1
|
Dun L, Ouyang Z, Sun Q, Yue X, Wu G, Li B, Kang W, Wang Y. A Simple and Efficient Magnesium Hydroxide Modification Strategy for Flame-Retardancy Epoxy Resin. Polymers (Basel) 2024; 16:1471. [PMID: 38891418 PMCID: PMC11174588 DOI: 10.3390/polym16111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium hydroxide, as a green inorganic flame-retardancy additive, has been widely used in polymer flame retardancy. However, magnesium hydroxide is difficult to disperse with epoxy resin (EP), and its flame-retardancy performance is poor, so it is difficult to use in flame-retardant epoxy resin. In this study, an efficient magnesium hydroxide-based flame retardant (MH@PPAC) was prepared by surface modification of 2-(diphenyl phosphine) benzoic acid (PPAC) using a simple method. The effect of MH@PPAC on the flame-retardancy properties for epoxy resins was investigated, and the flame-retardancy mechanism was studied. The results show that 5 wt% MH@PPAC can increase the limiting oxygen index for EP from 24.1% to 38.9%, achieving a V-0 rating. At the same time, compared to EP, the peak heat release rate, peak smoke production rate, total smoke production rate, and peak CO generation rate for EP/5 wt% MH@PPAC composite material decreased by 53%, 45%, 51.85%, and 53.13% respectively. The cooperative effect for PPAC and MH promotes the formation of a continuous and dense char layer during the combustion process for the EP-blend material, significantly reducing the exchange for heat and combustible gases, and effectively hindering the combustion process. Additionally, the surface modification of PPAC enhances the dispersion of MH in the EP matrix, endowing EP with superior mechanical properties that meet practical application requirements, thereby expanding the application scope for flame-retardant EP-blend materials.
Collapse
Affiliation(s)
- Linan Dun
- College of Materials Science and Engineering, Northeastern University, Shenyang 110004, China; (L.D.); (Q.S.)
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Zeen Ouyang
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Qihao Sun
- College of Materials Science and Engineering, Northeastern University, Shenyang 110004, China; (L.D.); (Q.S.)
| | - Xiaoju Yue
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Guodong Wu
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Bohan Li
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Weidong Kang
- Jinxi Industries Group Co., Ltd., Taiyuan 030000, China;
| | - Yuanhao Wang
- College of Materials Science and Engineering, Northeastern University, Shenyang 110004, China; (L.D.); (Q.S.)
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| |
Collapse
|
2
|
Li J, Zhao H, Liu H, Sun J, Wu J, Liu Q, Zheng Y, Zheng P. Recent advances in metal-family flame retardants: a review. RSC Adv 2023; 13:22639-22662. [PMID: 37502822 PMCID: PMC10369043 DOI: 10.1039/d3ra03536k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The use of polymer materials is inextricably linked to our manufacturing life. However, most of them are easily combusted in the air and the combustion process generates a large amount of toxic fumes and dangerous smoke. This can result in injuries and property damage, as well as limiting their use. It is essential to enhance the flame-retardant properties and smoke suppression performance by using multiple flame retardants. Metal-based flame retardants have a unique chemical composition. They are environmentally friendly flame retardants, which can impart good smoke suppression, flame retardancy to polymers and further reduce the production of toxic gases. The differences in the compounds formed between the transition metals and the main group metals make them act differently as flame retardants for polymers. As a result, this study presents the research progress and flame-retardant mechanism of flame-retardant polymers for flame retardants from different groups of metals in the periodic table of elements in a systematic manner. In view of the differences between the main group metals and transition metals, the mechanism of their application in flame retardant polymer materials is carefully detailed, as are their distinct advantages and disadvantages. And ultimately, prospects for the development of transition metals and main group metals are outlined. It is hoped that this paper will provide valuable references and insights for scholars in the field.
Collapse
Affiliation(s)
- Junwei Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Haihan Zhao
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Huaiyin Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Jichang Sun
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Jing Wu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University Wuhan 430056 P. R. China
| | - Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| |
Collapse
|
3
|
Design of P-decorated POSS towards flame-retardant, mechanically-strong, tough and transparent epoxy resins. J Colloid Interface Sci 2023; 640:864-876. [PMID: 36907147 DOI: 10.1016/j.jcis.2023.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Epoxy resins (EPs) are known for their durability, strength, and adhesive properties, which make them a versatile and popular material for use in a variety of applications, including chemical anticorrosion, small electronic devices, etc. However, EP is highly flammable due to its chemical nature. In this study, phosphorus-containing organic-inorganic hybrid flame retardant (APOP) was synthesized by introducing 9, 10-dihydro-9-oxa-10‑phosphaphenathrene (DOPO) into cage-like octaminopropyl silsesquioxane (OA-POSS) via Schiff base reaction. The improved flame retardancy of EP was achieved by combining the physical barrier of inorganic Si-O-Si with the flame-retardant capability of phosphaphenanthrene. EP composites containing 3 wt% APOP passed the V-1 rating with a value of LOI of 30.1% and showed an apparent reduction in smoke release. Additionally, the combination of the inorganic structure and the flexible aliphatic segment in the hybrid flame retardant provides EP with molecular reinforcement, while the abundance of amino groups facilitates a good interface compatibility and outstanding transparency. Accordingly, EP containing 3 wt% APOP increased in tensile strength, impact strength, and flexural strength by 66.0 %, 78.6 %, and 32.3 %, respectively. The EP/APOP composites had a bending angle lower than 90°, and their successful transition to a tough material highlights the potential of this innovative combination of the inorganic structure and the flexible aliphatic segment. In addition, the relevant flame-retardant mechanism revealed that the APOP promoted the formation of a hybrid char layer containing P/N/Si for EP and produced phosphorus-containing fragments during combustion, showing flame-retardant effects in both condensed and vapor phases. This research offers innovative solutions for reconciling flame retardancy & mechanical performances and strength & toughness for polymers.
Collapse
|
4
|
Zhang Y, Lin F, Wu Y, Wang S, Liu Z, Song L. Synergistic flame retardant effect of cerium‐based
DOPO
derivative and intumescent flame retardants in polypropylene. J Appl Polym Sci 2023. [DOI: 10.1002/app.53819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yan Zhang
- Xiamen Institute of Rare Earth Materials Chinese Academy of Sciences Xiamen China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen China
| | - Fenglong Lin
- Xiamen Institute of Rare Earth Materials Chinese Academy of Sciences Xiamen China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen China
| | - Yincai Wu
- Xiamen Institute of Rare Earth Materials Chinese Academy of Sciences Xiamen China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen China
| | - Shenglong Wang
- Xiamen Institute of Rare Earth Materials Chinese Academy of Sciences Xiamen China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen China
| | | | - Lijun Song
- Xiamen Institute of Rare Earth Materials Chinese Academy of Sciences Xiamen China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen China
| |
Collapse
|
5
|
A phosphorus-containing aliphatic amine curing agent towards intrinsic flame-retardant and smoke-suppressive epoxy resins. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Ou M, Lian R, Cui J, Guan H, Liu L, Jiao C, Chen X. Co-curing preparation of flame retardant and smoke-suppressive epoxy resin with a novel phosphorus-containing ionic liquid. CHEMOSPHERE 2023; 311:137061. [PMID: 36328322 DOI: 10.1016/j.chemosphere.2022.137061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus-containing ionic liquid derivatives have been proven to be effective flame retardants for epoxy resin (EP). Flame retardants can accelerate the curing process and improve flame retardancy and smoke suppression of EP composites, which is challenging. In this paper, a novel phosphorus-containing ionic liquid (TPP-PF6) was synthesized and used both as a co-curing agent with 4,4'-diaminodiphenylmethane (DDM) and as a highly effective flame retardant for EP. It has been found that TPP-PF6 was conducive to improve the char formation of EP to inhibit the smoke release at high temperatures. For EP/TPP-PF6 composites, the flame-retardant performance was enhanced rapidly with the increase of TPP-PF6. With only 2 wt% of TPP-PF6, EP/2.0TPP-PF6 reached a UL-94 V-0 rating and a limiting oxygen index of 30.3%. The peak heat release rate, total heat release, and total smoke production values of EP/2.0TPP-PF6 were reduced by 36.32%, 45.81%, and 15.1% compared with those of pure EP, respectively. The thermal degradation products and flame retardant mechanism in gas and condensed phases were studied. It was found that TPP-PF6 had flame retardant effect in the barrier effect of the condensed phase and the quenching effect of the gas phase. This work explores the high-efficiency flame retardant and smoke-suppressive structures with co-curing properties for EP, thus promoting the wide application of EP materials.
Collapse
Affiliation(s)
- Mingyu Ou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Richeng Lian
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Jiahui Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Haocun Guan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Lei Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Chuanmei Jiao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China.
| | - Xilei Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China.
| |
Collapse
|
7
|
Hua Y, Chen J, Liu J, Sun J, Gu X, Jiang S, Zhang S. Fabrication of a transparent, flame retardant, and antimicrobial epoxy resin by a novel phosphorus-containing Schiff base molecule. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Highly efficient phosphorous-containing flame retardant for transparent epoxy resin with good mechanical properties. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Li L, Hua F, Xi H, Yang J, Xiao T, Zuo R, Xu X, Yang Z, Lei Z. Synthesis of Phosphorous Phenanthrene/L-Tryptophan Flame Retardant for Enhanced Flame Retardancy of Epoxy Resins. Macromol Res 2022. [DOI: 10.1007/s13233-022-0102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Wang S, Wu W, Chen Q, Ding Z, Li S, Zhang A, Tang T, Liu J, Okoye PU. Preparation of DOPO‐derived magnesium phosphate whisker and its synergistic effect with ammonium polyphosphate on the flame retardancy and mechanical property of epoxy resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.53430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Song Wang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Weidong Wu
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Qi Chen
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Zhan Ding
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Sanxi Li
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Ailing Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science Changchun China
| | - Jie Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science Changchun China
| | - Patrick U. Okoye
- Laboratorio de Bioenergía Instituto de Energías Renovables (IER‐UNAM) Temixco Mexico
| |
Collapse
|
11
|
Fan H, Gu X, Zhang S, Liu F, Liao Y, Tang W. Synergistic effect between novel triazine-based charring agent and modified kaolinite: An efficient system for fire hazard and aging suppression of epoxy resin. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Flame-retardant synergistic effect of hydroquinone bis(diphenyl phosphate) and tris(2-hydroxyethyl) isocyanurate on epoxy resin. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Zhi M, Yang X, Fan R, Yue S, Zheng L, Liu Q, He Y. A comprehensive review of reactive flame-retardant epoxy resin: fundamentals, recent developments, and perspectives. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Li X, Guan J, Zeng W, Li H, Shi J, Wen N, Yang Z, Lei Z. Effects of a symmetrical inorganic-organic monomer on the flame retardancy and mechanical properties of polyethylene terephthalate copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Ai YF, Liu XD, Bai WB, Lin YC, Xie RR, Jian RK. From herbicide to flame retardant: The lamellar-like phosphorus-bridged amitrole toward high fire safety epoxy resin with light smoke and low toxicity. CHEMOSPHERE 2022; 291:132704. [PMID: 34715101 DOI: 10.1016/j.chemosphere.2021.132704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
In an attempt to alleviate the harmful impact of the flammability of epoxy resin on the environment, amitrole, a herbicide, has been converted to a novel flame retardant (PBA) with lamellar morphology through organophosphorus modification. This material has been utilized to fabricate fire safe epoxy thermosets (EP). EP containing 7.5 wt% PBA undergoes quick self-extinguishment upon ignition. This blend displays a high limiting oxygen index (LOI) value of 34%. More importantly, hazardous products (heat, smoke, toxic gases including CO/CO2) released during combustion of EP, are strongly suppressed in the presence of PBA. The mechanical properties of EP-PBA blends are comparable to those of virgin EP. The tensile strength of EP containing PBA is 90% of that of unmodified EP. The flexural strength of PBA blends is somewhat greater than that for EP containing no additive. A tactful strategy for the transformation of amitrole, a potential environmental contaminant to a benign flame retardant for polymers has been developed.
Collapse
Affiliation(s)
- Yuan-Fang Ai
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xin-Duo Liu
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wei-Bin Bai
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yu-Cai Lin
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Rong-Rong Xie
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Rong-Kun Jian
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
16
|
Construction of hetero-structured nanohybrid relying on reactive phosphazene towards flame retardation and mechanical enhancement of epoxy resins. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Guo Y, Chen Z, Yu Y, Chen T, Zhang Q, Li C, Jiang J. A new‐type terephthalonitrile derivative flame retardant of
bi‐DOPO
compound with hydroxyl and amino groups on epoxy resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Guo
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Zhongwei Chen
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Yuan Yu
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Tingting Chen
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Qingwu Zhang
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Changxin Li
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Juncheng Jiang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing China
| |
Collapse
|
18
|
Zhang X, Zhang W, Pan YT, Qian L, Qin Z, Zhang W. Synthesis and performance of intrinsically flame-retardant, low-smoke biobased vinyl ester resin. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Li H, Zeng W, Shi J, Wen N, Yang Z, Lei Z. Effects of novel functionalized magnesium phosphate monomers on the flame retardancy and mechanical properties of polyethylene terephthalate copolymers. CHEMOSPHERE 2022; 288:132648. [PMID: 34695482 DOI: 10.1016/j.chemosphere.2021.132648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
In this study, inorganic magnesium hydroxide (MH) was modified by three phosphoric acids respectively to obtain three different novel functionalized monomers. The chemical structure and morphology of (Pn-MH) were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Further, functional monomers were introduced into the PET main chain structure. A new type of high-performance co-polyesters was successfully prepared. The specific structure of P1-MH-PET was characterized by 1H NMR spectroscopy. Thermal stability of Pn-MH-PETs was analyzed by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The flame retardant properties were evaluated by limiting oxygen index (LOI), vertical combustion test (UL-94) and cone calorimeter. The results show that the thermal stability and flame retardant properties of 5%Pn-MH-PETs are greatly improved. Among them, the best performance is 5%P1-MH-PET, LOI is 32.5%, UL-94 test reached V-0 grade. Compared with neat PET, the peak heat release rate (PHRR), peak smoke release rate (PSPR), carbon dioxide release rate (CO2PR) and carbon monoxide release rate (COPR) decreased by 57.0%, 38.1%, 54.6% and 57.3%, respectively. Fortunately, the mechanical properties of 5%P3-MH-PET were also improved.
Collapse
Affiliation(s)
- Hongtao Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Wei Zeng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Jianping Shi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Na Wen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Zhiwang Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
20
|
Wen N, Zeng W, Yang Y, Yang Z, Li H, Li X, Li Q, Ding H, Lei Z. Preparation of the Intrinsic Flame-Retardant Curing Agent of Inorganic Epoxy Resin Containing Nitrogen and Phosphorus. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02153-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|