1
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Kee KH, Seo JI, Kim SM, Shiea J, Yoo HH. Per- and polyfluoroalkyl substances (PFAS): Trends in mass spectrometric analysis for human biomonitoring and exposure patterns from recent global cohort studies. ENVIRONMENT INTERNATIONAL 2024; 194:109117. [PMID: 39612744 DOI: 10.1016/j.envint.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants that have been shown to contribute to human exposure, thereby raising a range of health concerns. In this context, human biomonitoring is essential for linking exposure levels of PFAS with their potential health risks. Mass spectrometry-based analytical techniques have been extensively adopted for the evaluation of PFAS levels across various cohorts. However, challenges arising from the use of biological samples (e.g., plasma, serum, urine, etc.) necessitate ongoing research and refinement of analytical methodologies. This review provides an overview of current trends in mass spectrometry-based approaches for human biomonitoring of PFAS, including sample collection and preparation, and instrumental techniques. We also explore analytical strategies to overcome challenges in obtaining PFAS-free blank matrices and address the risk of background contamination. Moreover, this review examines differing PFAS exposure patterns across regions by analyzing recent international cohort studies, specifically those conducted in the US and China over the past five years. Accordingly, several key research gaps in biomonitoring studies that need to be addressed moving forward are highlighted.
Collapse
Affiliation(s)
- Kyung Hwa Kee
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jeong In Seo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Su Min Kim
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
3
|
Dai Y, Ding J, Wang Z, Zhang B, Guo Q, Guo J, Qi X, Chang X, Wu C, Zhang J, Zhou Z. Sex-specific associations of per- and polyfluoroalkyl substances with brain-derived neurotrophic factors (BDNF) in cord serum. ENVIRONMENTAL RESEARCH 2024; 262:119922. [PMID: 39237020 DOI: 10.1016/j.envres.2024.119922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) is perceived as an emerging environmental endocrine disruptor, which have been linked to children neurodevelopment. However, the potential mechanisms are not clear. Brain-derived neurotrophic factor (BDNF) is a vital protein in neurodevelopment, and the associations between PFAS exposure and BDNF require exploration. OBJECTIVE We aimed to explore the relationships between PFAS exposure and the levels of BDNF in cord serum. METHODS A total of 1,189 mother-infant dyads from the Sheyang Mini Birth Cohort Study (SMBCS) were enrolled. The levels of 12 PFAS and BDNF were measured in cord serum. We utilized generalized linear models (GLMs), quantile-based g-computation (QGC) models, and Bayesian Kernel Machine Regression (BKMR) models to explore the relationships between single and mixed PFAS exposure and BDNF concentration. Additionally, the potential sex differences were explored by sex-stratified analysis. RESULTS Median concentrations of the included 10 PFAS ranged from 0.04 to 3.97 μg/L. In the single chemical models, four PFAS congeners, namely perfluorononanoic acid (PFNA), perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), were negatively associated with BDNF levels in cord serum among females only (β: -0.116 to -0.062, p < 0.05). In the BKMR models of total mother-infant dyads and female fetuses, the significant negative relationships between PFAS mixtures and BDNF were observed, and PFUnDA was identified as an important contributor (Posterior inclusion probability, PIP = 0.8584 for the total subjects; PIP = 0.8488 for the females). PFOS was another important driver based on the mixture approaches. CONCLUSIONS We found that PFNA, PFOS, PFDA, and PFUnDA were associated with decreased BDNF concentration in the females, although the causal inference might be limited. PFAS mixtures were also negatively linked with BDNF levels in the total mother-infant pairs and female fetuses. The adverse effect of PFAS exposure on fetal BDNF levels might be sex-specific.
Collapse
Affiliation(s)
- Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Qin Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Tan Y, Eick SM, Dunlop AL, Barr DB, Taibl KR, Steenland K, Kannan K, Robinson M, Chang CJ, Panuwet P, Yakimavets V, Marsit CJ, Ryan PB, Liang D. A Prospective Analysis of Per- and Polyfluoroalkyl Substances from Early Pregnancy to Delivery in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117001. [PMID: 39504273 PMCID: PMC11540153 DOI: 10.1289/ehp14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Longitudinal trends in per- and polyfluoroalkyl substances (PFAS) serum concentrations across pregnancy have not been thoroughly examined, despite evidence linking prenatal PFAS exposures with adverse birth outcomes. OBJECTIVES We sought to characterize longitudinal PFAS concentrations across pregnancy and to examine the maternal-fetal transfer ratio among participants in a study of risk and protective factors for adverse birth outcomes among African Americans. METHODS In the Atlanta African American Maternal-Child cohort (2014-2020), we quantified serum concentrations of four PFAS in 376 participants and an additional eight PFAS in a subset of 301 participants during early (8-14 weeks gestation) and late pregnancy (24-30 weeks gestation). Among these, PFAS concentrations were also measured among 199 newborns with available dried blood spot (DBS) samples. We characterized the patterns, variability, and associations in PFAS concentrations at different time points across pregnancy using intraclass correlation coefficients (ICCs), maternal-newborn pairs transfer ratios, linear mixed effect models, and multivariable linear regression, adjusting for socioeconomic and prenatal predictors. RESULTS Perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were detected in > 95 % of maternal samples, with PFHxS and PFOS having the highest median concentrations. We observed high variability in PFAS concentrations across pregnancy time points (ICC = 0.03 - 0.59 ). All median PFAS concentrations increased from early to late pregnancy, except for PFOA and N-methyl perfluorooctane sulfonamido acetic acid (NMFOSAA), which decreased [paired t -test for all PFAS p < 0.05 except for PFOA and perfluorobutane sulfonic acid (PFBS)]. Prenatal serum PFAS were weakly to moderately correlated with newborn DBS PFAS (- 0.05 < rho < 0.49 ). The median maternal-fetal PFAS transfer ratio was lower for PFAS with longer carbon chains. After adjusting for socioeconomic and prenatal predictors, in linear mixed effect models, the adjusted mean PFAS concentrations significantly increased during pregnancy, except for PFOA. In multivariable linear regression, PFAS concentrations in early pregnancy significantly predicted the PFAS concentrations in late pregnancy and in newborns. DISCUSSION We found that the concentrations of most PFAS increased during pregnancy, and the magnitude of variability differed by individual PFAS. Future studies are needed to understand the influence of within-person PFAS variability during and after pregnancy on birth outcomes. https://doi.org/10.1289/EHP14334.
Collapse
Affiliation(s)
- Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kaitlin R. Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Zhang B, Wang Z, Zhang J, Dai Y, Ding J, Zhou X, Qi X, Wu C, Zhou Z. Prenatal exposure to neonicotinoid insecticides, fetal endocrine hormones and birth size: Findings from SMBCS. ENVIRONMENT INTERNATIONAL 2024; 193:109111. [PMID: 39500120 DOI: 10.1016/j.envint.2024.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Neonicotinoid insecticides (NNIs) were reported to be endocrine disruptors and cause adverse health effects in human. However, epidemiological evidence about the effect of prenatal NNIs exposure on birth outcome and hormones remains limited. OBJECTIVES This study aimed to explore the effects of prenatal NNIs exposure on neonatal birth size and endocrine hormones, and assess the potential mediating role of hormones. METHODS The study included 860 mother-child pairs from the Sheyang Mini Birth Cohort Study. 12 parent NNIs (p-NNIs) and 6 metabolites of NNIs (m-NNIs) were measured in maternal urine samples collected on their delivery days, and 5 thyroid hormones and 2 sex hormones were analyzed in cord serum. The concentrations of p-NNIs and its specific metabolite(s) were summed to characterize the role of each class of NNIs. Generalized linear model and weighted quantile sum regression were used to examine the impact of prenatal NNIs exposure on birth size and endocrine hormones, and potential mediating roles of hormones were further explored using mediation analysis. RESULTS Higher detection frequencies of m-NNIs were observed than those in p-NNIs. A decrease in neonatal head circumference for gestation age z-score was associated with a 10-fold increase in 5-OH-IMI (β = -0.15, 95 %CI: -0.26, -0.03), ∑DIN (β = -0.22, 95 %CI: -0.40, -0.03), ∑IMI (β = -0.20, 95 %CI: -0.35, -0.06) and ∑NNIs (β = -0.23, 95 %CI: -0.42, -0.04). ∑IMI and ∑DIN were the major contributors to the significantly negative mixture effect and no sex-specific effect was observed. Negative associations were observed between ∑DIN and TT3 (β = -0.013, 95 %CI: -0.025, -0.002), ∑IMI and T (β = -0.035, 95 %CI: -0.065, -0.004), respectively. Furthermore, TT3 and T demonstrated 6.7 % and 6.1 % mediating effects on the negative association of prenatal ∑DIN and ∑IMI exposure with head circumference. CONCLUSIONS Our findings suggested the potential endocrine disruptive properties of NNIs and their impacts on head circumference. Endocrine hormones may partly mediate these associations.
Collapse
Affiliation(s)
- Boya Zhang
- School of Public Health / MOE Key Laboratory of Public Health Safety/ NHC Key Laboratory of Health Technology Assessmen, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zheng Wang
- School of Public Health / MOE Key Laboratory of Public Health Safety/ NHC Key Laboratory of Health Technology Assessmen, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- School of Public Health / MOE Key Laboratory of Public Health Safety/ NHC Key Laboratory of Health Technology Assessmen, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Yiming Dai
- School of Public Health / MOE Key Laboratory of Public Health Safety/ NHC Key Laboratory of Health Technology Assessmen, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiayun Ding
- School of Public Health / MOE Key Laboratory of Public Health Safety/ NHC Key Laboratory of Health Technology Assessmen, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xingzu Zhou
- School of Public Health / MOE Key Laboratory of Public Health Safety/ NHC Key Laboratory of Health Technology Assessmen, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- School of Public Health / MOE Key Laboratory of Public Health Safety/ NHC Key Laboratory of Health Technology Assessmen, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Chunhua Wu
- School of Public Health / MOE Key Laboratory of Public Health Safety/ NHC Key Laboratory of Health Technology Assessmen, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health / MOE Key Laboratory of Public Health Safety/ NHC Key Laboratory of Health Technology Assessmen, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
6
|
Qu R, Wang J, Li X, Zhang Y, Yin T, Yang P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. TOXICS 2024; 12:678. [PMID: 39330606 PMCID: PMC11435644 DOI: 10.3390/toxics12090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
PFAS (per- and polyfluoroalkyl substances) have been extensively used across numerous industries and consumer goods. Due to their high persistence and mobility, they are ubiquitous in the environment. Exposure to PFAS occurs in people via multiple pathways such as dermal contact, water supply, air inhalation, and dietary intake. Even if some PFAS are being phased out because of their persistent presence in the environment and harmful impacts on human health, mixes of replacement and legacy PFAS will continue to pollute the ecosystem. Numerous toxicological investigations have revealed harmful effects of PFAS exposure on female reproductive health, e.g., polycystic ovaries syndrome, premature ovarian failure, endometriosis, reproductive system tumors, pregnancy complications, and adverse pregnancy outcomes. Despite extensive epidemiological studies on the reproductive toxicity of PFAS, research findings remain inconsistent, and the underlying mechanisms are not well understood. In this review, we give an in-depth description of the sources and pathways of PFAS, and then review the reproductive toxicity of PFAS and its possible mechanisms.
Collapse
Affiliation(s)
- Rui Qu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tailang Yin
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
7
|
Gaillard L, Barouki R, Blanc E, Coumoul X, Andréau K. Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. Trends Endocrinol Metab 2024:S1043-2760(24)00202-9. [PMID: 39181731 DOI: 10.1016/j.tem.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs), and their resistance to degradation, renders human exposure to them inevitable. PFAS exposure disturbs endocrine function, potentially affecting cognitive development in newborns through thyroid dysfunction during pregnancy. Recent studies reveal varying male and female reproductive toxicity across PFAS classes, with alternative analogs affecting sperm parameters and legacy PFASs correlating with conditions like endometriosis. Metabolically, PFASs exposure is linked to metabolic disorders, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and liver toxicity, particularly in early childhood. This review focuses on the endocrine-disrupting impact of PFASs, particularly on fertility, thyroid, and metabolic functions. We highlight the complexity of the PFAS issue, given the large number of molecules and their extremely diverse mixed effects.
Collapse
Affiliation(s)
- Lucas Gaillard
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Robert Barouki
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Etienne Blanc
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Xavier Coumoul
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France.
| | - Karine Andréau
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| |
Collapse
|
8
|
Coperchini F, Greco A, Rotondi M. Changing the structure of PFOA and PFOS: a chemical industry strategy or a solution to avoid thyroid-disrupting effects? J Endocrinol Invest 2024; 47:1863-1879. [PMID: 38522066 PMCID: PMC11266260 DOI: 10.1007/s40618-024-02339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The family of perfluoroalkyl and polyfluoroalkyl substances (PFAS) raised concern for their proven bioaccumulation and persistence in the environment and animals as well as for their hazardous health effects. As a result, new congeners of PFAS have rapidly replaced the so-called "old long-chain PFAS" (mainly PFOA and PFOS), currently out-of-law and banned by most countries. These compounds derive from the original structure of "old long-chain PFAS", by cutting or making little conformational changes to their structure, thus obtaining new molecules with similar industrial applications. The new congeners were designed to obtain "safer" compounds. Indeed, old-long-chain PFAS were reported to exert thyroid disruptive effects in vitro, and in vivo in animals and humans. However, shreds of evidence accumulated so far indicate that the "restyling" of the old PFAS leads to the production of compounds, not only functionally similar to the previous ones but also potentially not free of adverse health effects and bioaccumulation. Studies aimed at characterizing the effects of new-PFAS congeners on thyroid function indicate that some of these new-PFAS congeners showed similar effects. PURPOSE The present review is aimed at providing an overview of recent data regarding the effects of novel PFAS alternatives on thyroid function. RESULTS AND CONCLUSIONS An extensive review of current legislation and of the shreds of evidence obtained from in vitro and in vivo studies evaluating the effects of the exposure to novel PFOA and PFOS alternatives, as well as of PFAS mixture on thyroid function will be provided.
Collapse
Affiliation(s)
- F Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - A Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - M Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
9
|
Zheng X, Pan Y, Qu Y, Ji S, Wang J, Li Z, Zhao F, Wu B, Xie L, Li Y, Song H, Hu X, Qiu Y, Zhang Z, Zhang W, Yang Y, Cai J, Zhu Y, Zhu Y, Cao Z, Ji JS, Lv Y, Dai J, Shi X. Associations of Serum Per- and Polyfluoroalkyl Substances with Hyperuricemia in Adults: A Nationwide Cross-Sectional Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12875-12887. [PMID: 38980177 DOI: 10.1021/acs.est.3c11095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
There has been widespread concern about the health hazards of per- and polyfluoroalkyl substances (PFAS), which may be the risk factor for hyperuricemia with evidence still insufficient in the general population in China. Here, we conducted a nationwide study involving 9,580 adults aged 18 years or older from 2017 to 2018, measured serum concentrations of uric acid and PFAS (PFOA, PFOS, 6:2 Cl-PFESA, PFNA, PFHxS) in participants, to assess the associations of individual PFAS with hyperuricemia, and estimated a joint effect of PFAS mixtures. We found positive associations of higher serum PFAS with elevated odds of hyperuricemia in Chinese adults, with the greatest contribution from PFOA (69.37%). The nonmonotonic dose-response (NMDR) relationships were observed for 6:2 Cl-PFESA and PFHxS with hyperuricemia. Participants with less marine fish consumption, overweight, and obesity may be the sensitive groups to the effects of PFAS on hyperuricemia. We highlight the potential health hazards of legacy long-chain PFAS (PFOA) once again because of the higher weights of joint effects. This study also provides more evidence about the NMDR relationships in PFAS with hyperuricemia and emphasizes a theoretical basis for public health planning to reduce the health hazards of PFAS in sensitive groups.
Collapse
Affiliation(s)
- Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jinghua Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Linna Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwei Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
10
|
Coperchini F, Teliti M, Greco A, Croce L, Rotondi M. Per-polyfluoroalkyl substances (PFAS) as thyroid disruptors: is there evidence for multi-transgenerational effects? Expert Rev Endocrinol Metab 2024; 19:307-315. [PMID: 38764236 DOI: 10.1080/17446651.2024.2351885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION The environmental spread of pollutants has led to a persistent exposure of living beings to multiple chemicals, by now become ubiquitous in the surrounding environment. Environmental exposure to these substances has been reported to cause multi- and/or transgenerational health effects. Per- and Polyfluorinated Substances (PFAS) raise great concern, given their known effects both as endocrine disruptors and potential carcinogens. The multi/trans-generational effects of different endocrine disruptors have been investigated by several studies, and harmful effects observed also for PFAS. AREAS COVERED This review examines the current data on the multi-trans-generational effects of PFAS, with a focus on their impact on the thyroid axis. The aim is to determine if there is evidence of potential multi-trans-generational effects of PFAS on the thyroid and/or if more research is needed. EXPERT OPINION PFAS exposure impacts thyroid homeostasis and can cross the placental barrier. In addition PFAS have shown multi-transgenerational effects in laboratory experiences and animal models, but thyroid disruptive effects of PFAS were also investigated only in a small number of these studies. Efforts are needed to study the adverse effects of PFAS, as not all PFAS are regulated and removal strategies are still being developed.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| |
Collapse
|
11
|
Li Z, Zhang J, Miao W, Qi X, Dai Y, Wang Z, Guo J, Chang X, Wu C, Zhou Z. Associations of cord serum polybrominated diphenyl ether (PBDE) mixture with birth outcomes and mediating role of thyroid function: Evidence from the Sheyang Mini Birth Cohort Study. ENVIRONMENTAL RESEARCH 2024; 251:118605. [PMID: 38458587 DOI: 10.1016/j.envres.2024.118605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs), a series of worldwide applied flame retardants, may influence fetal growth and interfere with thyroid function. The study intended to explore the relationship between in-utero exposure to PBDE mixture and newborn anthropometric indexes and to further examine the potential mediating role of thyroid function. METHODS Demographics and laboratory measures of 924 mother-infant pairs were obtained from the database of the Sheyang Mini Birth Cohort Study. We applied gas chromatography-mass spectrometry (GC-MS) and electrochemiluminescence immunoassay to measure nine PBDE congeners and seven thyroid function parameters in umbilical cord serum samples, respectively. We fitted generalized linear models and Bayesian kernel machine regression (BKMR) to evaluate associations of lipid-adjusted cord serum PBDEs, as individuals and as a mixture, with newborn anthropometric and cord serum thyroid function parameters. We applied causal mediation analysis to test our hypothesis that thyroid function parameters act as a mediator between PBDEs and birth outcomes. RESULTS The molarity of cord serum ∑9PBDE had a median value of 31.23 nmol/g lipid (IQR 19.14 nmol/g lipid, 54.77 nmol/g lipid). BDE-209 was the most dominant congener. Birth length was positively associated with both single exposure to BDE-28 and cumulative exposure to PBDEs. Correspondingly, ponderal index (PI) was negatively associated with BDE-28 and the total effects of PBDE mixture. Free triiodothyronine had a negative trend with BDE-209 and PBDE mixture. In the sex-stratified analysis, BDE-153 concentrations were positively correlated with PI among males (β = 0.03; 95%CI: 0.01, 0.05; P = 0.01) but not among females. Cord serum thyrotropin mediated 14.92% of the estimated effect of BDE-153 on PI. CONCLUSIONS In-utero mixture exposure to PBDEs was associated with birth outcomes and thyroid function. Thyroid function might act as a mediator in the process in which PBDEs impact the growth of the fetus.
Collapse
Affiliation(s)
- Zeyu Li
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Wenbin Miao
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou, 310051, China
| | - Yiming Dai
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
12
|
Wallace MAG, Smeltz MG, Mattila JM, Liberatore HK, Jackson SR, Shields EP, Xhani X, Li EY, Johansson JH. A review of sample collection and analytical methods for detecting per- and polyfluoroalkyl substances in indoor and outdoor air. CHEMOSPHERE 2024; 358:142129. [PMID: 38679180 PMCID: PMC11513671 DOI: 10.1016/j.chemosphere.2024.142129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a unique class of chemicals synthesized to aid in industrial processes, fire-fighting products, and to benefit consumer products such as clothing, cosmetics, textiles, carpets, and coatings. The widespread use of PFAS and their strong carbon-fluorine bonds has led to their ubiquitous presence throughout the world. Airborne transport of PFAS throughout the atmosphere has also contributed to environmental pollution. Due to the potential environmental and human exposure concerns of some PFAS, research has extensively focused on water, soil, and organismal detection, but the presence of PFAS in the air has become an area of growing concern. Methods to measure polar PFAS in various matrices have been established, while the investigation of polar and nonpolar PFAS in air is still in its early development. This literature review aims to present the last two decades of research characterizing PFAS in outdoor and indoor air, focusing on active and passive air sampling and analytical methods. The PFAS classes targeted and detected in air samples include fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sulfonamido ethanols (FASEs), perfluorinated carboxylic acids (PFCAs), and perfluorinated sulfonic acids (PFSAs). Although the manufacturing of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) has been largely phased out, these two PFAS are still often detected in air samples. Additionally, recent estimates indicate that there are thousands of PFAS that are likely present in the air that are not currently monitored in air methods. Advances in air sampling methods are needed to fully characterize the atmospheric transport of PFAS.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Marci G Smeltz
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - James M Mattila
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Hannah K Liberatore
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Stephen R Jackson
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Erin P Shields
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Xhensila Xhani
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA; Johnston Community College, 245 College Road, Smithfield, NC, 27577, USA.
| | - Emily Y Li
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Jana H Johansson
- Department of Thematic Studies, Environmental Change, Linköping University, Linköping, Sweden.
| |
Collapse
|
13
|
Zhou Y, Zhang L, Li Q, Wang P, Wang H, Shi H, Lu W, Zhang Y. Prenatal PFAS exposure, gut microbiota dysbiosis, and neurobehavioral development in childhood. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133920. [PMID: 38457972 DOI: 10.1016/j.jhazmat.2024.133920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Studies on the role of the gut microbiota in the associations between per- and polyfluoroalkyl substance (PFAS) exposure and adverse neurodevelopment are limited. Umbilical cord serum and faeces samples were collected from children, and the Strengths and Difficulties Questionnaire (SDQ) was conducted. Generalized linear models, linear mixed-effects models, multivariate analysis by linear models and microbiome regression-based kernel association tests were used to evaluate the associations among PFAS exposure, the gut microbiota, and neurobehavioural development. Perfluorohexane sulfonic acid (PFHxS) exposure was associated with increased scores for conduct problems and externalizing problems, as well as altered gut microbiota alpha and beta diversity. PFHxS concentrations were associated with higher relative abundances of Enterococcus spp. but lower relative abundances of several short-chain fatty acid-producing genera (e.g., Ruminococcus gauvreauii group spp.). PFHxS exposure was also associated with increased oxidative phosphorylation. Alpha and beta diversity were found significantly associated with conduct problems and externalizing problems. Ruminococcus gauvreauii group spp. abundance was positively correlated with prosocial behavior scores. Increased alpha diversity played a mediating role in the associations of PFHxS exposure with conduct problems. Our results suggest that the gut microbiota might play an important role in PFAS neurotoxicity, which may have implications for PFAS control.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Wenwei Lu
- School of Science and Technology, Jiangnan University, Jiangsu 214122, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Zhang B, Wang Z, Zhang J, Dai Y, Ding J, Guo J, Qi X, Wu C, Zhou Z. Prenatal exposure to per- and polyfluoroalkyl substances, fetal thyroid function, and intelligence quotient at 7 years of age: Findings from the Sheyang Mini Birth Cohort Study. ENVIRONMENT INTERNATIONAL 2024; 187:108720. [PMID: 38718676 DOI: 10.1016/j.envint.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) influences neurodevelopment. Thyroid homeostasis disruption is thought to be a possible underlying mechanism. However, current epidemiological evidence remains inconclusive. OBJECTIVES This study aimed to explore the effects of prenatal PFAS exposure on the intelligence quotient (IQ) of school-aged children and assess the potential mediating role of fetal thyroid function. METHODS The study included 327 7-year-old children from the Sheyang Mini Birth Cohort Study (SMBCS). Cord serum samples were analyzed for 12 PFAS concentrations and 5 thyroid hormone (TH) levels. IQ was assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models (GLM) and Bayesian Kernel Machine Regression (BKMR) were used to evaluate the individual and combined effects of prenatal PFAS exposure on IQ. Additionally, the impact on fetal thyroid function was examined using a GLM, and a mediation analysis was conducted to explore the potential mediating roles of this function. RESULTS The molar sum concentration of perfluorinated carboxylic acids (ΣPFCA) in cord serum was significantly negatively associated with the performance IQ (PIQ) of 7-year-old children (β = -6.21, 95 % confidence interval [CI]: -12.21, -0.21), with more pronounced associations observed among girls (β = -9.57, 95 % CI: -18.33, -0.81) than in boys. Negative, albeit non-significant, cumulative effects were noted when considering PFAS mixture exposure. Prenatal exposure to perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctanesulfonic acid was positively associated with the total thyroxine/triiodothyronine ratio. However, no evidence supported the mediating role of thyroid function in the link between PFAS exposure and IQ. CONCLUSIONS Increased prenatal exposure to PFASs negatively affected the IQ of school-aged children, whereas fetal thyroid function did not serve as a mediator in this relationship.
Collapse
Affiliation(s)
- Boya Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zheng Wang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Yiming Dai
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiayun Ding
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
15
|
Pearce EN. Endocrine Disruptors and Thyroid Health. Endocr Pract 2024; 30:172-176. [PMID: 37956907 DOI: 10.1016/j.eprac.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
A wide variety of thyroidal endocrine-disrupting chemicals (EDCs) have been identified. Exposure to known thyroidal EDCs is ubiquitous, and many likely remain unidentified. The sources of exposure include contaminated drinking water, air pollution, pesticides and agricultural chemicals, flame retardants, cleaning supplies, personal care products, food additives and packaging materials, coatings and solvents, and medical products and equipment. EDCs can affect thyroid hormone synthesis, transport, metabolism, and action in a myriad of ways. Understanding the health effects of thyroidal EDCs has been challenging because individuals may have multiple concomitant EDC exposures and many potential EDCs are not yet well characterized. Because of the importance of thyroid hormone for brain development in early life, pregnant women and young infants are particularly vulnerable to the effects of environmental thyroid disruption. The thyroidal effects of some EDCs may be exacerbated in iodine-deficient individuals, those with thyroid autoimmunity, and those with mutations in deiodinase genes. Differential exposures to EDCs may exacerbate health disparities in disadvantaged groups. High-throughput in vitro assays and in silico methods and methods that can detect the effects of relevant EDC mixtures are needed. In addition, optimal methods for detecting the effects of thyroidal EDCs on neurodevelopment need to be developed. Common sense precautions can reduce some thyroidal EDC exposures; however, regulation of manufacturing and drinking water content will ultimately be needed to protect populations.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
16
|
Li S, Li G, Lin Y, Sun F, Zheng L, Yu Y, Xu H. Association between Perfluoroalkyl Substances in Follicular Fluid and Polycystic Ovary Syndrome in Infertile Women. TOXICS 2024; 12:104. [PMID: 38393199 PMCID: PMC10893032 DOI: 10.3390/toxics12020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
In recent years, perfluoroalkyl substances (PFASs), a family of fluorinated organic com pounds, have garnered much attention due to their reproductive and developmental toxicity in humans. Polycystic ovary syndrome (PCOS) is a prevalent endocrine disease that affects women of reproductive age and is a significant contributor to female infertility. A previous study suggested that PFASs play a possible role in PCOS. We conducted a clinical study investigating the relationship between PCOS and PFAS in follicular fluid. A total of 73 infertile patients with PCOS and 218 controls were recruited from the International Peace Maternity and Child Health Hospital, affiliated with the Shanghai Jiao Tong University School of Medicine. The concentrations of 12 PFASs in follicular fluid samples and sex hormones in serum were measured. Correlation analysis and multiple linear regression revealed a positive relationship between perfluorooctanoic acid (PFOA) and testosterone (T) concentrations. The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for each PFAS were estimated using multivariable logistic regression and quantile-based g-computation (QGC). The PFOA concentrations in follicular fluid were correlated with increased odds of PCOS (second vs. first quartile: OR = 3.65, 95% CI: 1.47-9.05, p = 0.005; third vs. first quartile: OR = 2.91, 95% CI: 1.17-7.26, p = 0.022; fourth vs. first quartile: OR = 3.13, 95% CI: 1.21-8.09, p = 0.019; P for trend = 0.032). This association was confirmed with QGC. Mediation analysis suggested that the mediation effect of T in association with PFOA and PCOS was not statistically significant. Our study suggests that PFOA may be a risk factor for PCOS.
Collapse
Affiliation(s)
- Sen Li
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Guojing Li
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Feng Sun
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Liqiang Zheng
- School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Yingying Yu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Hong Xu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| |
Collapse
|
17
|
Zhuang Z, Cheng D, Han B, Li R, Shen Y, Wang M, Wang Z, Ding W, Chen G, Zhou Y, Jing T. Preparation of double-system imprinted polymer-coated multi-walled carbon nanotubes and their application in simultaneous determination of thyroid-disrupting chemicals in dust samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167858. [PMID: 37863228 DOI: 10.1016/j.scitotenv.2023.167858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Dust ingestion is a significant route of human exposure to thyroid-disrupting chemicals (TDCs), and simultaneous determination of multi-contaminants is a great challenge for environmental monitoring. In this study, molecularly imprinted polymer-coated multi-walled carbon nanotubes using thyroxine as the template were synthesized for highly selective TDCs capture. This polymer was prepared by integrating the atom transfer radical polymerization using 2-(3-indol-yl)ethylmethacrylamide as the monomer with the self-polymerization of dopamine. Construction of double-system imprinted cavities could significantly improve their selective recognition performance for TDCs and the coincidence rate reached 88.5 %. The prepared polymers were applied as the solid phase extraction adsorbent to simultaneously determine 7 groups of 35 TDCs. The proposed method showed wide linear range (0.25-1000 ng L-1), low limits of detection (0.02-0.23 ng L-1) and acceptable recoveries (81.8 %-103.5 %). The occurrence and distribution of TDCs were then studied in indoor dust samples (n = 65) collected from four cities in China. We found that tetrabromobisphenol A was the predominant compound and perfluorinated compounds were the most abundant TDCs. In addition, the distribution ratio of TDCs varied between regions. This study provides an efficient technology for direct exposure assessment of multi-contaminants.
Collapse
Affiliation(s)
- Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Danqi Cheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Wenping Ding
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Guang Chen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
18
|
Liang D, Taibl KR, Dunlop AL, Barr DB, Ryan PB, Everson T, Huels A, Tan Y, Panuwet P, Kannan K, Marsit C, Jones DP, Eick SM. Metabolic Perturbations Associated with an Exposure Mixture of Per- and Polyfluoroalkyl Substances in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16206-16218. [PMID: 37857362 PMCID: PMC10620983 DOI: 10.1021/acs.est.3c04561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Prenatal exposure to single chemicals belonging to the per- and polyfluoroalkyl substances (PFAS) family is associated with biological perturbations in the mother, fetus, and placenta, plus adverse health outcomes. Despite our knowledge that humans are exposed to multiple PFAS, the potential joint effects of PFAS on the metabolome remain largely unknown. Here, we leveraged high-resolution metabolomics to identify metabolites and metabolic pathways perturbed by exposure to a PFAS mixture during pregnancy. Targeted assessment of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctanesulfonic acid (PFOS), and perfluorohexanesulfonic acid (PFHxS), along with untargeted metabolomics profiling, were conducted on nonfasting serum samples collected from pregnant African Americans at 6-17 weeks gestation. We estimated the overall mixture effect and partial effects using quantile g-computation and single-chemical effects using linear regression. All models were adjusted for maternal age, education, parity, early pregnancy body mass index, substance use, and gestational weeks at sample collection. Our analytic sample included 268 participants and was socioeconomically diverse, with the majority receiving public health insurance (78%). We observed 13.3% of the detected metabolic features were associated with the PFAS mixture (n = 1705, p < 0.05), which was more than any of the single PFAS chemicals. There was a consistent association with metabolic pathways indicative of systemic inflammation and oxidative stress (e.g., glutathione, histidine, leukotriene, linoleic acid, prostaglandins, and vitamins A, C, D, and E metabolism) across all metabolome-wide association studies. Twenty-six metabolites were validated against authenticated compounds and associated with the PFAS mixture (p < 0.05). Based on quantile g-computation weights, PFNA contributed the most to the overall mixture effect for γ-aminobutyric acid (GABA), tyrosine, and uracil. In one of the first studies of its kind, we demonstrate the feasibility and utility of using methods designed for exposure mixtures in conjunction with metabolomics to assess the potential joint effects of multiple PFAS chemicals on the human metabolome. We identified more pronounced metabolic perturbations associated with the PFAS mixture than for single PFAS chemicals. Taken together, our findings illustrate the potential for integrating environmental mixture analyses and high-throughput metabolomics to elucidate the molecular mechanisms underlying human health.
Collapse
Affiliation(s)
- Donghai Liang
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Kaitlin R. Taibl
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Anne L. Dunlop
- Department
of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Dana Boyd Barr
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - P. Barry Ryan
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Todd Everson
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Anke Huels
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
- Department
of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Youran Tan
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Parinya Panuwet
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Kurunthachalam Kannan
- Department
of Pediatrics, New York University School
of Medicine, New York, New York 10016, United States
- Department
of Environmental Medicine, New York University
School of Medicine, New York, New York 10016, United States
| | - Carmen Marsit
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Dean P. Jones
- Division
of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine,
School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Stephanie M. Eick
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Duh-Leong C, Maffini MV, Kassotis CD, Vandenberg LN, Trasande L. The regulation of endocrine-disrupting chemicals to minimize their impact on health. Nat Rev Endocrinol 2023; 19:600-614. [PMID: 37553404 DOI: 10.1038/s41574-023-00872-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/10/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are substances generated by human industrial activities that are detrimental to human health through their effects on the endocrine system. The global societal and economic burden posed by EDCs is substantial. Poorly defined or unenforced policies can increase human exposure to EDCs, thereby contributing to human disease, disability and economic damage. Researchers have shown that policies and interventions implemented at both individual and government levels have the potential to reduce exposure to EDCs. This Review describes a set of evidence-based policy actions to manage, minimize or even eliminate the widespread use of these chemicals and better protect human health and society. A number of specific challenges exist: defining, identifying and prioritizing EDCs; considering the non-linear or non-monotonic properties of EDCs; accounting for EDC exposure effects that are latent and do not appear until later in life; and updating testing paradigms to reflect 'real-world' mixtures of chemicals and cumulative exposure. A sound strategy also requires partnering with health-care providers to integrate strategies to prevent EDC exposure in clinical care. Critical next steps include addressing EDCs within global policy frameworks by integrating EDC exposure prevention into emerging climate policy.
Collapse
Affiliation(s)
- Carol Duh-Leong
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
- New York University Wagner Graduate School of Public Service, New York, NY, USA.
| |
Collapse
|
20
|
Dai Y, Zhang J, Wang Z, Ding J, Xu S, Zhang B, Guo J, Qi X, Chang X, Wu C, Zhou Z. Per- and polyfluoroalkyl substances in umbilical cord serum and body mass index trajectories from birth to age 10 years: Findings from a longitudinal birth cohort (SMBCS). ENVIRONMENT INTERNATIONAL 2023; 180:108238. [PMID: 37783122 DOI: 10.1016/j.envint.2023.108238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to low birth weight but higher childhood weight and obesity. However, little is known regarding the associations between PFAS exposure and dynamic body mass index (BMI) trajectories, particularly from birth through preadolescence. OBJECTIVE To evaluate the associations of cord serum PFAS concentrations with BMI trajectories from birth to age 10 years and longitudinal BMI in different periods. METHODS Based on 887 mother-child pairs in the longitudinal prospective birth cohort, we measured 12 PFAS congeners in cord serum and calculated BMI with anthropometric indicators at 9 follow-up time points from birth to age 10 years. The BMI trajectories were identified using group-based trajectory model (GBTM). To estimate the associations of cord serum PFAS levels with BMI trajectories and longitudinal changes in BMI, logistic regression models, linear mixed models, Bayesian kernel machine regression, and quantile-based g-computation models (QGC) were used. RESULTS The median concentrations of 10 PFAS congeners included in statistical analysis ranged from 0.047 to 3.623 μg/L. Two BMI trajectory classes were identified by GBTM, characterized by high group and low group. In logistic regression models, five PFAS congeners (PFBA, PFHpA, PFHxS, PFHpS, and PFDoDA) were associated with the higher probability of being in high BMI trajectory group (odds ratio, OR: 1.21 to 1.74, p < 0.05). Meanwhile, higher PFAS mixture were related to elevated odds for the high group in both BKMR models and QGC models, with PFHpA and PFHpS being the two most important drivers jointly. In the sex-stratified analysis, the positive associations remained significant exclusively among males. In the longitudinal analysis, PFUnDA and PFDoDA were associated with increased BMI from birth to age 10 years. Furthermore, PFBS and PFHpA were negatively related to BMI throughout infancy and toddlerhood (from birth to age 3 years), whereas PFDoDA confirmed a positive association with mid-childhood (from age 6 to 10 years) BMI. CONCLUSIONS Prenatal PFAS exposure was positively associated with BMI trajectories from birth to preadolescence and longitudinal BMI in various periods. Future research could use better trajectory modeling strategies to shape more complete growth trajectories and explore the relationship between BMI trajectories and adulthood health.
Collapse
Affiliation(s)
- Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Sinan Xu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
21
|
Chen C, Song Y, Tang P, Pan D, Wei B, Liang J, Sheng Y, Liao Q, Huang D, Liu S, Qiu X. Association between prenatal exposure to perfluoroalkyl substance mixtures and intrauterine growth restriction risk: A large, nested case-control study in Guangxi, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115209. [PMID: 37418866 DOI: 10.1016/j.ecoenv.2023.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Intrauterine growth restriction (IUGR) is an abnormal fetal growth pattern that can lead to neonatal morbidity and mortality. IUGR may be affected by prenatal exposure to environmental pollutants, including perfluoroalkyl substances (PFASs). However, research linking PFAS exposure to IUGR is limited, with inconsistent results. We aimed to investigate the association between PFAS exposure and IUGR by using nested casecontrol study based on Guangxi Zhuang Birth Cohort (GZBC), in Guangxi, China. A total of 200 IUGR cases and 600 controls were enrolled in this study. The maternal serum concentrations of nine PFASs were measured using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLCMS). The associations single and mixed effects of prenatal PFAS exposure on IUGR risk were assessed using conditional logistic regression (single-exposure), Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models. In the conditional logistic regression models, the log10-transformed concentrations of perfluoroheptanoic acid (PFHpA, adjusted OR: 4.41, 95% CI: 3.03-6.41), perfluorododecanoic acid (PFDoA, adjusted OR: 1.94, 95% CI: 1.14-3.32), and perfluorohexanesulfonate (PFHxS, adjusted OR: 1.83, 95% CI: 1.15-2.91) were positively associated with risk of IUGR. In the BKMR models, the combined effect of PFASs was positively associated with IUGR risk. In the qgcomp models, we also found an increased IUGR risk (OR=5.92, 95% CI: 2.33-15.06) when all nine PFASs increased by one tertile as a whole, and PFHpA (43.9%) contributed the largest positive weights. These findings suggested prenatal exposure to single and mixtures of PFASs may increase IUGR risk, with the effect being largely driven by the PFHpA concentration.
Collapse
Affiliation(s)
- Chenchun Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Bincai Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yonghong Sheng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
22
|
Wang Z, Zhang J, Dai Y, Zhang L, Guo J, Xu S, Chang X, Wu C, Zhou Z. Mediating effect of endocrine hormones on association between per- and polyfluoroalkyl substances exposure and birth size: Findings from sheyang mini birth cohort study. ENVIRONMENTAL RESEARCH 2023; 226:115658. [PMID: 36894112 DOI: 10.1016/j.envres.2023.115658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been reported to affect fetus growth, but current results were inconsistent and their mechanism remained unclear. OBJECTIVES We aimed to evaluate the associations of prenatal exposure to single and/or multiple PFAS with birth size and to elucidate whether thyroid hormones and reproductive hormones mediate these associations. METHODS A total of 1087 mother-newborn pairs from Sheyang Mini Birth Cohort Study were included in the present cross-sectional analysis. 12 PFAS, 5 thyroid hormones and 2 reproductive hormones were measured in cord serum. Multiple linear regression models and Bayesian kernel machine regression (BKMR) models were used to examine the associations of PFAS with either birth size or endocrine hormones. One-at-a-time pairwise mediating effect analysis was applied to estimate the mediating effect of single hormone in the association between individual chemical and birth size. High-dimensional mediation approach including elastic net regularization and Bayesian shrinkage estimation were further performed to reduce exposure dimension and figure out the global mediation effects of joint endocrine hormones. RESULTS Perfluorononanoic acid (PFNA) exposure was positively associated to weight for length z score [WLZ, per log10-unit: regression coefficient (β) = 0.26, 95% confidence intervals (CI): 0.04, 0.47] and ponderal index (PI, β = 0.56, 95% CI: 0.09, 1.02), and PFAS mixture results fit by BKMR model showed consistent consequences. High-dimensional mediating analyses revealed that thyroid stimulating hormone (TSH) explained 6.7% of the positive association between PFAS mixtures exposure and PI [Total effect (TE) = 1.499 (0.565, 2.405); Indirect effect (IE) = 0.105 (0.015, 0.231)]. Besides, 7.3% of the PI variance was indirectly explained by 7 endocrine hormones jointly [TE = 0.810 (0.802, 0.819); IE = 0.040 (0.038, 0.041)]. CONCLUSIONS Prenatal PFAS mixtures exposure, especially PFNA, was positively associated to birth size. Such associations were partly mediated by cord serum TSH.
Collapse
Affiliation(s)
- Zheng Wang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Sinan Xu
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
23
|
Guo M, Yu Y, Liu H, Zhu C. Associations between exposure to a mixture of perfluoroalkyl and polyfluoroalkyl substances and age at menarche in adolescent girls utilizing three statistical models. CHEMOSPHERE 2023:139054. [PMID: 37247673 DOI: 10.1016/j.chemosphere.2023.139054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS) is suggested to interfere with endocrine function and may affect female pubertal development. However, the epidemiological evidence on age at menarche associated with PFAS exposure is still inconsistent. Our objective was to investigate association of serum PFAS concentrations with age at menarche among 12-19 years old girls. We used data on 432 girls from National Health and Nutrition Examination Survey (NHANES) 2007-2012 cycles. NHANES reported serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) as quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Age at menarche was self-reported by girls or their guardians. Multivariable linear regression models were applied to estimate the association of individual PFAS exposure with age at menarche. The combined effects of PFAS mixture exposures on age at menarche were assessed using three statistical methods, including Bayesian kernel machine regression (BKMR), weighted quantile sum regression (WQS), and elastic net regression (ENR). In the single-chemical model, girls in the middle tertile of serum PFOA concentration had a lower age at menarche [regression coefficient (β) = -0.73 years, 95% confidence interval (CI): 1.44, -0.01; P = 0.047], compared with those in the lower tertile. Girls in the higher tertile of PFNA exposure were associated with older age at menarche (β = 0.36 years, 95% CI: 0.03, 0.80; P = 0.027), compared with those in the lower tertile. In the multiple-chemical models using BKMR and ENR approaches, higher PFNA exposure was significantly associated with older age at menarche among girls, after adjusting for other PFAS. We found suggestive evidence that higher PFAS mixture exposures may be related to an increase in age at menarche using the BKMR model. In conclusion, exposure to PFNA was associated with the later timing of menarche among girls.
Collapse
Affiliation(s)
- Menglu Guo
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yamei Yu
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Han Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changlin Zhu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Yang Z, Liu R, Liu H, Wei J, Lin X, Zhang M, Chen Y, Zhang J, Sun M, Feng Z, Liu J, Liu X, Huo X, Men K, Yang Q, Chen X, Tang NJ. Sex-specific effect of perfluoroalkyl substances exposure on liver and thyroid function biomarkers: A mixture approach. Int J Hyg Environ Health 2023; 251:114189. [PMID: 37210847 DOI: 10.1016/j.ijheh.2023.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Although studies have investigated the effects of perfluoroalkyl substances (PFASs) on liver and thyroid function, little is known about its combined and sex-specific effect. A total of 688 participants were interviewed and serum PFASs concentration was measured using liquid chromatography/mass spectrometry. Five biomarkers of liver and thyroid function (ALT, GGT, TSH, FT3 and FT4) were chosen as outcomes. A restriction cubic spline function was applied to capture the dose-response relationship between PFASs and liver enzymes and thyroid hormones. Multivariable regression and Bayesian kernel machine regression (BKMR) models were performed to assess the single and overall associations of PFASs with targeted biomarkers. Single-pollutant analyses indicated that increased PFASs concentrations were associated with elevated ALT and GGT levels. BKMR models suggested positive dose-response relationships between PFASs mixtures and ALT and GGT levels. Significant associations were only detected between several PFASs and thyroid hormones, and joint effect of PFASs mixtures on FT3 levels was found at higher concentrations. Meanwhile, sex differences were found in the associations of PFASs with ALT and GGT levels, with significant results only in males. Our findings provide epidemiological evidence for combined and sex-specific effects of PFASs on ALT and GGT levels.
Collapse
Affiliation(s)
- Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Ruifang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Jiemin Wei
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xiaohui Lin
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300171, China
| | - Mingyue Zhang
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300171, China
| | - Yu Chen
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300202, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Meiqing Sun
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Zhe Feng
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Jian Liu
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Xiangyang Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaoxu Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Men
- Department of Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, 300202, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
25
|
Zhou Y, Li Q, Wang P, Li J, Zhao W, Zhang L, Wang H, Cheng Y, Shi H, Li J, Zhang Y. Associations of prenatal PFAS exposure and early childhood neurodevelopment: Evidence from the Shanghai Maternal-Child Pairs Cohort. ENVIRONMENT INTERNATIONAL 2023; 173:107850. [PMID: 36857906 DOI: 10.1016/j.envint.2023.107850] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological data on the effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on infant neurodevelopment trajectories are far from being sufficiently addressed. In this study, 1285 mother-child pairs were recruited during 2016-2017. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure 16 PFAS levels in cord serum. Ages and Stages Questionnaires were used to examine children's neurodevelopment at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Children with relatively low scores from 2 to 24 months were classified into a low-score group and were used as a risk group in each domain. Multiple linear regression, logistic regression, and quantile-based g-computation were performed to assess associations of single or mixture PFAS exposures with neurodevelopment and trajectories. Perfluorooctane sulphonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and 6:2 chlorinated polyfluorooctane ether sulfonate (6:2Cl-PFESA) were detected in over 90 % samples. PFOA had the highest concentration (median: 4.61 μg/L). Each ln-unit (μg/L) increase of PFAS (e.g., PFOA, PFOS, PFHxS, 6:2Cl-PFESA) was associated with poor scores of communication domain at 6 months, with the effect size ranging from -0.69 to -0.44. PFOS (OR: 1.14, (1.03, 1.26), PFDA (OR:1.08, (1.02, 1.15)), PFHxS (OR:1.31, (1.12, 1.56)), and 6:2Cl-PFESA (OR:1.08, (1.00, 1.16)) were associated with an increased risk of being in the low-score group in the early childhood communication domain's trajectory. Each mixture quartile increment was associated with a 1.60 (-2.76, -0.45) decrease in communication domain scores of 6-month-old infants, and the mixture effect was mainly attributed to PFOS. Each mixture quartile increase was associated with a 1.23-fold (1.03, 1.46) risk of being in the low-score group of the communication domain, and the mixture effect was mainly attributed to PFOS. In conclusion, PFAS and their mixtures might adversely affect childhood neurodevelopment. The gender-specific associations existed in the above associations.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenxuan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yukai Cheng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Maternal, Child and Adolescent Health, School of Public Health, Fudan University, Shanghai, China
| | - Jiufeng Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
26
|
Zhang L, Liang J, Gao A. Contact to perfluoroalkyl substances and thyroid health effects: A meta-analysis directing on pregnancy. CHEMOSPHERE 2023; 315:137748. [PMID: 36610509 DOI: 10.1016/j.chemosphere.2023.137748] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In vivo, in vitro, and epidemiological evidence suggests that perfluoroalkyl substances (PFAS) may alter thyroid function in human health, with negative effects on maternal and fetal development outcomes. However, data on the effects of PFAS on thyroid hormones remain controversial. Here, we conducted a meta-analysis of 13 eligible studies searched from Embase, PubMed, and Web of Science by July 10, 2022, to explore the relationship between maternal exposure to PFAS and thyroid health effects, including thyroid stimulating hormone (TSH), triiodothyronine (TT3), thyroxin (TT4), free T3 (FT3), and free T4 (FT4). The estimated values (β) and the corresponding confidence intervals (95%CI) were extracted for analysis. The tests for heterogeneity, sensitivity and publication bias between studies were performed using Stata 15.0. The combined results showed a positive association between changes in TSH and exposure to perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), with no significant correlation observed between changes in other thyroid hormones and exposure to PFAS. This difference was attributed to sample size, region, sample type, body mass index (BMI), and gestational week. Our data recommend verifying the relationship between PFAS exposure and thyroid health effects in a large sample population cohort in future studies. In addition, health care should be taken into account in early and mid-pregnancy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jiayi Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
27
|
Zhang B, Wang Z, Zhang J, Dai Y, Feng C, Lin Y, Zhang L, Guo J, Qi X, Chang X, Lu D, Wu C, Zhou Z. Prenatal perfluoroalkyl substances exposure and neurodevelopment in toddlers: Findings from SMBCS. CHEMOSPHERE 2023; 313:137587. [PMID: 36535498 DOI: 10.1016/j.chemosphere.2022.137587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Prenatal perfluoroalkyl substances (PFAS) exposure has been reported to affect offspring neurodevelopment, while epidemiological evidences were limited and inconsistent. OBJECTIVES We aimed to evaluate the associations between cord serum PFAS concentrations and neurodevelopment in toddlers from 1 to 3 years of age. METHODS A total of 716 children from Sheyang Mini Birth Cohort Study (SMBCS) were included in this study. 12 PFAS concentrations were quantified in cord serum. Neurodevelopment was assessed using the Developmental Screen Test for Children Aged 0-6 Years at 1 year and the Gesell Developmental Schedules (GDS) at 2 and 3 years, respectively. Development quotient (DQ) z-score was standardized from DQ to eliminate the difference caused by two methods. We used generalized linear model (GLM) and Bayesian kernel machine regression (BKMR) to explore the associations of single or mixture PFAS exposure with neurodevelopment measurements at each time point. Associations between PFAS exposure and longitudinal changes in DQ z-score were investigated through generalized estimating equation (GEE) and trajectory analysis. RESULTS In general, prenatal PFAS concentrations showed negative associations with neurodevelopment measurements at specific age. When accounting for longitudinal changes from 1 to 3 years of age, PFOA was negatively associated with DQ z-score (β = -0.212, 95% CI: -0.422, -0.003), the association was only found significant in boys after stratified by gender (β = -0.327, 95% CI: -0.616, -0.038). Meanwhile, increased PFBS (OR = 2.159, 95% CI: 1.177, 3.959) and PFHpA (OR = 1.700, 95% CI: 1.016, 2.846) exposure was associated with elevated odds for the low-score trajectory group. The results of mixture of PFAS further confirmed above findings. CONCLUSIONS Our findings suggested that prenatal PFAS exposure may be associated with adverse neurodevelopment effects in the first 3 years of life. Further studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Boya Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, No. 1380 West Zhongshan Road, Shanghai, 200336, China
| | - Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, No. 1380 West Zhongshan Road, Shanghai, 200336, China
| | - Lei Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, No. 1380 West Zhongshan Road, Shanghai, 200336, China
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
28
|
Ding J, Dai Y, Zhang J, Wang Z, Zhang L, Xu S, Tan R, Guo J, Qi X, Chang X, Wu C, Zhou Z. Associations of perfluoroalkyl substances with adipocytokines in umbilical cord serum: A mixtures approach. ENVIRONMENTAL RESEARCH 2023; 216:114654. [PMID: 36309220 DOI: 10.1016/j.envres.2022.114654] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), a kind of emerging environmental endocrine disruptors, may interfere with the secretion of adipokines and affect fetal metabolic function and intrauterine development. However, the epidemiological evidence is limited and inconsistent. We examined the associations of single and multiple PFAS exposures in utero with adipocytokine concentrations in umbilical cord serum. METHODS This study included 1111 mother-infant pairs from Sheyang Mini Birth Cohort Study (SMBCS), and quantified 12 PFAS and two adipokine in umbilical cord serum. Generalized linear models (GLMs) and Bayesian Kernel Machine Regression (BKMR) models were applied to estimate the associations of single- and mixed- PFAS exposure with adipokines, respectively. Furthermore, sex-stratification was done in each model to assess the sexually dimorphic effects of PFAS. RESULTS 10 PFAS were detected with median concentrations (μg/L) ranging from 0.04 to 3.97, (except 2.7% for PFOSA and 1.7% for PFDS, which were excluded). In GLMs, for each doubling increase in PFBS, PFHpA, PFHxS, PFHpS, PFUnDA and PFDoDA, leptin decreased between 14.04% for PFBS and 22.69% for PFHpS (P < 0.05). PFAS, except for PFNA, were positively associated with adiponectin, and for each doubling of PFAS, adiponectin increased between 3.27% for PFBS and 12.28% for PFHxS (P < 0.05). In addition, infant gender modified the associations of PFAS with adipokines, especially the associations of PFBS, PFOA and PFHxS with adiponectin. Similarly, significant associations of PFAS mixtures with leptin and adiponectin were observed in the BKMR models. PFDA, PFOS, PFNA and PFHpS were identified as important contributors. In the sex-stratified analysis of BKMR models, the associations between PFAS mixtures and adipokines were more pronounced in males. CONCLUSIONS PFAS levels were significantly associated with adipokines in cord serum, suggesting that intrauterine mixture of PFAS exposure may be related to decreased fetal leptin level but increased fetal adiponectin level and the associations may be sex-specific.
Collapse
Affiliation(s)
- Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Sinan Xu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Ruonan Tan
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
29
|
Cao Z, Li J, Yang M, Gong H, Xiang F, Zheng H, Cai X, Xu S, Zhou A, Xiao H. Prenatal exposure to perfluorooctane sulfonate alternatives and associations with neonatal thyroid stimulating hormone concentration: A birth cohort study. CHEMOSPHERE 2023; 311:136940. [PMID: 36273603 DOI: 10.1016/j.chemosphere.2022.136940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chlorinated polyfluorinated ether sulfonic acids (Cl-PFESA) and perfluorobutane sulfonate (PFBS), used as perfluorooctanesulfonate (PFOS) alternatives, were indicated as thyroid hormone disruptive toxicants in experimental studies. However, it is unclear whether prenatal exposure to Cl-PFESA and PFBS affects neonatal thyroid stimulating hormone (TSH) in human. OBJECTIVE To disclose the relationships between prenatal Cl-PFESAs and PFBS exposure and neonatal thyroid-stimulating hormone (TSH) levels based on a perspective cohort study. METHODS A total of 1015 pairs of mother and newborn were included from an ongoing birth cohort study in Wuhan, China, between 2013 and 2014. Six PFASs in cord blood sera and TSH concentration in neonatal postpartum heel sticks blood were quantified. Mixed linear and weighted quantile sum (WQS) regression models were applied to assess the individual and combination effects of PFASs exposure on neonatal TSH levels with multiple covariates adjustments. RESULTS After adjusting for potential confounders and other five PFASs, for each 1-ng/mL increase of PFBS or 8:2 Cl-PFESA, was negatively associated with 25.90% (95%CI: 37.37%, -12.32%; P < 0.001) and 27.19% (95%CI: 46.15%, -1.55%; P = 0.033) change in TSH in male but not female infants, respectively. No significant association was found between other PFASs exposure and neonatal TSH. Higher PFAS mixture in cord blood was significantly associated with decrease TSH concentration in all newborns (β = -0.36; 95%CI: 0.58, -0.13; P = 0.001) identified by WQS regression model. PFBS, PFOS and 6:2 Cl-PFESA were the major contributors to the neonatal TSH decrement with the weights of 56.50%, 18.71%, 12.81% among PFAS mixture, respectively. CONCLUSIONS our prospective cohort study suggested a negative association of cord serum PFBS and 8:2 CI-PFESA with TSH concentration in newborns, especially for boys. Additional studies are required to elaborate on the underlying biological mechanisms, especially for PFBS.
Collapse
Affiliation(s)
- Zhongqiang Cao
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Junwei Li
- Department of Pediatrics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Meng Yang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongjian Gong
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Feiyan Xiang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hao Zheng
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaonan Cai
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Aifen Zhou
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Han Xiao
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
30
|
Shin HM, Oh J, J. Schmidt R, N. Pearce E. Prenatal Exposure to Per- and Polyfluoroalkyl Substances, Maternal Thyroid Dysfunction, and Child Autism Spectrum Disorder. Endocrinol Metab (Seoul) 2022; 37:819-829. [PMID: 36415960 PMCID: PMC9816503 DOI: 10.3803/enm.2022.1598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorder (ASD), with its high economic and societal costs, is a growing public health concern whose prevalence has risen steadily over the last two decades. Although actual increased incidence versus improved diagnosis remains controversial, the increased prevalence of ASD suggests non-inherited factors as likely contributors. There is increasing epidemiologic evidence that abnormal maternal thyroid function during pregnancy is associated with increased risk of child ASD and other neurodevelopmental disorders. Prenatal exposure to endocrine-disrupting chemicals such as per- and polyfluoroalkyl substances (PFAS) is known to disrupt thyroid function and can affect early brain development; thus, thyroid dysfunction is hypothesized to mediate this relationship. The concept of a potential pathway from prenatal PFAS exposure through thyroid dysfunction to ASD etiology is not new; however, the extant literature on this topic is scant. The aim of this review is to evaluate and summarize reports with regard to potential mechanisms in this pathway.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Corresponding author: Hyeong-Moo Shin. Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA Tel: +1-254-710-7627, Fax: +1-254-710-3409 E-mail:
| | - Jiwon Oh
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Elizabeth N. Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Bao J, Shao LX, Liu Y, Cui SW, Wang X, Lu GL, Wang X, Jin YH. Target analysis and suspect screening of per- and polyfluoroalkyl substances in paired samples of maternal serum, umbilical cord serum, and placenta near fluorochemical plants in Fuxin, China. CHEMOSPHERE 2022; 307:135731. [PMID: 35843426 DOI: 10.1016/j.chemosphere.2022.135731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The levels of legacy per- and polyfluoroalkyl substances (PFASs) have been growing in the environmental matrices and blood of residents living around the fluorochemical industrial park (FIP) in Fuxin of China over the past decade. Although some recent studies have reported occurrence of novel PFAS alternatives in biotic and abiotic matrices near fluorochemical facilities worldwide, little is known about novel PFAS congeners in maternal sera, umbilical cord sera, and placentas from the female residents close to the FIP and their related health risks. In this study, 50 paired samples of maternal and cord serum as well as placenta were derived from Fuxin pregnant women at delivery, and 21 target analytes of legacy PFASs in all the samples were analyzed via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), revealing that PFBS, PFBA, and PFOA were the dominant PFAS contaminants observed in the whole samples. Based upon the suspect screening through high-resolution mass spectrometry (HRMS), 49 novel PFASs assigned to 11 classes were further identified in the Fuxin samples, of which, 20 novel congeners in 4 classes were reported in human blood and placentas for the first time. Moreover, the coefficients for mother-placenta transfer (Rm/p), placenta-newborn transfer (Rp/n), and mother-newborn transfer (Rm/n) of legacy PFASs could be calculated with median values of 1.7, 1.1, and 2.0, respectively, and Rm/p, Rp/n, and Rm/n for each novel PFAS identified were also estimated with the median values of 0.9, 1.2, and 0.8 individually. Accordingly, novel PFASs contributed 90% of all the legacy and novel PFASs in maternal sera and even occupied 96% of the whole PFASs in both placentas and cord sera. In addition, significant associations were determined among the neonate birth outcomes and serum concentrations of thyroid hormone, sex hormone, and glucocorticoid, together with the levels of certain legacy and novel PFASs in cord sera.
Collapse
Affiliation(s)
- Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Li-Xin Shao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Shi-Wei Cui
- The National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xin Wang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Gui-Lin Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Xue Wang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Yi-He Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
32
|
Liao Q, Tang P, Song Y, Liu B, Huang H, Liang J, Lin M, Shao Y, Liu S, Pan D, Huang D, Qiu X. Association of single and multiple prefluoroalkyl substances exposure with preterm birth: Results from a Chinese birth cohort study. CHEMOSPHERE 2022; 307:135741. [PMID: 35863418 DOI: 10.1016/j.chemosphere.2022.135741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are persistent organic pollutants that may lead the adverse birth outcomes, including preterm birth (PTB). However, previous studies have reported inconsistent results on the association between PFASs and PTB, and lack of the epidemiological evidence regarding the effect of PFASs mixture on PTB. This study aimed to explore association of individual and multiple exposure to PFASs with PTB. METHODS The study subjects were consisted of 1341 pregnant women from Guangxi Zhuang Birth Cohort in Guangxi, China, from June 2015 to April 2019. Nine PFASs concentrations in the maternal serum were examined by ultrahigh liquid performance chromatography-tandem mass spectrometry, and the gestational weeks were obtained from medical records. We applied binary logistics regression model to explore correlation between individual PFAS and PTB and inspected the combined effect of PFASs mixture on PTB by applying Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression models. RESULTS In adjusted logistics regression model, perfluorooctane sulfonate (PFOS), perfluoroheptanoic acid (PFHpA), perfluorobutanesulfonic acid (PFBS), ∑perfluorinated sulfonic acids (PFSA), and ∑PFASs were positively associated with the risk of PTB. In contrast, perfluoroundecanoic acid (PFUnA), perfluorohexane sulfonate (PFHxS), and perfluorooctanoic acid (PFOA) were negatively associated with the risk of PTB. These associations of n PFOS and PFHpA with PTB were found to be more pronounced in male infants. Restricted cubic splines (RCSs) showed an inverse U-shaped relationship between PFBS and PTB. Analysis from BKMR model showed a positive association between PFASs mixture and PTB, and no evidence of interactions among the nine PFASs were detected. Additionally, PFHpA, PFOS, and PFBS were identified as the main contributors for the effect of PFASs mixture on increasing the risk of PTB by BKMR and WQS models. CONCLUSION Prenatal exposure to higher levels of PFASs mixture was associated with higher risk of PTB.
Collapse
Affiliation(s)
- Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
33
|
Shen C, Ding J, Xu C, Zhang L, Liu S, Tian Y. Perfluoroalkyl Mixture Exposure in Relation to Fetal Growth: Potential Roles of Maternal Characteristics and Associations with Birth Outcomes. TOXICS 2022; 10:650. [PMID: 36355941 PMCID: PMC9695392 DOI: 10.3390/toxics10110650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl substances (PFASs) exposure is suggested to interfere with fetal growth. However, limited investigations considered the roles of parity and delivery on PFASs distributions and the joint effects of PFASs mixture on birth outcomes. In this study, 506 birth cohorts were investigated in Hangzhou, China with 14 PFASs measured in maternal serum. Mothers with higher maternal ages who underwent cesarean section were associated with elevated PFASs burden, while parity showed a significant but diverse influence. A logarithmic unit increment in perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononane sulfonate (PFNS) was significantly associated with a reduced birth weight of 0.153 kg (95% confidence interval (CI): -0.274, -0.031, p = 0.014), 0.217 kg (95% CI: -0.385, -0.049, p = 0.012), and 0.137 kg (95% CI: -0.270, -0.003, p = 0.044), respectively. Higher perfluoroheptanoic acid (PFHpA) and perfluoroheptane sulphonate (PFHpS) were associated with increased Apgar-1 scores. PFOA (Odds ratio (OR): 2.17, 95% CI: 1.27, 3.71, p = 0.004) and PFNS (OR:1.59, 95% CI: 1.01, 2.50, p = 0.043) were also risk factors to preterm birth. In addition, the quantile-based g-computation showed that PFASs mixture exposure was significantly associated with Apgar-1 (OR: 0.324, 95%CI: 0.068, 0.579, p = 0.013) and preterm birth (OR: 0.356, 95% CI: 0.149, 0.845, p = 0.019). In conclusion, PFASs were widely distributed in the maternal serum, which was influenced by maternal characteristics and significantly associated with several birth outcomes. Further investigation should focus on the placenta transfer and toxicities of PFASs.
Collapse
Affiliation(s)
- Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaxin Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Long Zhang
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuren Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yonghong Tian
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
34
|
Margolis R, Sant KE. Associations between Exposures to Perfluoroalkyl Substances and Diabetes, Hyperglycemia, or Insulin Resistance: A Scoping Review. J Xenobiot 2021; 11:115-129. [PMID: 34564296 PMCID: PMC8482218 DOI: 10.3390/jox11030008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental pollutants that are commonly found in the human body due to exposures via drinking water, surfactants used in consumer materials, and aqueous film-forming foams (AFFFs). PFAS exposure has been linked to adverse health effects such as low infant birth weights, cancer, and endocrine disruption, though increasingly studies have demonstrated that they may perturb metabolic processes and contribute to dysfunction. This scoping review summarizes the chemistry of PFAS exposure and the epidemiologic evidence for associations between exposure to per- and polyfluoroalkyl substances and the development of diabetes, hyperglycemia, and/or insulin resistance. We identified 11 studies on gestational diabetes mellitus, 3 studies on type 1 diabetes, 7 studies on type 2 diabetes, 6 studies on prediabetes or unspecified diabetes, and 15 studies on insulin resistance or glucose tolerance using the SCOPUS and PubMed databases. Approximately 24 reported positive associations, 9 negative associations, 2 non-linear associations, and 2 inverse associations, and 8 reported no associations found between PFAS and all diabetes search terms. Cumulatively, these data indicate the need for further studies to better assess these associations between PFAS exposure and diabetes.
Collapse
Affiliation(s)
| | - Karilyn E. Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA;
| |
Collapse
|
35
|
Panieri E, Buha-Đorđevic A, Saso L. Endocrine disruption by PFAS: A major concern associated with legacy and replacement substances. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Perand poly-fluorinated alkyl substances (PFAS) have been used for decades in a great variety of processes and products by virtue of their exceptional properties, versatility and chemical stability. Nevertheless, it is increasingly recognized that these substances can represent a serious hazard to human health and living organisms due to their persistence, long-range transport potential and tendency to accumulate in biota. For this reason, some efforts have been made across the EU to identify alternative molecules, with a shorter carbon chain and theoretically safer profile, that might replace the previous generation of legacy PFAS. Unfortunately, this strategy has not been entirely successful and serious concerns are still posed by PFAS in different human populations. Among others, an emerging aspect is represented by the adverse effects that both legacy and alternative PFAS can exert on the human endocrine system, with respect to vulnerable target subpopulations. In this review we will briefly summarize PFAS properties, uses and environmental fate, focusing on their effects on human reproductive capacity and fertility, body weight control and obesity as well as thyroid function.
Collapse
|