1
|
Qi R, Qian C, Li Y, Wang Y. Biofilm formation on MgFe-LDH@quartz sand as novel wetland substrate under varied C/N ratios for BDE-47 removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124779. [PMID: 39168436 DOI: 10.1016/j.envpol.2024.124779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Layered double hydroxide (LDH)-coated substrates could enhance the removal of various wastewater-born pollutants. However, research on biofilms attached to LDH-coatings and their synergistic purification effects on strongly hydrophobic persistent organic pollutants (POPs) remains limited. This study aims to investigate biofilm formation on MgFe-LDH@quartz sand and its effectiveness in removing tetrabromodiphenyl ether (BDE-47), an emerging halogenated POP in municipal wastewater. Under different C/N ratios (3, 5, and 10), BDE-47 removal rates ranged from 28.0% to 41.6% after 72 h. The optimal performance was achieved with LDH coating at C/N = 5, when substrate biofilm reached its highest extracelluar polymer substances (EPS) content, dehydrogenase activity and relative hydrophobicity. Moreover, distinct distribution patterns of EPS components' fluorescence peaks were observed in the LDH-coating treatment using three dimensional excitation-emission matrix (3D-EEM). While substrate adsorption was the primary mechanism for BDE-47 removal, accounting for 59.6%-83.4% of the total, biofilm adsorption and degradation contributed a relatively lower amount, ranging from 11.5% to 21.4%, and were more dependent on the C/N ratio. Notably, the maximum carrying capacity of protein predicted by the logistic growth model exhibited a strong positive correlation with the total BDE-47 removal rate (R2 = 0.82, p < 0.05), highlighting the importance of biofilm extracelluar proteins.
Collapse
Affiliation(s)
- Rao Qi
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Cheng Qian
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Yi Li
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Yafen Wang
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China; Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, PR China.
| |
Collapse
|
2
|
Cui L, Wang J, Zhou H, Shao S, Kang J, Yu X, Zhao H, Shen L. Insights of using microbial material in fluoride removal from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122867. [PMID: 39423626 DOI: 10.1016/j.jenvman.2024.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Fluoride is an essential trace element for the human body, but excessive fluoride can cause serious environmental and health problems. Therefore, developing efficient fluoride removal technologies is crucial. This review summarizes the progress made in using microbial materials to remove fluoride from wastewater, covering strategies that involve pure cultures of bacteria, fungi, and algae, as well as modified microbial materials and bioreactors. Live microorganisms exhibit high efficiency in adsorbing low concentrations of fluoride, while modified microbial materials are more suitable for treating high concentrations of fluoride. The review discusses the adsorption mechanisms and influencing factors of these technologies, and evaluates their practical application potential through techno-economic analysis. Finally, future research directions are proposed, including the optimization of modification technologies and the selection of effective microbial species, providing theoretical guidance and a basis for future microbial defluoridation technologies.
Collapse
Affiliation(s)
- Linlin Cui
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
3
|
Zhang L, Zhang J, Zhou R, Si Y. β-tricalcium phosphate enhanced biomineralization of Cd 2+ and Pb 2+ by Sporosarcina ureilytica HJ1 and Sporosarcina pasteurii HJ2. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134624. [PMID: 38810579 DOI: 10.1016/j.jhazmat.2024.134624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Microbiologically induced CaCO3 precipitation (MICP) has been proposed as a potential bioremediation method to immobilize contaminating metals. In this study, carbonate mineralizing bacteria HJ1 and HJ2, isolated from heavy metal contaminated soil, was employed for Cd2+ and Pb2+ immobilization with or without β-tricalcium phosphate addition. Compared with the only treatments amended with strains, the combined application of β-tricalcium phosphate and HJ1 improved the immobilization rates of Cd and Pb by 1.49 and 1.70 times at 24 h, and the combined application of β-tricalcium phosphate and HJ2 increased the immobilization rates of Cd and Pb by 1.25 and 1.79 times. The characterization of biomineralization products revealed that Cd2+ and Pb2+ primarily immobilized from the liquid phase as CdCO3 and PbCO3, and the addition of β-tricalcium phosphate facilitated the formation of Ca4.03Cd0.97(PO4)3(OH) and Pb3(PO4)2. Also, the calcium source was related to the speciation of carbonate precipitation and improved the Cd and Pb remediation efficiency. This research demonstrated the feasibility and effectiveness of MICP combined with β-tricalcium phosphate in immobilization of Cd and Pb, which will provide a fundamental basis for future applications of MICP to mitigate soil heavy metal pollutions.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jie Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Runzhan Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Ma J, Min Y, Su J, Huang T, Ali A, Wang Y, Li X. Simultaneous removal of ammonia nitrogen, phosphate, zinc, and phenol by degradation of cellulose in composite mycelial pellet bioreactor: Enhanced performance and community co-assembly mechanism. ENVIRONMENTAL RESEARCH 2024; 252:118780. [PMID: 38555089 DOI: 10.1016/j.envres.2024.118780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
In this experiment, the prepared tea biochar-cellulose@LDH material (TB-CL@LDH) was combined with mycelium pellets to form the composite mycelial pellets (CMP), then assembled and immobilized with strains Pseudomonas sp. Y1 and Cupriavidus sp. ZY7 to construct a bioreactor. At the best operating parameters, the initial concentrations of phosphate (PO43--P), ammonia nitrogen (NH4+-N), chemical oxygen demand (COD), zinc (Zn2+), and phenol were 22.3, 25.0, 763.8, 1.0, and 1.0 mg L-1, the corresponding removal efficiencies were 80.4, 87.0, 83.4, 91.8, and 96.6%, respectively. Various characterization analyses demonstrated that the strain Y1 used the additional carbon source produced by the strain ZY7 degradation of cellulose to enhance the removal of composite pollutants and clarified the principle of Zn2+ and PO43--P removal by adsorption, co-precipitation and biomineralization. Pseudomonas and Cupriavidus were the dominant genera according to the high-throughput sequencing. As shown by KEGG results, nitrification and denitrification genes were affected by phenol. The study offers prospects for the simultaneous removal of complex pollutants consisting of NH4+-N, PO43--P, Zn2+, and phenol.
Collapse
Affiliation(s)
- Jiayao Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
5
|
Zhang X, Cao J, Chen J, Wang G, Li L, Wei X, Zhang R. Combined Effects of Fluoride and Dietary Seleno-L-Methionine at Environmentally Relevant Concentrations on Female Zebrafish (Danio rerio) Liver: Histopathological Damages, Oxidative Stress and Inflammation. Biol Trace Elem Res 2024; 202:2314-2326. [PMID: 37682395 DOI: 10.1007/s12011-023-03837-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Fluoride, a global environmental pollutant, is ubiquitous in aquatic environments and coexists with selenium, which can cause complex effects on exposed organisms. However, data on the interaction of fluoride and selenium remain scarce. In this study, female zebrafish (Danio rerio) were exposed to fluoride (80 mg/L sodium fluoride) and/or dietary selenomethionine (Se-Met) for 30, 60 and 90 days, the effects on the liver of zebrafish were investigated. The results indicated that an increase in fluoride burden, inhibited growth and impaired liver morphology were recorded after fluoride exposure. Furthermore, fluoride alone caused oxidative stress and inflammation in the liver, as reflected by the increase in ROS and MDA contents, the reduction of anti-oxidative enzymes, the altered immune related enzymes (ACP, AKP, LZM and MPO) and the expression of IL-6, IL-1β, TNF-α, IL-10 and TGF-β. In contrast, co-exposure to fluoride and Se-Met decreased fluoride burden and restored growth. Furthermore, dietary Se-Met alleviated oxidative stress, inflammation and impaired morphology in liver trigger by fluoride. However, dietary Se-Met alone increased the activities of SOD and CAT. These results demonstrate that the protective effect of dietary Se-Met against chronic fluoride toxicity at a certain level.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, 030801, Shanxi, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Runxiao Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| |
Collapse
|
6
|
Zhang X, Cao J, Chen J, Wang G, Li L, Wei X, Zhang R. Combined Effects of Fluoride and Dietary Seleno-L-methionine at Environmentally Relevant Concentrations on Female Zebrafish (Danio rerio) Liver: Histopathological Damages, Oxidative Stress and Inflammation. Biol Trace Elem Res 2023:10.1007/s12011-023-03853-3. [PMID: 37728845 DOI: 10.1007/s12011-023-03853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Fluoride, a global environmental pollutant, is ubiquitous in aquatic environments and coexists with selenium, which can cause complex effects on exposed organisms. However, data on the interaction of fluoride and selenium remain scarce. In this study, female zebrafish (Danio rerio) were exposed to fluoride (80 mg/L sodium fluoride) and/or dietary selenomethionine for 30, 60 and 90 days, the effects on the liver of zebrafish were investigated. The results indicated that an increase in fluoride burden, inhibited growth and impaired liver morphology were recorded after fluoride exposure. Furthermore, fluoride alone caused oxidative stress and inflammation in the liver, as reflected by the increase in ROS and MDA contents, the reduction of anti-oxidative enzymes, the altered immune related enzymes (ACP, AKP, LZM and MPO) and the expression of IL-6, IL-1β, TNF-α, IL-10 and TGF-β. In contrast, co-exposure to fluoride and Se-Met decreased fluoride burden and restored growth. Furthermore, dietary Se-Met alleviated oxidative stress, inflammation and impaired morphology in liver trigger by fluoride. However, dietary Se-Met alone increased the activities of SOD and CAT. These results demonstrate that the protective effect of dietary Se-Met against chronic fluoride toxicity at a certain level.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, 030801, Shanxi, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Runxiao Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| |
Collapse
|
7
|
Li J, Cai L, Lu H, Ma B, Chen G, Kong D, Hu Y, Ye Z, Ruan Y. Effects of Ion Combinations and Their Concentrations on Denitrification Performance and Gene Expressions of an Aerobic Strain Marinobacter Hydrocarbonoclasticus RAD-2. Microorganisms 2023; 11:1867. [PMID: 37630427 PMCID: PMC10456938 DOI: 10.3390/microorganisms11081867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Salinity is one of the most important factors affecting the nitrogen-removal efficiency of denitrifying bacteria. A series of different ion combinations and salinity gradients were carried out to clarify the effects of ion types and concentrations on nitrogen removal by halophilic aerobic denitrifying bacteria RAD-2. Nitrate concentrations, nitrite concentrations, TAN concentrations, and OD600 were monitored to investigate their effects on denitrification in each group. The results showed that Na+, K+, and Cl- accelerated the denitrification process and improved nitrogen-removal efficiency at moderate additions, while Ca2+ and Mg2+ showed no significant effect. Na+ was effective alone, while K+ or Cl- needed to be combined with at least one of Na+, K+, or Cl- to achieve similar efficiency. The batch tests of salinity confirmed that the addition of a moderate concentration of NaCl/Na2SO4 could effectively improve nitrogen-removal efficiency, while excessive salinity might hinder denitrification metabolism. In the salinity range of 5~40‱, a 5‱ dosage might be the most economical method for strain RAD-2. Real-time PCR experiments on 17 key nitrogen metabolism-related genes revealed that chloride was widely involved in the nitrogen and carbon metabolism of microorganisms by altering cell osmotic pressure and opening ion channel proteins, thereby affecting the efficiency of denitrification. The results of this study may contribute to a better understanding of the different roles of various ions in aerobic denitrification and highlight the importance of salinity control in highly salted wastewater treatment.
Collapse
Affiliation(s)
- Junchi Li
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.L.); (Y.H.)
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China;
| | - Lei Cai
- Laboratory of Microbial Resources, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China;
| | - Huifeng Lu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Guangsuo Chen
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China;
| | - Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.)
| | - Yiming Hu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.L.); (Y.H.)
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China;
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.)
| | - Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.L.); (Y.H.)
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
8
|
Zhang L, Ali A, Su J, Wang Z, Huang T, Zhang R, Liu Y. Microencapsulated reactor for simultaneous removal of calcium, fluoride and phenol using microbially induced calcium precipitation: Mechanism and functional characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130704. [PMID: 36603427 DOI: 10.1016/j.jhazmat.2022.130704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Fluoride ions (F-) and phenol in groundwater have become a great hurdle to the pursuit of a healthy drinking water source. This study established a microencapsulated immobilization reactor with Aquabacterium sp. CZ3 for the simultaneous removal of nitrate (NO3--N), calcium (Ca2+), F-, and phenol from groundwater with 100%, 67.84%, 88.67%, and 100% removal efficiencies, respectively. The three-dimensional mesh structure of microcapsules facilitated the transport and metabolism of substances, while their synergistic effect with bacteria promoted the removal of contaminants. F- was removed by co-precipitation to generate Ca5(PO4)3F and CaF2 and adsorption. On one hand, the phenol toxicity promoted the production of extracellular polymers and improved the tolerance of bacteria; on the other hand, the degradation of phenol provided a carbon source for bacteria and promoted the denitrification. The development of microencapsulated immobilized reactor provided a clear mechanism for phenol and F- removal under the microbially induced calcium precipitation (MICP) technique, while providing a valuable solution for the treatment of complex groundwater resources.
Collapse
Affiliation(s)
- Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
9
|
Liu Y, Ali A, Su JF, Li K, Hu RZ, Wang Z. Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160439. [PMID: 36574549 DOI: 10.1016/j.scitotenv.2022.160439] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Microbial-induced calcium carbonate precipitation (MICP) is a technique that uses the metabolic action of microorganisms to produce CO32- which combines with free Ca2+ to form CaCO3 precipitation. It has gained widespread attention in water treatment, aimed with the advantages of simultaneous removal of multiple pollutants, environmental protection, and ecological sustainability. This article reviewed the mechanism of MICP at both intra- and extra-cellular levels. It summarized the parameters affecting the MICP process in terms of bacterial concentration, ambient temperature, etc. The current status of MICP application in practical engineering is discussed. Based on this, the current technical difficulties faced in the use of MICP technology were outlined, and future research directions for MICP technology were highlighted. This review helps to improve the design of existing water treatment facilities for the simultaneous removal of multiple pollutants using the MICP and provides theoretical reference and innovative thinking for related research.
Collapse
Affiliation(s)
- Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rui-Zhu Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Huang L, Luo Z, Huang X, Wang Y, Yan J, Liu W, Guo Y, Babu Arulmani SR, Shao M, Zhang H. Applications of biomass-based materials to remove fluoride from wastewater: A review. CHEMOSPHERE 2022; 301:134679. [PMID: 35469899 DOI: 10.1016/j.chemosphere.2022.134679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is one of the essential trace elements for the human body, but excessive fluoride will cause serious environmental and health problems. This paper summarizes researches on the removal of fluoride from aqueous solutions using newly developed or improved biomass materials and biomass-like organic materials in recent years. These biomass materials are classified into chitosan, microorganisms, lignocellulose plant materials, animal attribute materials, biological carbonized materials and biomass-like organic materials, which are explained and analyzed. By comparing adsorption performance and mechanism of adsorbents for removing fluoride, it is found that carbonizing materials and modifying adsorbents with metal ions are more beneficial to improving adsorption efficiency and the adsorption mechanisms are various. The adsorption capacities are still considerable after regeneration. This paper not only reviews the properties of these materials for fluoride removal, but also focuses on the comparison of materials performance and fluoride removal mechanism. Herein, by discussing the improved adsorption performance and research technology development of biomass materials and biomass-like organic materials, various innovative ideas are provided for adsorbing and removing contaminants.
Collapse
Affiliation(s)
- Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Zhixuan Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Yian Wang
- Department of Chemical and Biological Engineering, Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Wei Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Yufang Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | | | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China.
| |
Collapse
|
11
|
Zhang X, Chen J, Wang G, Chen H, Cao J, Xie L, Luo Y. Interactive effects of fluoride and seleno-l-methionine at environmental related concentrations on zebrafish (Danio rerio) liver via the gut-liver axis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:690-702. [PMID: 35809884 DOI: 10.1016/j.fsi.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Fluoride (F) is a ubiquitous aquatic environmental pollutant and co-exists with other pollutants to form combined pollution. Selenium (Se) is beneficial at low levels yet toxic at high levels and can interact with some metals. However, the interactive effects of F and Se on the liver in fish remains enigmatic. In this study, zebrafish (Danio rerio) were exposed to F (80 mg/L) and dietary seleno-l-methionine (Se-Met, 0.25, 0.5 and 1.0 μg/g dry weight) alone or in combination for 90 d. The results indicated that co-treatment to F and Se-Met attenuated the histopathological damage, oxidative stress, and inflammatory in the liver, compared with the F treatment alone. Meanwhile, dietary Se-Met treatment improved F-induced intestinal barrier dysfunction, increased the transcripts of tight junction proteins (ZO-1, Claudin-1 and Occludin), and restored the homeostasis of intestinal microbiota. Moreover, dietary Se-Met ameliorated F-induced intestinal and liver inflammation by inhibiting lipopolysaccharide (LPS) levels and transcripts of TLR4 and p65 in the intestine and liver. This study manifested that Se-Met alleviates F-induced liver and intestinal injury when both co-occur at specific concentrations, and that the gut-liver axis pathway may serve as a mechanistic base for these alleviative effects.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China.
| |
Collapse
|
12
|
Microbially induced calcium precipitation based anaerobic biosynthetic crystals for removal of F− and Ca2+ in groundwater: Performance optimization, kinetics, and reactor operation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Sun Y, Su J, Ali A, Wang Z, Zhang S, Zheng Z, Min Y. Fungal-sponge composite carriers coupled with denitrification and biomineralization bacteria to remove nitrate, calcium, and cadmium in a bioreactor. BIORESOURCE TECHNOLOGY 2022; 355:127259. [PMID: 35550924 DOI: 10.1016/j.biortech.2022.127259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
The coexistence of nitrate (NO3--N) and heavy metals in the aquatic environment causes harm to both the aquatic ecosystem and human health. Here, fungal-sponge composite carriers (FSC) were assembled and immobilized with strain WZ39 in a bioreactor to remove NO3--N, Ca2+, and Cd2+. Stable bioreactor performance under heavy metal pressure was achieved. The highest removal efficiencies of NO3--N, Ca2+, and Cd2+ reached 100, 71.81, and 92.50%, respectively. Bacteria and precipitates were found in fungal mycelium and sponge. The precipitates composed of Ca3.9(Ca4.7Cd0.7)(PO4)6(OH)1.8, CaCO3, and CdCO3. Fluorescence excitation-emission matrix (EEM) and flow cytometric (FCM) analysis indicated bacteria in FSC exhibited a strong metabolic activity and high percentage of intact cells under heavy metal stress. High-throughput sequencing results showed Pseudomonas sp. WZ39 played a major role in the bioreactor. The potential functions associated with metabolism, heavy metal transfer, and biofilm formation had high relative abundance in the bioreactor.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
14
|
Li D, Zhao H, Li G, Yan H, Han Z, Chi X, Meng L, Wang J, Xu Y, Tucker ME. Calcium ion biorecovery from industrial wastewater by Bacillus amyloliquefaciens DMS6. CHEMOSPHERE 2022; 298:134328. [PMID: 35304210 DOI: 10.1016/j.chemosphere.2022.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Calcium ions in industrial wastewater needs to be removed to prevent the production of limescale, which can have negative consequences. Biomineralization has become the focus due to its lower costs than traditional methods of remediation. In this study, calcium ions were bio-precipitated under the action of free and immobilized Bacillus amyloliquefaciens DMS6 bacteria, and the calcium ion removal efficiency was also compared. The results show that it only needed 3 days to decrease the calcium ion concentration to an ideal level of 76-116 mg/L under the action of DMS6 bacteria immobilized by activated carbon fiber, with calcium ion removal ratios reaching 99%-95% by the 7th day. DMS6 bacteria immobilized by activated carbon fiber were superior to free bacteria and bacteria immobilized by sodium alginate in calcium ion removal. Calcium ions are biomineralized into calcite, Mg-rich calcite, aragonite and monohydrocalcite with abundant organic functional groups, 4 types of secondary protein structures, amino acids, phospholipids, negative stable carbon isotope δ13CPDB values (-16.68‰ to-17.25‰) and negatively charged biomineral surface. Calcium ions were diffused into cells and took part in the intracellular biomineralization of monohydrocalcite, also facilitating calcium ion removal. The formation of intracellular monohydrocalcite has rarely been reported. This study demonstrates an economic and environmentally friendly method to remove calcium ions from industrial wastewater.
Collapse
Affiliation(s)
- Dan Li
- College of Earth Science and Engineering, College of Chemical and Biological Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, 266590, Qingdao, China
| | - Hui Zhao
- College of Earth Science and Engineering, College of Chemical and Biological Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, 266590, Qingdao, China
| | - Guijiang Li
- College of Earth Science and Engineering, College of Chemical and Biological Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, 266590, Qingdao, China
| | - Huaxiao Yan
- College of Earth Science and Engineering, College of Chemical and Biological Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, 266590, Qingdao, China.
| | - Zuozhen Han
- College of Earth Science and Engineering, College of Chemical and Biological Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, 266590, Qingdao, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China.
| | - Xiangqun Chi
- College of Earth Science and Engineering, College of Chemical and Biological Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, 266590, Qingdao, China
| | - Long Meng
- College of Earth Science and Engineering, College of Chemical and Biological Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, 266590, Qingdao, China
| | - Jihan Wang
- College of Earth Science and Engineering, College of Chemical and Biological Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, 266590, Qingdao, China
| | - Yudong Xu
- College of Earth Science and Engineering, College of Chemical and Biological Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, 266590, Qingdao, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
| |
Collapse
|
15
|
Li M, Ali A, Li Y, Su J, Zhang S. The performance and mechanism of simultaneous removal of calcium and heavy metals by Ochrobactrum sp. GMC12 with the chia seed (Salvia hispanica) gum as a synergist. CHEMOSPHERE 2022; 297:134061. [PMID: 35192851 DOI: 10.1016/j.chemosphere.2022.134061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A bacterium Ochrobactrum sp. GMC12, capable of biomineralization and denitrification, was employed to investigate the performance and mechanism of heavy metals removal. A chia seeds (Salvia hispanica) gum was proposed as a synergist for the first time. The results showed that strain GMC12 reduced Ca2+, Cd2+, Zn2+, and nitrate by 83.38, 98.89, 98.95, and 100% (2.09, 0.29, 0.55, and 0.79 mg L-1 h-1), respectively, over 96 h continuous determination experiments. The concentration gradient test revealed that strain GMC12 would effectively remove Cd2+ and Zn2+ by 99.80 and 99.91% (0.67 and 1.35 mg L-1 h-1), respectively, under the synergistic effect of gum (1.0%, w/v). The SEM-EDS and XRD manifested that Ca2+, HMs ions, and anionic groups coated on the bacteria surface to form CaCO3, Ca5(PO4)3OH, CdCO3, Cd5(PO4)3OH, ZnCO3, and Zn2(PO4)OH. The fluorescence spectrometry and fourier transform infrared (FTIR) spectra illustrated that extracellular polymeric substance (EPS) was the key product for the nucleation site of bacteria, and the gum promoted the accumulation of bio-precipitates and accelerated the removal of HMs. In this research, Ochrobactrum sp. GMC12 exhibited great potential in wastewater treatment and chia seeds gum would go deep into material preparation and wastewater treatment due to its non-toxic nature, high viscosity, and advantageous morphology.
Collapse
Affiliation(s)
- Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
16
|
Yang W, Ali A, Su J, Liu J, Wang Z, Zhang L. Microbial induced calcium precipitation based anaerobic immobilized biofilm reactor for fluoride, calcium, and nitrate removal from groundwater. CHEMOSPHERE 2022; 295:133955. [PMID: 35157876 DOI: 10.1016/j.chemosphere.2022.133955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, the anaerobic quartz sand fixed biofilm reactor containing Cupriavidus sp. W12 was established to simultaneously remove calcium (Ca2+), fluoride (F-) and nitrate (NO3-N) from groundwater. After 84 days of continuous operation, the optimum operating parameters and defluoridation mechanism were explored, and the microbial community structure under different pH environments were compared and analyzed. Under the optimal operation conditions (HRT of 6 h, initial Ca2+ concentration of 180 mg L-1, and pH of 7.0), the removal efficiencies of Ca2+, F-, and NO3-N were 58.97%, 91.93%, and 100%, respectively. Gas chromatography (GC) results indicate that N2 is the main gas produced by the bioreactor. Three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) showed that extracellular polymers (EPS) are produced during bacterial growth and metabolism. The results of Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR) demonstrated that the defluoridation mechanism is attributed to the synergetic effects of ion exchange, co-precipitation, and chemisorption. The comparative analysis of the microbial community structure under different pH conditions show that Cupriavidus is the dominant bacteria in the bioreactor throughout the experiment, and it shows a prominent advantage at pH of 7.0. This research provides an application foundation for anaerobic microbial induced calcium precipitation (MICP) bioremediation of Ca2+, F-, and NO3-N from groundwater.
Collapse
Affiliation(s)
- Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
17
|
Zhang R, Ali A, Su J, Liu J, Wang Z, Li J, Liu Y. Synergistic removal of fluoride, calcium, and nitrate in a biofilm reactor based on anaerobic microbially induced calcium precipitation. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128102. [PMID: 35030488 DOI: 10.1016/j.jhazmat.2021.128102] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Fluoride (F-) and calcium (Ca2+) are primary causes of skeleton fluorosis and scaling, posing a grievous threat to aquatic lives and public health. Therefore, a novel strategy for polluted groundwater in immobilized biofilm reactor based on the anaerobic microbial induced calcium precipitation (MICP) was proposed, in which loofah was used as a multifunctional strain Cupriavidus sp. W12 growth carrier. Effects of different hydraulic retention time (HRT), initial F-concentration, and pH on the synchronous removal of pollutants were examined. Under stable operation conditions, the highest efficiencies for Ca2+, F-, and nitrate (NO3--N) reached 76.73%, 94.92%, and 100%, respectively. Furthermore, gas chromatography (GC), Fluorescence excitation-emission matrix (EEM), X-ray diffraction (XRD), Scanning electron microscope-energy dispersive spectroscope (SEM-EDS), and Fourier transform infrared spectrometer (FTIR) comprehensively clarified the mechanism of pollutants removal. The results elucidated that the removal of various pollutants was achieved through a combination of anaerobic MICP, adsorption, and co-precipitation. Besides, high-throughput sequencing analysis showed that Cupriavidus had a predominant proportion of 42.36% in the reactor and had stability against pH impact. As the first application of a biofilm reactor based on anaerobic MICP, it put forward a new insight for efficient defluorination and decalcification.
Collapse
Affiliation(s)
- Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Chen H, Lu Y, Zhang C, Min F, Huo Z. Red Yeast Improves the Potential Safe Utilization of Solid Waste (Phosphogypsum and Titanogypsum) Through Bioleaching. Front Bioeng Biotechnol 2022; 9:777957. [PMID: 35036400 PMCID: PMC8758580 DOI: 10.3389/fbioe.2021.777957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Phosphogypsum (PG) and titanium gypsum (TG), as a by-product (solid waste) in phosphate fertilizer and titanium dioxide industry, are causing serious environmental hazards. The resource/harmless application of PG and TG is the development trend in the future. The biological function of red yeast (Rho: Rhodotorula mucilaginosa) can effectively reduce the concentration of pollutants in the environment and has the potential of biological flotation/purification of mineral solid waste. In this study, the bioremediation mechanism and safe utilization efficiency of Rho for different contents of PG and TG were explored by using its biological flotation function. The X-ray fluorescence spectrometry (XRF) results showed that F was the main toxic element in PG and TG, and Pb and Cd did not reach the detection limit. The processing capacity of Rho for PG (>10 g/ml) is higher than that of TG (<5 g/ml). After bioleaching by Rho, the proportion of F in PG and TG solid decreased by 61.45–63.79% and 49.45–59.19%, respectively. The results of three-dimensional fluorescence, extracellular polymeric substance (EPS) extraction, X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed that Rho could accelerate the release of harmful elements (F) in PG and TG. SEM showed that Rho cells and secretions adhered and wrapped on PG/TG, causing PG/TG decomposition and fragmentation. In addition, the adsorption of EPS and the formation of Ca5(PO4)3F are two main ways for Rho to remove F. Furthermore, under the condition of high concentration bioleaching, Rho can accelerate the release and utilization of P in PG, which is not only for the re-precipitation of Ca5(PO4)3F but also conducive to the reproduction and utilization of microorganisms. Meanwhile, the purification/safe reuse of PG by Rho is easier than that of TG. Therefore, the toxicity of PG and TG bioleaching by Rho can be greatly reduced, suggesting the huge potential of Rho in soil improvement and remediation.
Collapse
Affiliation(s)
- Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yuqi Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chaonan Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Fangfang Min
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
19
|
Microbially Induced Desaturation and Carbonate Precipitation through Denitrification: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbially induced carbonate precipitation (MICP) has been proposed as a sustainable approach to solve various environmental, structural, geotechnical and architectural issues. In the last decade, a ubiquitous microbial metabolism, nitrate reduction (also known as denitrification) got attention in MICP research due to its unique added benefits such as simultaneous corrosion inhibition in concrete and desaturation of porous media. The latter even upgraded MICP into a more advanced concept called microbially induced desaturation and precipitation (MIDP) which is being investigated for liquefaction mitigation. In this paper, we present the findings on MICP through denitrification by covering applications under two main titles: (i) applications solely based on MICP, such as soil reinforcement, development of microbial self-healing concrete, restoration of artwork and historical monuments, and industrial wastewater treatment, (ii) an application based on MIDP: liquefaction mitigation. After explaining the denitrification process in detail and describing the MICP and MIDP reaction system occurring through denitrification metabolism, the most recent advances in each potential field of application are collected, addressing the novel findings and limitations, to provide insights toward the practical applications in situ. Finally, the research needs required to deal with the defined challenges in application-oriented upscaling and optimization of MICP through denitrification are suggested. Overall, collected research findings revealed that MICP through denitrification possesses a great potential to replace conventionally used petrochemical-based, labour intensive, destructive and economically unfeasible techniques used in construction industry with a bio-based, labourless, low-carbon technology. This worldwide applicable bio-based technology will facilitate the sustainable development and contribute to the carbon-emission-reduction.
Collapse
|
20
|
Ali A, Wu Z, Li M, Su J. Carbon to nitrogen ratios influence the removal performance of calcium, fluoride, and nitrate by Acinetobacter H12 in a quartz sand-filled biofilm reactor. BIORESOURCE TECHNOLOGY 2021; 333:125154. [PMID: 33895669 DOI: 10.1016/j.biortech.2021.125154] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the influence of different carbon to nitrogen (C/N) ratios on the bio-removal efficiency of aquatic pollutants like calcium (Ca2+), fluoride (F-), and nitrate (NO3-N) in a quartz sand-filled biofilm reactor (QSBR) to treat the low C/N wastewater using Acinetobacter sp. H12 at pH 6.50. The simultaneous bio-removal rate of Ca2+, F-, and NO3- reached 56.31%, 96.33, and 96.95 respectively. Nitrogen gas (N2) was produced with no evidence of N2O emission. Moreover, the morphological study of strain H12 and biological precipitates through SEM revealed that strain H12 provides the nucleation sites for microbially induced calcium precipitation to remove Ca2+ and F-. Besides, XPS and XRD peak spectra implicated that Ca2+ and F- were removed as CaF2 and Ca5(PO4)3F co-precipitates. The 16S rRNA sequencing analyses revealed that H12 belongs to Acinetobacter and has stronger MICP and denitrification potential as compared with other strains under low C/N conditions.
Collapse
Affiliation(s)
- Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|