPy active layer on ceramic support, the membrane retained a separation efficiency of >99% for O/W emulsions at varied transmembrane pressures ranging from 0.5 bar to 2 bar with a feed concentration of 125 ppm of oil in water. Moreover, the PPy coated ceramic-polymeric membrane exhibited an ideal behaviour to the applied transmembrane pressure with a linear increase from 380 LMH to 2112 LMH in permeate flux as the pressure increased from 0.5 bar to 2 bar. As the concentration of oil was raised from 50 ppm to 250 ppm, the separation efficeincy separation remained at >99%. From among the different types of oils (Motor oil, Diesel oil and Crude oil) to mimic the oily waste water streams, the permeate flux was found to be highest in case of motor oil with a value reaching to 1690 LMH at 1 bar. The stability test revealed that the PPy coated ceramic-polymeric membrane was able to separate >99% of 125 ppm O/W surfactant stabilized emulsion for a period of 420 min.
Collapse
Affiliation(s)
- Umair Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
4
|
Sun J, Zhang X, Wu Y, Hu C. Selective separation of monovalent anions by PPy/pTS membrane electrodes in redox transistor electrodialysis. ENVIRONMENTAL RESEARCH 2023; 218:114987. [PMID: 36462694 DOI: 10.1016/j.envres.2022.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Selective separation of nitrate over chloride is crucial for eutrophication mitigation and nitrogen resource recovery but remains a challenge due to their similar ionic radius and the same valence. Herein, a polypyrrole membrane electrode (PME) was fabricated by polymerization of pyrrole (Py) and p-toluenesulfonate (pTS), which was used as a working electrode in redox transistor electrodialysis. The anions in the source solution were first incorporated into the PME at reduction potentials and then released to receiving solution at oxidation potentials. Pulse widths and potentials were optimized to maximize the ion separation performance of PME, resulting in the improvement of NO3-/Cl- separation factor up to 6.93. The ion distributions in various depths of PME indicated that both NO3- and Cl- were incorporated into PME at negative potentials. Then, NO3- was preferentially released from PME at positive potentials, but most Cl- was retained. This was ascribed to the high binding energy between Cl- and PPy/pTS structure, which was 51.4% higher than that between NO3- and PPy/pTS structure. Therefore, the higher transport rate of NO3- in comparison with Cl- was achieved, leading to a high NO3- selectivity over Cl-. This work provides a promising avenue for the selective separation of nitrate over chloride, which may contribute to nitrogen resource recycling and reuse.
Collapse
Affiliation(s)
- Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - You Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Sun J, Zhang B, Yu B, Ma B, Hu C, Ulbricht M, Qu J. Maintaining Antibacterial Activity against Biofouling Using a Quaternary Ammonium Membrane Coupling with Electrorepulsion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1520-1528. [PMID: 36630187 DOI: 10.1021/acs.est.2c08707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antibacterial modification is a chemical-free method to mitigate biofouling, but surface accumulation of bacteria shields antibacterial groups and presents a significant challenge in persistently preventing membrane biofouling. Herein, a great synergistic effect of electrorepulsion and quaternary ammonium (QA) inactivation on maintaining antibacterial activity against biofouling has been investigated using an electrically conductive QA membrane (eQAM), which was fabricated by polymerization of pyrrole with QA compounds. The electrokinetic force between negatively charged Escherichia coli and cathodic eQAM prevented E. coli cells from reaching the membrane surface. More importantly, cathodic eQAM accelerated the detachment of cells from the eQAM surface, particularly for dead cells whose adhesion capacity was impaired by inactivation. The number of dead cells on the eQAM surface was declined by 81.2% while the number of live cells only decreased by 49.9%. Characterization of bacteria accumulation onto the membrane surface using an electrochemical quartz crystal microbalance revealed that the electrorepulsion accounted for the cell detachment rather than inactivation. In addition, QA inactivation mainly contributed to minimizing the cell adhesion capacity. Consequently, the membrane fouling was significantly declined, and the final normalized water flux was promoted higher than 20% with the synergistic effect of electrorepulsion and QA inactivation. This work provides a unique long-lasting strategy to mitigate membrane biofouling.
Collapse
Affiliation(s)
- Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ben Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Boyang Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen45117, Germany
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
6
|
Su X, Xing D, Song Z, Dong W, Zhang M, Feng L, Wang M, Sun F. Understanding the effects of electrical exposure mode on membrane fouling in an electric anaerobic ceramic membrane bioreactor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Srinithi S, Balakumar V, Chen SM. In-situ fabrication of polypyrrole composite with MoO 3: An effective interfacial charge transfers and electrode materials for degradation and determination of acetaminophen. CHEMOSPHERE 2022; 291:132977. [PMID: 34801570 DOI: 10.1016/j.chemosphere.2021.132977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical wastes, acetaminophen (AP) widely used in medical fields, is often discharged into water, causing harm to human health. Hence, there is an urgent need to effectively remove AP from wastewater systems. In this paper, polypyrrole (PPy) composite with MoO3 has been synthesized via an in-situ polymerization method. The as-prepared materials were thoroughly characterized by XRD, FT-IR, UV-DRS, SEM, TEM and mapping techniques. The as-prepared MoO3@PPy composite was utilized to removal of AP via photocatalytic degradation and electrochemical determination. Under optimized composite, MoO3@PPy (2) showed an excellent photocatalytic degradation and electrochemical determination of AP compared to pure MoO3 and all other composites. The higher catalytic activity was ascribed to the effective interfacial charges transfer, reduce the recombination and enhance the active surface area of electrode via a synergistic effect. The photocatalytic degradation mechanism, rate and kinetic of the reaction were investigated and discussed. The major active degradation species and an effective charge transfer properties were confirmed by trapping experiments and photocurrent spectra. In addition, the MoO3@PPy (2) modified GCE exhibit the AP determination activity by DPV with a linear range of 0.05-546 μM. The limit of detection and sensitivity of electrode were 0.0007 μM and 0.242 μM-1 cm-2 respectively. Moreover, the proposed electrode showed good selectivity, stability and reproducibility. This method was useful for the determination of AP in real samples.
Collapse
Affiliation(s)
- Subburaj Srinithi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, ROC, Taiwan
| | - Vellaichamy Balakumar
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, ROC, Taiwan.
| |
Collapse
|
8
|
Electroless Ni–Sn–P plating to fabricate nickel alloy coated polypropylene membrane with enhanced performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119820] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Li P, Yang C, Sun F, Li XY. Fabrication of conductive ceramic membranes for electrically assisted fouling control during membrane filtration for wastewater treatment. CHEMOSPHERE 2021; 280:130794. [PMID: 34162118 DOI: 10.1016/j.chemosphere.2021.130794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 06/13/2023]
Abstract
Membrane technology is widely used in water and wastewater treatment. However, membrane fouling remains one of the biggest challenges for membrane applications. In this study, an electrically assisted technique was developed for the control of fouling on flat-sheet ceramic membranes. The novel conductive membrane was fabricated by coating dopamine and carbon nanotubes (CNTs) onto the surface of an α-alumina membrane support to form a conductive CNT coating. The resulting flat-sheet conductive ceramic membrane (FSCCM) exhibited excellent electric conductivity and stability, which performed well in filtration of the synthetic wastewater containing inorganic matter (kaolin solution) or organic pollutants (oil emulsion). By applying a negative charge on the FSCCM with a DC voltage of 2.0 V, the membrane fouling rate was reduced by approximately 50%. The energy consumption rate for the electrically assisted membrane fouling control was only 22.2 × 10-3 kWh/m3 in paused-charge mode, with a pause duration of 15 s. A fouling-layer analysis indicted that the imposed electric field greatly reduced the amount of strongly attached foulants on the membrane surface and in the membrane pores. It is believed that the electric field exerted an electrostatic force on the negatively charged pollutants, such as particles and oil droplets, which prevented the foulants from attaching to the membrane surface. This FSCCM-based method provides a clean, effective, and energy-efficient technique for membrane fouling control, thereby enabling high-rate membrane filtration.
Collapse
Affiliation(s)
- Pu Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chao Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Feiyun Sun
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiao-Yan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; State Key Laboratory of Marine Pollution (City University of Hong Kong), Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
10
|
Hsu WS, Preet A, Lin TY, Lin TE. Miniaturized Salinity Gradient Energy Harvesting Devices. Molecules 2021; 26:molecules26185469. [PMID: 34576940 PMCID: PMC8466105 DOI: 10.3390/molecules26185469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Harvesting salinity gradient energy, also known as "osmotic energy" or "blue energy", generated from the free energy mixing of seawater and fresh river water provides a renewable and sustainable alternative for circumventing the recent upsurge in global energy consumption. The osmotic pressure resulting from mixing water streams with different salinities can be converted into electrical energy driven by a potential difference or ionic gradients. Reversed-electrodialysis (RED) has become more prominent among the conventional membrane-based separation methodologies due to its higher energy efficiency and lesser susceptibility to membrane fouling than pressure-retarded osmosis (PRO). However, the ion-exchange membranes used for RED systems often encounter limitations while adapting to a real-world system due to their limited pore sizes and internal resistance. The worldwide demand for clean energy production has reinvigorated the interest in salinity gradient energy conversion. In addition to the large energy conversion devices, the miniaturized devices used for powering a portable or wearable micro-device have attracted much attention. This review provides insights into developing miniaturized salinity gradient energy harvesting devices and recent advances in the membranes designed for optimized osmotic power extraction. Furthermore, we present various applications utilizing the salinity gradient energy conversion.
Collapse
Affiliation(s)
- Wei-Shan Hsu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (W.-S.H.); or (A.P.)
| | - Anant Preet
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (W.-S.H.); or (A.P.)
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- Department of Chemistry, College of Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Biomedical Industry Ph.D. Program, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (W.-S.H.); or (A.P.)
- Correspondence: ; Tel.: +886-(03)-573-1750
| |
Collapse
|