1
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
2
|
Ngubane Z, Dzwairo B, Moodley B, Stenström TA, Sokolova E. Quantitative assessment of human health risks from chemical pollution in the uMsunduzi River, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118013-118024. [PMID: 37874515 PMCID: PMC10682212 DOI: 10.1007/s11356-023-30534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
A quantitative chemical risk assessment was performed using published data as well as data from the official monitoring programme for the uMsunduzi River in KwaZulu-Natal, South Africa. The chemicals assessed were organochlorinated pesticides (OCPs), pharmaceuticals and personal care products (PPCPs), heavy metals, and nitrates and phosphates. The water from uMsunduzi River is used locally without treatment. Consequently, the exposure routes investigated were via ingestion during domestic drinking and incidental ingestion during recreational activities, which were swimming and non-competitive canoeing, for both adults and children. For the individual chemicals, non-carcinogenic risks using the hazard quotient (HQ) and carcinogenic risks using the cancer risk (CR) were quantified. It was found that the exposed population is likely to experience non-carcinogenic effects from pesticides and phosphates, but not from PPCPs, heavy metals and nitrates. This study also found that the carcinogenic risks for OCPs were higher than the tolerable limit of 10-5, while for lead the risk was below the tolerable limit. Some of the activities that potentially contribute to chemicals onto the uMsunduzi River are subsistence farming, small plantations, illegal dumping, industries, and broken sewers. The findings of this study may act as the technical foundation for the introduction of pollution reduction measures within the catchment, including public education.
Collapse
Affiliation(s)
- Zesizwe Ngubane
- Department of Civil Engineering, Midlands, Durban University of Technology, Pietermaritzburg, South Africa
| | - Bloodless Dzwairo
- Department of Civil Engineering, Midlands, Durban University of Technology, Pietermaritzburg, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Brenda Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | | |
Collapse
|
3
|
Cruz-Santiago O, Flores-Ramírez R, Ilizaliturri-Hernández CA, Méndez-Rodríguez KB, Cilia-López VG, Espinosa-Reyes G, González-Mille DJ. Levels of persistent organic pollutants in cane toads (Rhinella marina) differ among sites with varying industrial and agricultural activities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104280. [PMID: 37741478 DOI: 10.1016/j.etap.2023.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
In this study, we captured cane toads (Rhinella marina) in four sites located in different regions affected by anthropogenic activities in Mexico. Subsequently we analyzed liver tissue for the presence of organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) The levels of these POPs in the toads' livers ranged from 863.2 to 3109.6 ng/g of lipid weight across all sites. A multivariate statistical analysis highlighted two sites with the highest POPs levels, with the most polluted site displaying a high level of PCBs, suggesting influence of industrial activities. The second most polluted site displayed significant amounts of OCs, linking this location to agricultural activity. Additionally, we found pesticide metabolites and isomers that allowed us to distinguish past and recent exposure events. Our observations indicate that R. marina is suitable bioindicator of sites impacted by anthropogenic activities.
Collapse
Affiliation(s)
- Omar Cruz-Santiago
- El Colegio de la Frontera Sur (ECOSUR), Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas 29290, México
| | - Rogelio Flores-Ramírez
- Programa de Investigadoras e Investigadores por México, CONAHCYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - Karen B Méndez-Rodríguez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - Virginia G Cilia-López
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - Guillermo Espinosa-Reyes
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - Donaji J González-Mille
- Programa de Investigadoras e Investigadores por México, CONAHCYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México.
| |
Collapse
|
4
|
Kock A, Pheiffer W, Wepener V, Smit NJ, Taylor JC. Using Confocal Microscopy and Pigment Analyses to Detect Adverse Insecticide Effects in non-target Freshwater Diatom species - a proof-of-concept Using Nitzschia palea. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:107. [PMID: 37284912 DOI: 10.1007/s00128-023-03741-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The persistence of insecticides in aquatic environments is a cause of concern and to date hardly any studies have focused on the effects that DDT and deltamethrin have on non-target freshwater diatom communities. The application of diatoms in ecotoxicological studies is well acknowledged and therefore this study used laboratory bioassays to determine the effects that DDT and deltamethrin have on a monoculture of a diatom indicator species, Nitzschia palea. The insecticides affected the morphology of chloroplasts at all exposure concentrations. These effects were a maximum reduction in chlorophyll concentrations (4.8% and 2.3%), cell viability (51% and 42%), and increases in cell deformities (3.6% and 1.6%) following exposure to DDT and deltamethrin respectively. Based on the results we propose that methods, such as confocal microscopy, chlorophyll-α analysis and cell deformities are useful tools in assessing the effects of insecticides on diatoms.
Collapse
Affiliation(s)
- Anrich Kock
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa.
- North-West University, 11 Hoffman Street, Potchefstroom Campus, Building F20, Room 63, Potchefstroom, 2531, South Africa.
| | - Wihan Pheiffer
- DSI/NWU Preclinical Drug Development Platform, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa
| | - Jonathan C Taylor
- Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa
- South African Institute for Aquatic Bioaffiliationersity (SAIAB), Private Bag 1015, Grahamstown, 6140, South Africa
| |
Collapse
|
5
|
Kafula YA, Thoré ESJ, Philippe C, Munishi LK, Moyo F, Vanschoenwinkel B, Brendonck L. Environmental risks of a commonly used pyrethroid: Insights from temporary pond species of the Lake Manyara Basin, Tanzania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161698. [PMID: 36682542 DOI: 10.1016/j.scitotenv.2023.161698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Environmental risks posed by widespread pesticide application have attracted global attention. Currently, chemical risk assessments in aquatic environments rely on extrapolation of toxicity data from classic model species. However, similar assessments based on local species could be complementary, particularly for unusual living environments such as temporary ponds. Here, we carried out an environmental risk assessment (ERA) of a pyrethroid model compound, cypermethrin, based on local temporary pond species. First, we measured cypermethrin residue concentrations in rivers, irrigation canals and temporary ponds in the Lake Manyara Basin (LMB). Then, we estimated the environmental risks of cypermethrin by combining these data with acute toxicity data of three resident species across three trophic levels: primary producers (Arthrospira platensis), invertebrate grazers (Streptocephalus lamellifer) and fish (Nothobranchius neumanni). Furthermore, we compared the derived ERA to that obtained using toxicity data from literature of classic model species. Cypermethrin residue concentrations in contaminated systems of the LMB ranged from 0.01 to 57.9 ng/L. For temporary pond species, S. lamellifer was the most sensitive one with a 96 h-LC50 of 0.14 ng/L. Regardless of the assumed exposure concentration (0.01 and 57.9 ng/L), the estimated risks were low for primary producers and high for invertebrate grazers, both for local species as well as for classic model species. The highest detected cypermethrin concentration resulted in a moderate risk estimation for local fish species, while the estimated risk was high when considering classic fish models. Our results confirm that, at least for pyrethroids, ERAs with classic model species are useful to estimate chemical risks in temporary pond ecosystems, and suggest that complementary ERAs based on local species could help to fine-tune environmental regulations to specific local conditions and conservation targets.
Collapse
Affiliation(s)
- Yusuph A Kafula
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium; Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, P. O Box 447, Arusha, Tanzania; Department of Aquatic Sciences, College of Aquatic Sciences and Fisheries, Mwalimu Julius K. Nyerere University of Agriculture and Technology, P. O Box 976, Musoma, Tanzania.
| | - Eli S J Thoré
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium; TRANSfarm - Science, Engineering and Technology Group, KU Leuven, Bijzondereweg 12, 3360 Lovenjoel, Belgium
| | - Charlotte Philippe
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Linus K Munishi
- Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, P. O Box 447, Arusha, Tanzania
| | - Francis Moyo
- Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, P. O Box 447, Arusha, Tanzania
| | - Bram Vanschoenwinkel
- Community Ecology Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Centre for Environmental Management, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa
| | - Luc Brendonck
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium; Water Research Group, Unit for Environmental Sciences, and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
6
|
Chen C, Luo J, Bu C, Zhang W, Ma L. Efficacy of a large-scale integrated constructed wetland for pesticide removal in tail water from a sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156568. [PMID: 35688240 DOI: 10.1016/j.scitotenv.2022.156568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/11/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The higher and higher detection frequencies of micro-pollutants such as pesticides in water are nowadays intensifying the investigation for strategies to provide effective engineering methods that could mitigate such substances. Traditional sewage treatment plants (STP) do not design specific processes for micro-pollutants removal in water. As an environmentally-friendly measure, some laboratory-scale wetlands have been proved to be effective in the removal of pesticides in water, but such studies are rarely carried out in large-scale wetlands, especially when they are adopted as a polishing step of STPs. Therefore, the further removals of micro-pollutants in tail water of STPs through the large-scale wetlands and the relevant removal mechanism are still knowledge gaps. In this study, 44 target pesticides were detected in the water of a large-scale integrated constructed wetland (ICW) for four seasons. The ICW was established to further process the tail water from a STP, whose drainage was from domestic sewage of local residents. There were 19, 16, 17, and 19 pesticides detected in spring, summer, autumn, and winter, respectively. The removal values for Σ19 pesticides ranged from 49.99% to 84.96% during the study period, and the removal of these pesticides followed significant seasonal trends, which was likely because the microorganisms responsible for biotic degradation were markedly influenced by seasonal temperature fluctuations. Proteobacteria, Chloroflexi, Acidobacteria, Planctomycetes, and Bacteroidetes were the dominant phyla, and might be associated with the biodegradation of organic pollutants in the ICW. Removal of pesticides by the ICW resulted in overall toxicity reductions in water, but butachlor and chlorpyrifos were still at non-ignorable ecological risks. This study highlights the potential of constructed wetlands for micro-pollutants removal in water as a polishing step in STPs.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiahong Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Chengcheng Bu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Weiwei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Chen C, Luo J, Shu X, Dai W, Guan M, Ma L. Spatio-temporal variations and ecological risks of organochlorine pesticides in surface waters of a plateau lake in China. CHEMOSPHERE 2022; 303:135029. [PMID: 35605728 DOI: 10.1016/j.chemosphere.2022.135029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Qilu Lake is one of the 9 plateau lakes in Yunnan, China, with a lake surface altitude of 1796.62 m above sea level. In spite of the importance and agriculturally-intensive phenomenon in Qilu Lake Basin, few studies have provided a modern evaluation of pesticide residues and potential effects to local aquatic organisms. The primary goal of this study was to determine the spatio-temporal variations of organochlorine pesticides (OCPs) in this area, and to further assess the related ecological risks. Of the 25 OCPs analyzed, 14 were detected, and the concentrations of ∑25OCPs were highest in the upstream of rivers, followed by regions close to the lake shore, and the lowest concentrations were found in Qilu Lake in every season except winter. The concentrations of ∑25OCPs were the highest in summer, and the lowest in winter. OCP concentrations in spring and in autumn were similar. 4,4'-DDD, γ-HCH, HCB, trans-chlordane, and cis-chlordane were 5 OCPs with relatively high risk in Qilu Lake Basin. Interestingly, higher OCP concentrations do not necessarily correspond to higher ecological risk levels. Low predicted no-effect concentration (PNEC) values and relatively high toxicity of these OCPs led to their high risk quotient (RQ) values. This work further illustrated that although OCPs have been banned for many years, they were still frequently detected in surface waters, and caused risks to aquatic animals.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jiahong Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xingquan Shu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, 650501, PR China
| | - Wenshao Dai
- Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, 650501, PR China
| | - Mengsha Guan
- Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, 650501, PR China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
8
|
Majdi N, De Necker L, Fourie H, Loggenberg A, Netherlands EC, Bunte-Tschikin J, Traunspurger W, Du Preez GC. Diversity and distribution of benthic invertebrates dwelling rivers of the Kruger National Park, South Africa. KOEDOE: AFRICAN PROTECTED AREA CONSERVATION AND SCIENCE 2022. [DOI: 10.4102/koedoe.v64i1.1702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Meiobenthos (or meiofauna) are microscopic invertebrates that inhabit biofilms and interstitial spaces in rivers. They are diverse and extremely abundant, and they perform essential ecological functions by linking microbial production to higher trophic levels (e.g. macrobenthic invertebrates and fishes). However, meiobenthic communities remain poorly studied in Africa. Here, we sampled meio- and macrobenthic invertebrate communities associated with biofilms and sediments across an upstream–downstream gradient along the Olifants, Sabie and Crocodile rivers flowing through the Kruger National Park (KNP). We expected to link differences in community structure to environmental gradients as those rivers show different degrees of anthropogenic stress as they enter the park. Both meio- and macrobenthic communities differed across rivers and also structured along an upstream–downstream gradient. The upstream sites, which were the closest to the park borders, consistently showed a lower diversity in all three rivers. There, the invasive snail Tarebia granifera strongly dominated (making up 73% – 87% of the macrobenthos), crowding hard substrates, while concomitantly the abundances of biofilm-dwelling meiobenthos like nematodes and rotifers were substantially reduced. Nevertheless, the diversity and evenness of communities then tended to increase as water flowed downstream through the park, suggesting a beneficial effect of protected river reaches on benthic invertebrate diversity. However, for the Crocodile River, which makes up the southern border of the park, this trend was less conspicuous, suggesting that this river may experience the greatest threats. More generally, benthic invertebrate communities were driven by the concentrations of phosphates, sulphates, ammonium and organic matter and by substrate characteristics.Conservation implications: Meiobenthic organisms are very abundant in KNP rivers and react to environmental gradients; thus, they should be more considered for bio-monitoring or conservation of comprehensive assemblages of animals. Interestingly, protected reaches tended to show a reduced dominance of the invasive T. granifera and a higher diversity of benthic invertebrates.
Collapse
|
9
|
Leighton GRM, Bishop JM, Camarero PR, Mateo R, O'Riain MJ, Serieys LEK. Poisoned chalice: Use of transformed landscapes associated with increased persistent organic pollutant concentrations and potential immune effects for an adaptable carnivore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153581. [PMID: 35104517 DOI: 10.1016/j.scitotenv.2022.153581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Wildlife around cities bioaccumulate multiple harmful environmental pollutants associated with human activities. Exposure severity can vary based on foraging behaviour and habitat use, which can be examined to elucidate exposure pathways. Carnivores can play vital roles in ecosystem stability but are particularly vulnerable to bioaccumulation of pollutants. Understanding the spatial and dietary predictors of these contaminants can inform pollutant control, and carnivores, at the top of food webs, can act as useful indicator species. We test for exposure to toxic organochlorines (OCs), including dichloro-diphenyl-trichloroethane (DDT) and polychlorinated biphenyls (PCBs), in a medium-sized felid, the caracal (Caracal caracal), across the peri-urban and agricultural landscapes of the city of Cape Town, South Africa. Concentrations in both blood (n = 69) and adipose tissue (n = 25) were analysed along with detailed spatial, dietary, demographic, and physiological data to assess OC sources and exposure risk. The analysis revealed widespread exposure of Cape Town's caracals to organochlorines: detection rate was 100% for PCBs and 83% for DDTs in blood, and 100% for both compounds in adipose. Caracals using human-transformed areas, such as vineyards and areas with higher human population and electrical transformer density, as well as wetland areas, had higher organochlorine burdens. These landscapes were also highly selected foraging areas, suggesting caracals are drawn into areas that co-incidentally increase their risk of exposure to these pollutants. Further, biomagnification potential was higher in individuals feeding on higher trophic level prey and on exotic prey. These findings point to bioaccumulation of OC toxicants and widespread exposure across local food webs. Additionally, we report possible physiological effects of exposure, including elevated white blood cell and platelet count, suggesting a degree of immunological response that may increase disease susceptibility. Cape Town's urban fringes likely represent a source of toxic chemicals for wildlife and require focused attention and action to ensure persistence of this adaptable mesocarnivore.
Collapse
Affiliation(s)
- Gabriella R M Leighton
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa.
| | - Jacqueline M Bishop
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Laurel E K Serieys
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa; Cape Leopard Trust, Cape Town, South Africa; Panthera, NY, New York, USA
| |
Collapse
|
10
|
Wolmarans NJ, Bervoets L, Meire P, Wepener V. Sub-lethal exposure to malaria vector control pesticides causes alterations in liver metabolomics and behaviour of the African clawed frog (Xenopus laevis). Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109173. [PMID: 34492387 DOI: 10.1016/j.cbpc.2021.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
In this study we explore the sub-lethal effects of two malaria vector control pesticides, deltamethrin and dichlorodiphenyltrichloroethane (DDT), on Xenopus laevis by incorporating different levels of biological organisation. Pesticide accumulation in frog tissue was measured alongside liver metabolomics and individual swimming behaviour to assess whether changes presented at these different levels, and if such changes could be linked between levels. Results showed evidence of concentration dependent accumulation of DDT and its metabolites, but no measurable accumulation of deltamethrin in adult X. laevis after 96 h of exposure. Both DDT and deltamethrin were shown to cause alterations in the liver metabolome of X. laevis. We also showed that some of these changes can be enhanced in exposure to a mixture of these two pesticides. Initial behavioural responses recorded directly after exposure were seen in the form of decreased activity, less alterations between mobility states, and less time spent at the water surface. This response persisted after 96 h of exposure to a mixture of the two pesticides. This study shows that sub-lethal exposure to pesticides can alter the biochemical homeostasis of frogs with the potential to cascade onto behavioural and ecological levels in mixture exposure scenarios.
Collapse
Affiliation(s)
- Nico J Wolmarans
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | - Lieven Bervoets
- Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Patrick Meire
- Ecosystem Management Research Group (Ecobe), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Does aquatic sediment pollution result in contaminated food sources? ACTA VET BRNO 2021. [DOI: 10.2754/avb202190040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sediment pollution of the aquatic environment by waste due to anthropogenic activity is of an increasing concern. The contaminants coming from the aquatic environment can enter the aquatic food chain and accumulate in the tissues of fish and shellfish used for human consumption. The aim of this study was to sum up the current level of knowledge concerning the pollution of aquatic sediments and its transfer to aquatic foods as well as to indicate whether such contamination has the potential to affect the health and welfare of aquatic organisms as well as the quality and safety of the species intended for human consumption. Based on the results of scientific studies, the European Food Safety Authority, and the Rapid Alert System for Food and Feed, contamination of fish and seafood occurs predominantly through their diet and the levels of bioaccumulative contaminants are higher in fish which rank higher in the food chain. Contamination of aquatic habitats can not only significantly affect behavior, development, and welfare of aquatic organisms, but it can also affect the safety of fish and seafood for human consumption.
Collapse
|