1
|
Xu W, Rhemtulla JM, Luo D, Wang T. Common drivers shaping niche distribution and climate change responses of one hundred tree species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123074. [PMID: 39490022 DOI: 10.1016/j.jenvman.2024.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Climate change is increasingly contributing to climatic mismatches, in which habitat suitability changes outpace the dispersal abilities of species. Climate niche models (CNM) have been widely used to assess such impacts on tree species. However, most studies have focused on either a single or a limited number of species, or have employed a fixed set of climate variables for multiple species. These limitations are largely due to the constraints of data availability, the complexity of the modeling algorithms, and integration approaches for the projections of diverse species. Therefore, whether specific climatic drivers determine the climatic niches of multiple tree species remains unclear. In this study, CNMs were developed for 100 economically and ecologically important tree species in China and were used to project their future distribution individually and collectively. Continentality was the predominant climate variable, affecting 71 species, followed by seasonal precipitation, which also significantly influenced over 50 species. Of the 100 tree species, the climate niche extent was projected to expand for 29 ("winners"), contract for 36 ("losers"), be stable for 27, and fluctuate for the remaining eight species. Principal component analysis showed that winners and losers were differentiated by geographic variables and the top five climatic variables, however, not by species type (deciduous vs. evergreen or conifer vs. broadleaf). The regions with the highest species richness were mainly distributed in the Hengduan Mountains, a global biodiversity hotspot, and were predicted to increase from 5.2% to 7.5% of the total area. Areas with low species richness were projected to increase from 33.0% to 42.4%. Significant shifts in species composition were anticipated in these biodiversity-rich areas, suggesting potential disruption owing to species reshuffling. This study highlights the urgent need for proactive forest management and conservation strategies to address the impacts of climate change on tree species and preserve ecological functions by mitigating climatic mismatches. In addition, this study establishes a framework to identify the common environmental drivers affecting niche distribution and evaluates the collective patterns of multiple tree species, thereby providing a scientific reference for enhanced forestry management and climate change mitigation.
Collapse
Affiliation(s)
- Wenhuan Xu
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jeanine M Rhemtulla
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Dawei Luo
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
2
|
Zhang L, Xu E. Effects of agricultural land use on soil nutrients and its variation along altitude gradients in the downstream of the Yarlung Zangbo River Basin, Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167583. [PMID: 37797760 DOI: 10.1016/j.scitotenv.2023.167583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Agricultural development in alpine ecosystems can cause significant changes in soil nutrients. With large altitude spans, the combined effect of the two is still unclear in existing research. To answer this problem, this study took the downstream of the Yarlung Zangbo River Basin (YZRB) as the study area, and designed a comparative soil sampling scheme along the altitude gradient. We compared soil nutrient characteristics facility agricultural land (FA) and field cultivated land (FC), using grassland (GL), the main source of agriculture expansion, as a reference. A total of 44 sampling areas were designed within an altitude range of 800-3500 m to reveal the effects of agricultural land development along the altitude gradient on soil nutrients. Research found that the FA significantly improved soil nutrient levels, with most nutrient indicators higher than those of FC and GL (P < 0.05), while the above indicators of FC were only slightly higher than GL. Moreover, the effects of agricultural development decreased with soil depth, and mainly occurred within the 0-30 cm soil layer (P < 0.05). With increasing altitude, most of soil nutrients first decreased and then increased and differences in soil nutrients among different land use modes first expanded and then shrank. This may be related to differences in farmland management methods, vegetation coverage, and temperature under different altitude gradient constraints. Especially in middle-altitude areas, the FA not only breaks through the low-temperature limitations of the plateau, but also has the advantage of large-scale development, which is suggested for future agricultural intensification in the plateau.
Collapse
Affiliation(s)
- Lina Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erqi Xu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Okeke ES, Nweze EJ, Ezike TC, Nwuche CO, Ezeorba TPC, Nwankwo CEI. Silicon-based nanoparticles for mitigating the effect of potentially toxic elements and plant stress in agroecosystems: A sustainable pathway towards food security. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165446. [PMID: 37459984 DOI: 10.1016/j.scitotenv.2023.165446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
Due to their size, flexibility, biocompatibility, large surface area, and variable functionality nanoparticles have enormous industrial, agricultural, pharmaceutical and biotechnological applications. This has led to their widespread use in various fields. The advancement of knowledge in this field of research has altered our way of life from medicine to agriculture. One of the rungs of this revolution, which has somewhat reduced the harmful consequences, is nanotechnology. A helpful ingredient for plants, silicon (Si), is well-known for its preventive properties under adverse environmental conditions. Several studies have shown how biogenic silica helps plants recover from biotic and abiotic stressors. The majority of research have demonstrated the benefits of silicon-based nanoparticles (Si-NPs) for plant growth and development, particularly under stressful environments. In order to minimize the release of brine, heavy metals, and radioactive chemicals into water, remove metals, non-metals, and radioactive components, and purify water, silica has also been used in environmental remediation. Potentially toxic elements (PTEs) have become a huge threat to food security through their negative impact on agroecosystem. Si-NPs have the potentials to remove PTEs from agroecosystem and promote food security via the promotion of plant growth and development. In this review, we have outlined the various sources and ecotoxicological consequences of PTEs in agroecosystems. The potentials of Si-NPs in mitigating PTEs were extensively discussed and other applications of Si-NPs in agriculture to foster food security were also highlighted.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Charles Ogugua Nwuche
- Department of Microbiology, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, B15 2TT Edgbaston, United Kingdom.
| | - Chidiebele Emmanuel Ikechukwu Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
4
|
Li F, Yu T, Huang Z, Yang Z, Hou Q, Tang Q, Liu J, Wang L. Linking health to geology-a new assessment and zoning model based on the frame of medical geology. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7145-7159. [PMID: 36862270 DOI: 10.1007/s10653-023-01516-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
With the growing concerns about the Earth's environment and human health, there has been a surge in research focused on the intersection of health and geology. This study quantitatively assesses the relationship between human health and geological factors using a new framework. The framework considers four key geological environment indicators related to health: soil, water, geological landform, and atmosphere. Results indicate that the atmospheric and water resource indicators in the study area were generally favorable, while the scores of geological landforms varied based on topography. The study also found that the selenium content in the soil greatly exceeded the local background value. Our research underscores the importance of geological factors on human health, establishes a new health-geological assessment model, and provides a scientific foundation for local spatial planning, water resource development, and land resource management. However, due to varying geological conditions worldwide, the framework and indicators for health geology may need to be adjusted accordingly.
Collapse
Affiliation(s)
- Fengyan Li
- School of Science, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing, 100083, People's Republic of China.
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China.
| | - Zhenzhong Huang
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Zhongfang Yang
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Qingye Hou
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Qifeng Tang
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, People's Republic of China
| | - Jiuchen Liu
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, People's Republic of China
| | - Lingxiao Wang
- School of Science, China University of Geosciences, Beijing, 100083, People's Republic of China
| |
Collapse
|
5
|
The Impacts of Hydrology and Climate on Hydrological Connectivity in a Complex River–Lake Floodplain System Based on High Spatiotemporal Resolution Images. WATER 2022. [DOI: 10.3390/w14121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The drivers that determine the hydrological connectivity (HC) are complex and interrelated, and disentangling this complexity will improve the administration of the river–lake interconnection system. Dongting Lake, as a typical river–lake interconnected system, is freely connected with the Yangtze River and their HC plays a major role in keeping the system healthy. Climate, hydrology, and anthropogenic activities are associated with the HC. In this study, hydrological drivers were divided into the total flow of three inlets (T-flow) and the total flow of four tributaries (F-flow). To elucidate the HC of the Dongting Lake, HC was calculated by geostatistical methods in association with Sentinel-2 remote sensing images. Then, the structural equation model (SEM) was used to quantify the impacts of hydrology (F-flow, and T-flow) and meteorology (precipitation, evaporation, and temperature) on HC. The geostatistical analysis results demonstrated that the HC showed apparent seasonal change. For East and West Dongting Lake, the dominant element was north–south hydrological connectivity (N–S HC), and the restricted was west–east hydrological connectivity (W-E HC), but the dominant element was E–W HC and the restricted was N–S HC in South Dongting Lake. The results of SEM showed that N–S HC was mainly explained by T-flow (r = 0.49, p < 0.001) and F-flow (r = 0.28, p < 0.05). T-flow, temperature (r = 0.33, p < 0.05), and F-flow explained E–W HC. The finding of this work supports the management of both the Dongting Lake floodplain and other similar river–lake floodplain systems.
Collapse
|