1
|
Chambers C, Grimes S, Smith RC, Weil A, Reza MT. Investigation of adsorption parameters of saxitoxin onto loblolly pine-derived biochar synthesized at various pyrolysis temperature. CHEMOSPHERE 2024; 370:143965. [PMID: 39694291 DOI: 10.1016/j.chemosphere.2024.143965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
This study highlights the use of loblolly pine derived biochar for the removal of harmful algal bloom toxin, Saxitoxin (STX), from water. Biochar samples were prepared at varying pyrolysis temperatures (400, 600 and 800 °C) for 60 min. As pyrolysis temperature increases, enhancement in surface porosity was observed (SBET = 7.26 ± 0.2 m2/g to 408.15 ± 6.19 m2/g) while a decline in oxygen-containing functional groups was observed (1517.80 ± 14.98 μmol/g to 823.01 ± 7.72 μmol/g). This study aimed to discover the effects of adsorption parameters such as biochar dosage amount, contact time, initial concentration and initial pH on Saxitoxin adsorption. These studies revealed impressive results with >90 % toxin removal with dosage rate of 0.01 g/L, contact time of 30 min, and increasing percent removal with increasing initial STX concentration and initial pH in water. Maximum uptake was calculated for P400 with adsorption capacity of 314.37 μg/g. This showed that surface functionality showed higher affinity for STX uptake, which may be possible due to hydrogen bonding, electrostatic interactions, ion-exchange, and π-π interactions. Applied kinetic models indicated both physisorption and chemisorption interactions with best fit supporting the Elovich models. Complementary, adsorption isotherm analysis confirmed the multilayer adsorption behavior of the Freundlich model. Therefore, these findings support the viable use of biochar material for the remediation of STX waters.
Collapse
Affiliation(s)
- Cadianne Chambers
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | - Savannah Grimes
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | - Russell C Smith
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | - Ayden Weil
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | - M Toufiq Reza
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA.
| |
Collapse
|
2
|
Han BH, Kim HG, Kim YH, Cho IH, Kim HK, Hong S, Kim BH. Applicability of plant-clay mineral composite for rapid algae removal from eutrophic freshwaters at the laboratory and field scales1. ENVIRONMENTAL RESEARCH 2024; 266:120468. [PMID: 39615780 DOI: 10.1016/j.envres.2024.120468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
The global issue of water source eutrophication is exacerbated by increasing industrialization and urbanization, posing significant challenges for clean water management. Although strategies such as nutrient management and biomanipulation are employed, these methods often take longer to demonstrate effectiveness and indirectly work on algal blooms. This has led to the evaluation of eco-friendly technologies such as plant-mineral composites (PMCs) for faster and targeted control of algal proliferation and organic pollution. This study assessed the suitability of PMCs for rapid improvement of eutrophic water quality (focusing on algal control) and optimized their application methods at laboratory and field scales. Laboratory experiments were conducted to identify the critical factors influencing removal activity (RA), considering variables such as water temperature and light intensity. Field trials in reservoirs and a water treatment plant (WTP) explored the controlling factors influencing the RAs for various pollutants. Optimal conditions for maximizing PMC efficacy were determined using response surface methodology (RSM) and generalized linear models. RSM highlighted water temperature as a key factor influencing chlorophyll a RA in a unimodal manner, while demonstrating PMC's effectiveness across varying concentrations, depths, and pH levels. Results from the WTP emphasized the high PMC efficacy in humic matter-rich environments, and those from reservoirs consistently demonstrated PMC's effectiveness regardless of ambient water quality factors such as nutrient and conductivity levels. Comparative analyses indicated distinct PMC impact on algae-associated parameters, emphasizing its potential as an innovative solution for utilizing plant allelopathy and mineral adsorption for efficient algal bloom control and water quality enhancement.
Collapse
Affiliation(s)
- Byeong-Hun Han
- Department of Environmental Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyo Gyeom Kim
- Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young-Hyo Kim
- Department of Environmental Science, Hanyang University, Seoul 04763, Republic of Korea; Youngsan River Environmental Management Office, Ministry of Environment, Gwangju 61945, Republic of Korea
| | - In-Hwan Cho
- Department of Environmental Science, Hanyang University, Seoul 04763, Republic of Korea; Migang ENC Co., Ltd, Gyeonggi 14057, Republic of Korea
| | - Ha-Kyung Kim
- Department of Environmental Science, Hanyang University, Seoul 04763, Republic of Korea; National Institute of Environmental Research, Inchon 22689, Republic of Korea
| | - Sungwon Hong
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Baik-Ho Kim
- Department of Environmental Science, Hanyang University, Seoul 04763, Republic of Korea; Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Zhang S, Cao J, Zheng Y, Hou M, Song L, Na J, Jiang Y, Huang Y, Liu T, Wei H. Insight into coagulation/flocculation mechanisms on microalgae harvesting by ferric chloride and polyacrylamide in different growth phases. BIORESOURCE TECHNOLOGY 2024; 393:130082. [PMID: 38006984 DOI: 10.1016/j.biortech.2023.130082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
FeCl3 and polyacrylamide (PAM) had been used to investigate the effect of coagulation, flocculation, and their combination on algae cells and extracellular organic matter (EOM) at different phases. PAM tended to aggregate particle-like substances, while FeCl3 could interact with EOM. The content of EOM kept rising during the algae growth cycle, while OD680 peaked at about 3.0. At stationary phase Ⅰ, the removal efficiencies of UV254, turbidity and OD680 of the suspension conditioned with FeCl3 + PAM reached (88.08 ± 0.89)%, (89.72 ± 0.36)% and (93.99 ± 0.05)%, respectively. Nevertheless, PAM + FeCl3 exhibited the worst efficiency because of the release of EOM caused by the turbulence. The results suggested that algal cells served as a coagulation aid to facilitate floc formation, while excessive EOM deteriorated harvesting performance. The process of FeCl3 + PAM at stationary phase Ⅰ appears to be a promising technology for microalgae harvesting.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jingyi Cao
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yajiao Zheng
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Lili Song
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jiandie Na
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yiqiang Jiang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yichen Huang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Tianyi Liu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Hua Wei
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
4
|
Che M, Shan C, Zhang W, Duan Y, Huang R, Cui M, Qi W, Su R. Efficient removal of Phaeocystis globosa from seawater with the persulfate activation by arbutin-modified cellulose nanocrystals. CHEMOSPHERE 2023; 313:137647. [PMID: 36574786 DOI: 10.1016/j.chemosphere.2022.137647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Harmful algal blooms (HABs) from seawater have a severe threat to human health, aquaculture, and coastal nuclear power safety. Thus, it is highly desirable to explore environmentally friendly, efficient, and economic methods for controlling HABs. Herein, the arbutin-modified cellulose nanocrystals (AT-CNC) activated persulfate (PS), as a novel heterogeneous Fenton-like process, was proposed to remove Phaeocystis globosa (P. globosa) from seawater. The AT-CNC was synthesized via the surface modification of AT on CNC. The effects of AT dosage, CNC dosage, and PS dosage on the removal performance of P. globosa were investigated. With the addition of 530 mg/L AT-CNC (6 wt% AT/CNC of AT loading) and 120 mg/L PS, the removal percentage of chlorophyll a (Rc), optical density at 680 nm (Ro) and turbidity (Rt) reached 97.7%, 91.9% and 85.2% at 24 h. According to electron paramagnetic resonance (EPR) spectra and radical quenching tests, the predominant free radicals inactivating P. globosa were hydroxyl radicals (•OH). Additionally, the flocculation of the inactivated algae cells by AT-CNC was also critical for removing P. globosa. Moreover, a positive environmental impact was achieved in the AT-CNC-PS system due to the reduction of nitrogen, phosphorus and organic carbon contents. Based on the excellent removal performance for P. globosa, we believe that the AT-CNC activated persulfate is a promising option for HABs control.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Cancan Shan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wenjie Zhang
- China Nuclear Power Engineering Co., Ltd., No.117, West Third Ring Road North, Haidian District, Beijing 100840, China
| | - Yanyi Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
5
|
Xue G, Wang X, Xu C, Song B, Chen H. Removal of harmful algae by Shigella sp. H3 and Alcaligenes sp. H5: algicidal pathways and characteristics. ENVIRONMENTAL TECHNOLOGY 2022; 43:4341-4353. [PMID: 34184617 DOI: 10.1080/09593330.2021.1949047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Application of algicidal bacteria is a promising technology to control harmful algal blooms (HABs). In this study, algicidal bacteria strains Shigella sp. H3 and Alcaligenes sp. H5 were obtained via two different isolation methods from the same lake water sample, with optimal algicidal efficiencies 96% and 74% against algae mixture. The Shigella sp. H3 and Alcaligenes sp. H5 lysed algae cells through cells-to-cells direct contact and secretion of algicidal metabolites, respectively. The stronger algicidal capability of Shigella sp. H3 was also attributable to its higher efficiency for triggering reactive oxygen species, which led to broken down of the antioxidant system and more severe damage to the bacterial cells. The antioxidant enzyme activities in Alcaligenes sp. H5 group were still expressed because of its relatively weaker algicidal capability and some intact algal cells were remained. The liquid carbohydrates from algal lysis in both groups increased significantly, whereas the quantities of liquid protein decreased, which might be assimilated by algicidal bacteria. Nonetheless, the whole algicidal process resulted in the increase of total released organic matters content. This study revealed the algicidal pathways of diverse bacterial strains, and the possible secondary environmental problem caused by the algal released organic matters should be considered when applying bacteria to control HABs.
Collapse
Affiliation(s)
- Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution control and Ecological Security, People's Republic of China
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Chenlan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Binxue Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
- Jiangsu Tongyan Environmental Production Science & Technology Co. Ltd, Yancheng, People's Republic of China
| |
Collapse
|
6
|
Chang H, Wu H, Zhang L, Wu W, Zhang C, Zhong N, Zhong D, Xu Y, He X, Yang J, Zhang Y, Zhang T, Liao Q, Ho SH. Gradient electro-processing strategy for efficient conversion of harmful algal blooms to biohythane with mechanisms insight. WATER RESEARCH 2022; 222:118929. [PMID: 35970007 DOI: 10.1016/j.watres.2022.118929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Globally eruptive harmful algal blooms (HABs) have caused numerous negative effects on aquatic ecosystem and human health. Conversion of HABs into biohythane via dark fermentation (DF) is a promising approach to simultaneously cope with environmental and energy issues, but low HABs harvesting efficiency and biohythane productivity severely hinder its application. Here we designed a gradient electro-processing strategy for efficient HABs harvesting and disruption, which had intrinsic advantages of no secondary pollution and high economic feasibility. Firstly, low current density (0.888-4.444 mA/cm2) was supplied to HABs suspension to harvest biomass via electro-flocculation, which achieved 98.59% harvesting efficiency. A mathematic model considering coupling effects of multi-influencing factors on HABs harvesting was constructed to guide large-scale application. Then, the harvested HABs biomass was disrupted via electro-oxidation under higher current density (44.44 mA/cm2) to improve bioavailability for DF. As results, hydrogen and methane yields of 64.46 mL/ (g VS) and 171.82 mL/(g VS) were obtained under 6 min electro-oxidation, along with the highest energy yield (50.1 kJ/L) and energy conversion efficiency (44.87%). Mechanisms of HABs harvesting and disruption under gradient electro-processing were revealed, along with the conversion pathways from HABs to biohythane. Together, this work provides a promising strategy for efficient disposal of HABs with extra benefit of biohythane production.
Collapse
Affiliation(s)
- Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Haihua Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wenbo Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Nianbing Zhong
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xuefeng He
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Yang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yue Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qiang Liao
- Key laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
7
|
Yu J, Jiao R, Sun H, Xu H, He Y, Wang D. Removal of microorganic pollutants in aquatic environment: The utilization of Fe(VI). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115328. [PMID: 35658263 DOI: 10.1016/j.jenvman.2022.115328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Microorganic pollutants (MOPs) in aquatic environment with low levels but high toxicity are harmful to ecosystem and human health. Fe(VI) has a dual-functional role in oxidation and coagulation, and can effectively remove MOPs, heavy metal, phosphate, particulates and colloids. Moreover, Fe(VI) can combine with traditional coagulants, or use as a pretreatment for membrane treatment because of its characters to generate nanoparticles by degradation in water. Based on the relevant toxicity experiments, Fe(VI) had been proved to be safe for the efficient treatment of MOPs. For better utilization of Fe(VI), its oxidation and coagulation mechanisms are summarized, and the knowledge about the control parameters, utilization methods, and toxicity effect for Fe(VI) application are reviewed in this paper. pH, different valences of iron, environmental substances, and other parameters are summarized in this study to clarify the important factors in the treatment of MOPs with Fe(VI). In the future study, aiming at cost reduction in Fe(VI) preparation, transportation and storage, enhancement of oxidation in the intermediate state, and better understanding the mechanism between interface and Fe(VI) oxidation will help promote the application of Fe(VI) in the removal of MOPs. This study offers guidelines for the application and development of Fe(VI) for the treatment of MOPs in aquatic environment.
Collapse
Affiliation(s)
- Junjie Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu City, Zhejiang Province, 322000, China.
| | - Hongyan Sun
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Hui Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yi He
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Huang B, Cui J, Chen X, Huang Y, Xu C, Xie E. Mechanism of the allelopathic effect of macroalgae Gracilaria bailiniae on Nitzschia closterium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113767. [PMID: 35714486 DOI: 10.1016/j.ecoenv.2022.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of the seaweed industry in China, the scale and production of its commercial seaweed are ranked among the most significant worldwide. Consequently, the control of algal blooms, especially fouling diatoms, during macroalgae industrialisation is an important issue. Many diatom bloom studies have focused on physical and chemical controls, with limited economic and eco-friendly biological controls reported. In our study, Gracilaria bailiniae fresh thalli and aqueous extract profoundly suppressed Nitzschia closterium growth (50% inhibition concentration of the fourth day (IC50-4 day) was 0.667 × 10-3 g·mL-1 and 3.889 × 10-3 g·mL-1, respectively). The cellular morphology changes of N. closterium exposed to the G. bailiniae aqueous extract were severe atrophies and plasmolysis and dissolution of endocellular structures. To explore more potential allelochemicals to control N. closterium, the intracellular compounds of G. bailiniae were detected and screened. Three organic acids (citrate, hydroxyethanesulfonic acid (HA) and taurine) had allelopathic potential against N. closterium. Our results showed that citrate and HA markedly suppressed N. closterium (IC50-4 day: 1.035 mM and 1.151 mM, respectively); however, taurine poorly suppressed N. closterium (IC50-4 day: 2.500 mM). Therefore, HA is one of the main allelopathic compounds in G. bailiniae. Further, the allelopathic mechanism of HA against the N. closterium photosynthetic system broke its photosynthetic apparatus (oxygen-evolving complex, reaction centres, the effective antenna size and the donor side of photosystem II) and hindered electron transport. The experimental results provide a new and eco-friendly strategy to control diatom blooms.
Collapse
Affiliation(s)
- Bowen Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianjun Cui
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xinyi Chen
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongjian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cong Xu
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Enyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
9
|
Dong F, Li J, Lin Q, Wang D, Li C, Shen Y, Zeng T, Song S. Oxidation of chloroquine drug by ferrate: Kinetics, reaction mechanism and antibacterial activity. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 428:131408. [PMID: 36570598 PMCID: PMC9760377 DOI: 10.1016/j.cej.2021.131408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 05/13/2023]
Abstract
Chloroquine (CLQ) is required to manufacture on a larger scale to combat COVID-19. The wastewater containing CLQ will be discharged into the natural water, which was resistant to environmental degradation. Herein, the degradation of CLQ by ferrate (Fe(VI)) was investigated, and the biodegradability of the oxidation products was examined to evaluate the potential application in natural water treatment. The reaction between CLQ and Fe(VI) was pH-dependent and followed second-order kinetics. The species-specific rate constant of protonated Fe(VI) species (HFeO4 -) was higher than that of the FeO4 2- species. Moreover, increasing the reaction temperature could increase the degradation rate of CLQ. Besides, HCO3 - had positive effect on CLQ removal, while HA had negative effect on CLQ removal. But the experiments shows Fe(VI) could be used as an efficient technique to degrade co-existing CLQ in natural waters. During the oxidation, Fe(VI) attack could lead to aromatic ring dealkylation and chloride ion substitution to form seven intermediate products by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) determination. Finally, a pure culture test showed that the oxidation of CLQ by Fe(VI) could slightly increase the antimicrobial effect towards Escherichia coli (E.coli) and reduce the toxicity risk of intermediates. These findings might provide helpful information for the environmental elimination of CLQ.
Collapse
Affiliation(s)
- Feilong Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinzhe Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
10
|
Mahmoud EA, Gad Mohamed AM, Farrag AEHA, Aboeldahb SAM. Evaluation of the most promising techniques overcoming the algal problems takes place during the purification of drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44239-44248. [PMID: 33846925 DOI: 10.1007/s11356-021-13674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
This work aims to study the technical problems of algal blooms that hinder the purification process of surface water used for drinking purposes and not its harmful effect on human health and the surrounding environment. It is also related to the demonstration of the improved coagulation process as an efficient technique in the algal removal from surface water by its application in jar tests. The study was carried out in the water purification plant in Nazlet Abdellah near the city of Assiut, Egypt. To achieve that, many ores and natural materials which aid in the removing of the algal blooms from surface water during the purification processes were tested. The examined materials should be technically and economically proper for improving the removal of algae from treated surface water for drinking purposes. The results showed that the kaolinite and bentonite (K and B) when coupled separately with aluminum sulfate (alum.) (the main coagulant agent) associated with the raw surface water in the flocculation basin were more efficient in the algae removal from treated surface water before reaching the sand filters by ratio up to 90%.
Collapse
Affiliation(s)
- Eman A Mahmoud
- Petroleum Biotechnology Lab, Processes Development Department, Egyptian Petroleum Research Institute, Nasr City, Egypt.
| | | | | | | |
Collapse
|
11
|
Novoa AF, Vrouwenvelder JS, Fortunato L. Membrane Fouling in Algal Separation Processes: A Review of Influencing Factors and Mechanisms. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.687422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.
Collapse
|