1
|
Hernández-Tenorio R. Degradation pathways of sulfamethoxazole under phototransformation processes: A data base of the major transformation products for their environmental monitoring. ENVIRONMENTAL RESEARCH 2024; 262:119863. [PMID: 39214487 DOI: 10.1016/j.envres.2024.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Sulfamethoxazole (SMX) is frequently detected in wastewater and aquatic environments worldwide at concentrations from ng L-1 to μg L-1. Unfortunately, SMX is not completely removed in municipal wastewater treatment plants (WWTPs), thus, SMX and their transformation products (TPs) are discharged into aquatic environments, where can be transformed by phototransformation reactions. In this study, the phototransformation of SMX as well as generation of their major TPs under photolysis and photocatalysis processes was reviewed. SMX can be totally removed under photolysis and photocatalysis processes in aqueous solutions using simulated or natural radiation. Degradation pathways such as isomerization, hydroxylation, fragmentation, nitration, and substitution reactions were identified during the generation of the major TPs of SMX. Particularly, 26 TPs were considered for the creation of a data base of the major TPs of SMX generated under phototransformation processes. These 26 compounds could be used as reference during the SMX monitoring both wastewater and water bodies, using analytic methodologies such as target analysis and suspect screening. A data base of the major TPs of pharmaceuticals active compounds (PhACs) as SMX could help to implementation of best environmental monitoring programs for the study of the environmental risks both PhACs and their TPs with highest occurrence in aquatic environments.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de la Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, nuevo León, C.P. 66628, Mexico.
| |
Collapse
|
2
|
Xia L, Sun Y, Wang Y, Yao W, Wu Q, Min Y, Xu Q. Three dimensional nickel foam carried sea urchin-like copper-cobalt-cerium cathode for enhanced tetracycline wastewater purification in photocatalytic fuel cell. J Colloid Interface Sci 2024; 653:1444-1454. [PMID: 37804613 DOI: 10.1016/j.jcis.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Photocatalytic fuel cells (PFCs) regarded as a potential sustainable technique, have been broadly reported. In this work, the carbon quantum dot-loaded TiO2 photoanode and sea urchin-like CuCoCe ternary metal oxide cathode materials are successfully synthesized and used to construct PFC systems for efficient tetracycline (TC) degradation (45 mg/L) and simultaneous electricity generation. The results demonstrate that the CQDs-modified TiO2 photoanode has improved absorption intensity in both the UV and visible regions, and the photocurrent density at 1.23 V vs RHE reached 1.31 mA cm-2, which is 1.3 times higher than that of the original TiO2 photoanode. The established PFC system achieves the highest removal ratio of 96.9 % for TC in 60 min with a maximum power density of 0.77 mW cm-2. The PFC system can operate efficiently over a wide pH range (3.0-9.0). Furthermore, quenching experiments and ESR spectra show that the main reactive oxygen species in the degradation process are •O2-, 1O2 and •OH. This study provides meaningful way to develop multiple metal oxides as cathode of PFC system for efficient organic pollutant degradation and energy recovery.
Collapse
Affiliation(s)
- Ligang Xia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Yidan Sun
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China
| | - Yuling Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
3
|
Luo M, Qin L, Tao J, Gao X, Zhang T, Kang SZ, Li X. Selective surface enhanced Raman detection and effective photocatalytic degradation of sulfonamides antibiotic based on a flexible three-dimensional chitosan/carbon nitride/silver substrate. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132131. [PMID: 37536157 DOI: 10.1016/j.jhazmat.2023.132131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
The prevalence of sulfonamide residues in aquatic environments poses serious environmental risks, and the sensitive detection and effective degradation of sulfonamides have attracted widespread attention. Here, the environmentally friendly chitosan (CS)/carbon nitride (CN) with three-dimensional porous structure is fabricated by freeze-drying method, and subsequently a new bifunctional flexible substrate (CS/CN/Ag) is prepared by anchoring of small sized AgNPs (6 ∼ 12 nm) on CS/CN. Importantly, the CS/CN/Ag substrate shows high adsorption capacity (∼ 83.06%) for sulfamethoxazole (SMX) solution within 20 mins and the limit of detection can be as low as 7.46 × 10-9 mol·L-1 with an enhancement factor of 3.3 × 105. Also, the CS/CN/Ag substrate displays highly selective for surface-enhanced Raman spectroscopy (SERS) detection of sulfonamides and also shows excellent SERS response for SMX in hospital wastewater samples. In addition, the photocatalytic degradation efficiency of SMX could reach as high as 99.22% within 20 mins of irradiation and the CS/CN/Ag still maintains outstanding photocatalytic performance after six cycles. Moreover, the Ag content in the CS/CN/Ag substrate is only 2.35%, and also the CS/CN/Ag exhibits good uniformity, repeatability, recyclability and stability. Therefore, this flexible and cost-effectively substrate of CS/CN/Ag shows great potential for the simultaneous SERS detection and photocatalytic degradation of pollutants in actual wastewater samples.
Collapse
Affiliation(s)
- Man Luo
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lixia Qin
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Jianwei Tao
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xue Gao
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Taiyang Zhang
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
4
|
Huang C, Liu H, Sun C, Wang P, Tian Z, Cheng H, Huang S, Yang X, Wang M, Liu Z. Peroxymonosulfate activation by graphene oxide-supported 3D-MoS 2/FeCo 2O 4 sponge for highly efficient organic pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121391. [PMID: 36871747 DOI: 10.1016/j.envpol.2023.121391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To address conventional powder catalysts' recovery and aggregation issues that greatly restrain their practical application, a recoverable graphene oxide (GO)-supported 3D-MoS2/FeCo2O4 sponge (SFCMG) was developed through a simple impregnation pyrolysis method. SFCMG can efficiently activate peroxymonosulfate (PMS) to produce reactive species for rapid degradation of rhodamine B (RhB), with 95.0% and 100% of RhB being removed within 2 min and 10 min, respectively. The presence of GO enhances the electron transfer performance of the sponge, and the three-dimensional melamine sponge serves as a substrate to provide a highly dispersed carrier for FeCo2O4 and MoS2/GO hybrid sheets. SFCMG exhibits a synergistic catalytic effect of Fe and Co, and facilitates the redox cycles of Fe(III)/Fe(II) and Co(III)/Co(II) by MoS2 co-catalysis, which enhances its catalytic activity. Electron paramagnetic resonance results demonstrate that SO4•-, ·O2- and 1O2 are all involved in SFCMG/PMS system, and 1O2 played a prominent role in RhB degradation. The system has good resistance to anions (Cl-, SO42-, and H2PO4-) and humic acid and excellent performance for many typical contaminants degradation. Additionally, it works efficiently over a wide pH range (3-9) and possesses high stability and reusability with the metal leaching far below the safety standards. The present study extends the practical application of metal co-catalysis and offers a promising Fenton-like catalyst for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Zhongyu Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Su Huang
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xiong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Mengxin Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
5
|
Liu C, Sun S, Yu M, Zhou Y, Zhang X, Niu J. Rapid photocatalytic degradation of tetrabromobisphenol A using synergistic p-n/Z-scheme dual heterojunction of black phosphorus nanosheets/FeSe2/g-C3N4. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Abdel Aziz YS, Sanad MMS, Abdelhameed RM, Zaki AH. In-situ construction of Zr-based metal-organic framework core-shell heterostructure for photocatalytic degradation of organic pollutants. Front Chem 2023; 10:1102920. [PMID: 36688034 PMCID: PMC9845943 DOI: 10.3389/fchem.2022.1102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Photocatalysis is an eco-friendly promising approach to the degradation of textile dyes. The majority of reported studies involved remediation of dyes with an initial concentration ≤50 mg/L, which was away from the existing values in textile wastewater. Herein, a simple solvothermal route was utilized to synthesize CoFe2O4@UiO-66 core-shell heterojunction photocatalyst for the first time. The photocatalytic performance of the as-synthesized catalysts was assessed through the photodegradation of methylene blue (MB) and methyl orange (MO) dyes at an initial concentration (100 mg/L). Under simulated solar irradiation, improved photocatalytic performance was accomplished by as-obtained CoFe2O4@UiO-66 heterojunction compared to bare UiO-66 and CoFe2O4. The overall removal efficiency of dyes (100 mg/L) over CoFe2O4@UiO-66 (50 mg/L) reached >60% within 180 min. The optical and photoelectrochemical measurements showed an enhanced visible light absorption capacity as well as effective interfacial charge separation and transfer over CoFe2O4@UiO-66, emphasizing the successful construction of heterojunction. The degradation mechanism was further explored, which revealed the contribution of holes (h+), superoxide (•O2 -), and hydroxyl (•OH) radicals in the degradation process, however, h+ were the predominant reactive species. This work might open up new insights for designing MOF-based core-shell heterostructured photocatalysts for the remediation of industrial organic pollutants.
Collapse
Affiliation(s)
| | | | - Reda M. Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza, Egypt
| | - Ayman H. Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
7
|
Sun S, Tang Q, Xu H, Gao Y, Zhang W, Zhou L, Li Y, Wang J, Song C. A comprehensive review on the photocatalytic inactivation of Microcystis aeruginosa: Performance, development, and mechanisms. CHEMOSPHERE 2023; 312:137239. [PMID: 36379431 DOI: 10.1016/j.chemosphere.2022.137239] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Harmful algae blooms (HABs), caused by severe eutrophication and extreme weather, have spread all over the world, posing adverse effects on eco-environment and human health. Microcystis aeruginosa is the dominant harmful cyanobacterial species when HABs occur, and the toxic metabolites produced by it, microcystins, are even fatal to humans. Photocatalytic technology has received wide attention from researchers for its clean and energy-efficient features, while the basic mechanisms and modification methods of photocatalysts have also been widely reported. In recent years, photocatalytic technology has shown great promise in the inhibition of HABs. In this article, we systematically reviewed the progress in photocatalytic performance and algae removal efficiency, discuss the damage mechanisms of photocatalysts for algae removal, including physical damage and various oxidative stresses, and also explore the degradation rates and possible pathways of microcystins. It can be concluded that during the photocatalytic process, the cytoarchitectural integrity of algae cells was damaged, a variety of important protein and enzyme systems were disrupted, and the antioxidant systems collapsed due to the continuous attack of ROS, which adversely affected the normal physiological activities and growth, resulting in the inactivation of algae cells. Moreover, photocatalysts have a degrading effect on microcystins, thus reducing the adverse effects of HAB. Finally, a brief summary of future research priorities regarding the photocatalytic degradation of algae cells is presented. This study helps to enhance the understanding of the destruction mechanism of Microcystis aeruginosa during the photocatalytic process, and provides a reference for the photodegradation of HAB in water bodies.
Collapse
Affiliation(s)
- Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China.
| | - Qingxin Tang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Hui Xu
- Shenzhen General Integrated Transportation and Municipal Engineering Design & Research Institute Co. Ltd., Shenzhen, 518000, China.
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Chuxuan Song
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| |
Collapse
|
8
|
R M, Jaleel Uc JR, Pinheiro D, Nk R, Devi Kr S, Park J, Manickam S, Choi MY. Architecture of visible-light induced Z-scheme MoS 2/g-C 3N 4/ZnO ternary photocatalysts for malachite green dye degradation. ENVIRONMENTAL RESEARCH 2022; 214:113742. [PMID: 35753376 DOI: 10.1016/j.envres.2022.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of bilayer heterojunctions has received considerable attention recently. Fabrication of novel bilayer composites is of significant interest to improve their photocatalytic efficiency. In this study, molybdenum disulfide (MoS2), a layered dichalcogenide material exhibiting unique properties, in combination with graphitic carbon nitride (g-C3N4), a carbon-based layered material, was fabricated with small amounts of zinc oxide (ZnO). Three composites, MoS2/g-C3N4, MoS2/ZnO, and MoS2/g-C3N4/ZnO were prepared via a simple exfoliation method and characterized by various physicochemical methods. The Z-scheme charge transfer mechanism in the prepared ternary composite improves efficiency by inhibiting the recombination rate of electron-hole pairs. It has shown excellent performance in degrading a major water contaminant, malachite green (MG) dye, under visible light irradiation.
Collapse
Affiliation(s)
- Madhushree R
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India
| | - Jadan Resnik Jaleel Uc
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India
| | - Dephan Pinheiro
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India
| | - Renuka Nk
- Department of Chemistry, University of Calicut, Kerala, 673635, India
| | - Sunaja Devi Kr
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India.
| | - Juhyeon Park
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
9
|
A novel 3D Co/Mo co-catalyzed graphene sponge-mediated peroxymonosulfate activation for the highly efficient pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Zhang H, Xiao S, Du Y, Song S, Hu K, Huang Y, Wang H, Wu Q. Catalysis of MnO2-cellulose acetate composite films in DBD plasma system and sulfamethoxazole degradation by the synergistic effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Facile sonochemical preparation of La2Cu2O5 nanostructures, characterization, the evaluation of performance, mechanism, and kinetics of photocatalytic reactions for the removal of toxic pollutants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
One-step oxidative-adsorptive desulfurization of DBT on simulated solar light-driven nano photocatalyst of MoS2-C3N4-BiOBr @MCM-41. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Qu Y, Li X, Zhang H, Huang R, Qi W, Su R, He Z. Controllable synthesis of a sponge-like Z-scheme N,S-CQDs/Bi 2MoO 6@TiO 2 film with enhanced photocatalytic and antimicrobial activity under visible/NIR light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128310. [PMID: 35077972 DOI: 10.1016/j.jhazmat.2022.128310] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Multifunctional photocatalytic surfaces for pollutant degradation and antimicrobial application are often in high demand, however they confront many challenges in charge transfer and light capture ability. In this work, a sponge-like N,S-CQDs/Bi2MoO6@TiO2 film was constructed via hydrothermal technique aiming to solve above problems. As a result, the ternary film showed enhanced photocatalytic efficiency under visible and near-infrared (NIR) light, in which 85.8% and 44.6% of ciprofloxacin (CIP) were degraded after 240 min irradiation with visible and NIR light, respectively. Moreover, the composite film effectively realized photocatalytic sterilization of gram-positive B. subtilis and gram-negative E. coli under visible light irradiation. The bacterial colony decreased significantly from 7.56-log to 1-log cfu/mL after adding the ternary film within 1.5 h. The enhanced photocatalytic efficiency was closely related to both introduction of surface-functional N,S-CQDs and the construction of N,S-CQDs/Bi2MoO6@TiO2 Z-scheme system, in which the transfer efficiency of photoinduced carriers and the light absorption property were significantly improved. We consider that the N,S-CQDs/Bi2MoO6@TiO2 film is promising for the degradation of refractory pollutants and antimicrobial application under visible/NIR light irradiation. The relatively convenient recycling property and excellent photocatalytic performance of the N,S-CQDs/Bi2MoO6@TiO2 film are beneficial for industrial applications.
Collapse
Affiliation(s)
- Yanning Qu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China; The School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinyang Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China
| | - Hengli Zhang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
14
|
Guo J, Zhou Y, Yu M, Liang H, Niu J. Construction of Fe2+/Fe3+ cycle system at dual-defective carbon nitride interfaces for photogenerated electron utilization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Identification of Potential Immune Checkpoint Inhibitor Targets in Gliomas via Bioinformatic Analyses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1734847. [PMID: 35198632 PMCID: PMC8860561 DOI: 10.1155/2022/1734847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/23/2021] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
Background. Glioma is a common tumor originating from the glial cells of the brain. Immune checkpoint inhibitors can potentially be used to treat gliomas, although no drug is currently approved. Methods. The expression levels of the immune checkpoint genes in glioma and normal tissues, and their correlation with the IDH mutation status and complete 1p/19q codeletion, were analyzed using The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Survival analyses were conducted using the CGGA database. Protein-protein interaction and functional enrichment analyses were performed via the STRING database using GO, KEGG, and Reactome pathways. The correlation between the immune checkpoints and the immune cell infiltration was determined using the TISIDB and TIMER databases. Results. HAVCR2 was overexpressed in the gliomas compared to normal brain tissues, as well as in the high-grade glioma patients and significantly downregulated in IDH mutant or 1p/19q codeletion patients. Overexpression of HAVCR2 was associated with poor survival in tumor grades II, III, and IV and was the most correlated with immune infiltration of B and T cells. Conclusion. HAVCR2 can be a potential therapeutic target for cancer immunotherapy for glioma patients.
Collapse
|
16
|
Photocatalytic Filtration of Zinc Oxide-Based Membrane with Enhanced Visible Light Responsiveness for Ibuprofen Removal. Catalysts 2022. [DOI: 10.3390/catal12020209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The growing interest in mixed matrix membranes (MMMs) for developing photocatalytic membranes has provided a new direction in the search for efficient methods to concurrently separate and degrade contaminants. In this study, a visible light-responsive photocatalyst was blended into a polyvinylidene fluoride (PVDF) membrane casting solution to prepare PVDF-ZnO/Ag2CO3/Ag2O MMMs using the wet phase inversion method. The potential of ZnO/Ag2CO3/Ag2O as a photocatalytic component that is incorporated into the membrane was explored in detail under various loadings (0.5–2.91 wt%). The membranes were tested under ibuprofen (IBF) aqueous solution to analyze the membrane behavior in the synergistic combination of membrane filtration and photodegradation. The resulting PVDF-ZnO/Ag2CO3/Ag2O membrane with a rougher membrane surface area and excellent light harvesting capability showed higher photocatalytic filtration activity in removing IBF under visible light irradiations. The MMM fluxes demonstrated higher IBF fluxes than their initial fluxes at certain durations. This indicates that the membrane actively responds to light irradiation. The increase in the positive flux could be attributed to the photoinduced hydrophilicity generated by the ZnO/Ag2CO3/Ag2O photocatalyst, resulting in easier water layer formation and rapid transport through membranes. The highest IBF removal was demonstrated by the PVDF‑ZAA2 membrane (1.96 wt% loading), with 49.96% of IBF removal within 180 min upon visible light irradiation. The reason for this lower IBF removal is that the UF membrane pores exceed the size of IBF molecules, thereby preventing the size exclusion mechanism. Thus, charge repulsion, hydrophobic adsorption, and photocatalytic activity were considered along with the IBF removal of the photocatalytic membranes. However, the recyclability of the PVDF‑ZAA2 photocatalytic membrane showed a great improvement, with 99.01% of IBF removal recovery after three cycles. These results highlight the potential of such hybrid membranes in mitigating membrane fouling by providing a platform for photocatalysts to continuously degrade pollutants present in such wastewaters. Therefore, the hybridization of a photocatalyst and membrane provides insight that could be utilized to improve and retrofit current water effluent treatment methods.
Collapse
|
17
|
Perylene diimide supermolecule (PDI) as a novel and highly efficient cocatalyst for photocatalytic degradation of tetracycline in water: A case study of PDI decorated graphitic carbon nitride/bismuth tungstate composite. J Colloid Interface Sci 2022; 615:849-864. [PMID: 35182855 DOI: 10.1016/j.jcis.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
Employing perylene diimide supermolecule (PDI) as metal-free cocatalyst, a novel PDI/g-C3N4/Bi2WO6 (PCB) photocatalyst was constructed for the effective degradation of antibiotics. Both the photocatalytic activity and photostability of g-C3N4/Bi2WO6 (gCB) were further improved after loading PDI. Under simulated sunlight illumination, the apparent rate constant of tetracycline (TC) degradation by PCB reached 2.6 times that of gCB. The photocatalytic activity of PCB still kept over 80% after 4 cycle experiments, while gCB only remained around 21%. The superior activity of PCB was ascribed to the synergism between the extended visible light absorption range through the participation of PDI cocatalyst and facilitated gCB-to-PDI photoelectron transfer. TC would finally be transformed into non-toxic ring opening products and mineralized. This work demonstrated that PDI was an excellent metal-free cocatalyst and exhibited great potential to boost the activity of photocatalysts.
Collapse
|
18
|
Diao ZH, Jin JC, Zou MY, Liu H, Qin JQ, Zhou XH, Qian W, Guo PR, Kong LJ, Chu W. Simultaneous degradation of amoxicillin and norfloxacin by TiO2@nZVI composites coupling with persulfate: Synergistic effect, products and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Orimolade BO, Idris AO, Feleni U, Mamba B. Recent advances in degradation of pharmaceuticals using Bi 2WO 6 mediated photocatalysis - A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117891. [PMID: 34364116 DOI: 10.1016/j.envpol.2021.117891] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 05/27/2023]
Abstract
The pollution of water bodies by residual pharmaceuticals is a major problem globally. Bismuth tungstate mediated photocatalysis has been effective in the removal of these organics from water. Bismuth tungstate (Bi2WO6) has proven to be an excellent visible light active photocatalyst because of its non-toxicity, low band gap energy and ease of preparation. It has been widely applied for the removal of a wide array of organic pollutants, particularly dyes, from wastewater. However, recently, much attention has been channelled to its application for the degradation of pharmaceuticals. In this present review, the recent trends in the applications of Bi2WO6 based photocatalysts for the removal of pharmaceuticals in wastewater are comprehensively discussed. The fabrication of Bi2WO6 based photocatalysts with enhanced photocatalytic performances through morphology control, doping and formation of heterojunctions are highlighted. Much discussion centres on the mechanisms and possible degradation pathways of antibiotic pharmaceuticals in wastewater. Finally, areas needing more attention and investigation on the use of Bi2WO6 based photocatalysts for removal of pharmaceuticals from wastewater especially towards real-life applications are presented for future research directions.
Collapse
Affiliation(s)
- Benjamin O Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709, Johannesburg, South Africa.
| | - Azeez Olayiwola Idris
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709, Johannesburg, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709, Johannesburg, South Africa
| | - Bhekie Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709, Johannesburg, South Africa
| |
Collapse
|
20
|
Pan G, Sun Z. Cu-doped g-C 3N 4 catalyst with stable Cu 0 and Cu + for enhanced amoxicillin degradation by heterogeneous electro-Fenton process at neutral pH. CHEMOSPHERE 2021; 283:131257. [PMID: 34182643 DOI: 10.1016/j.chemosphere.2021.131257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The development of new heterogeneous Cu-based solid catalysts for hydroxyl radical (∙OH) generation plays a crucial role in degradation of pollutants at neutral pH circumstance. In this work, a Cu-doped graphitic carbon nitride (g-C3N4) complex was synthesized in one-step pyrolysis process using copper chloride dihydrate and dicyandiamide as precursors. The results reveal that after Cu doping, the bulk structure of g-C3N4 was destroyed with fragmentary morphology formation. Besides, Cu0 and Cu+ were successfully embedded in g-C3N4 sheet. Moreover, amoxicillin (AMX) removal by heterogeneous electro-Fenton process was performed to evaluate the catalytic activity of the Cu-doped g-C3N4. 99.1% AMX removal efficiency was obtained after 60 min electrolysis under neutral pH condition when the current density was 12 mA cm2 and the catalyst dosage was 0.3 g L-1. Both Cu0 and Cu+ were stably retained in the Cu-doped g-C3N4 catalyst and AMX removal efficiency reached 91.1%, even after 5 cycles, manifesting the remarkable stability of Cu-doped g-C3N4. Also, Cu-doped g-C3N4 possessed excellent catalytic activities for AMX removal in various waterbodies. According to the catalytic mechanism analysis, the ∙OH was proved to be the primary reactive species for AMX removal in heterogeneous electro-Fenton process. Based on the identification of sixteen different intermediate products, the possible degradation pathways were proposed. This work provides a simple method to synthesize a Cu-based solid catalyst containing stable Cu0 and Cu + for degradation of pollutants in wastewater.
Collapse
Affiliation(s)
- Guifang Pan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
21
|
Yuan S, Zhang M, Lan X, Shi J. DMAP molecule grafting on a carbon nitride heptazine ring for the better degradation of pollutants – the synergy of electron withdrawing and steric hindrance effects. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01780b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphitic carbon nitride (CN) is a promising candidate for use in photocatalytic pollutant degradation, but it only shows moderate activity because of its sluggish photocarrier transfer and insufficient light absorption.
Collapse
Affiliation(s)
- Shaoteng Yuan
- Qingdao Agricultural University, Department of Chemistry and Pharmacy, Chengyang District, Qingdao, China
| | - Minghui Zhang
- Qingdao Agricultural University, Department of Chemistry and Pharmacy, Chengyang District, Qingdao, China
| | - Xuefang Lan
- Qingdao Agricultural University, Department of Chemistry and Pharmacy, Chengyang District, Qingdao, China
| | - Jinsheng Shi
- Qingdao Agricultural University, Department of Chemistry and Pharmacy, Chengyang District, Qingdao, China
| |
Collapse
|