1
|
Peta S, Singh S. Green synthesis of zinc oxide nanoparticles using plant extract for catalysis applications. NANOSCALE 2024. [PMID: 39431544 DOI: 10.1039/d4nr03581j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
A plant extract was used as the reducing and capping agent for the green production of zinc oxide nanoparticles. Various techniques, including XRD, SEM, EDX, FT-IR, TGA/DTA, UV-Vis, and TEM, were used for characterization of the materials. These materials exhibited efficient catalysis for the alkylation of acetophenone with benzyl alcohol.
Collapse
Affiliation(s)
- Sreenivasulu Peta
- Faculty of Chemical Sciences, Institute of Natural Sciences, Shri Ramswaroop Memorial University, Barabanki, 225 003, U.P, India.
| | - Sadhana Singh
- Faculty of Chemical Sciences, Institute of Natural Sciences, Shri Ramswaroop Memorial University, Barabanki, 225 003, U.P, India.
| |
Collapse
|
2
|
Mongy Y, Shalaby T. Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells. Sci Rep 2024; 14:13470. [PMID: 38866790 PMCID: PMC11169510 DOI: 10.1038/s41598-024-63258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
The growing interest in using plant extracts for the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) stems from their facile, eco-friendly, and biologically safe approach instead of chemical routes. For the first time, ZnO NPs were successfully biosynthesized using Rhus coriaria fruit aqueous extract as a reducing and capping agent. Characterization revealed that the biosynthesized ZnO NPs possessed a maximum absorbance of approximately 359 nm and closely resembled the hexagonal ZnO wurtzite crystalline structure, with an average crystalline size of 16.69 nm. The transmission electron microscope (TEM) showed the presence of spherical and hexagonal morphologies, with an average grain size of 20.51 ± 3.90 nm. Moreover, the elemental composition of the synthesized ZnO NPs was assessed via energy-dispersive X-ray spectrometry (EDX), and the presence of phytocompounds on their surface was subsequently verified through FT-IR analysis. The ζ-potential of ZnO NPs was recorded at - 19.9 ± 0.1663 mV. Regarding anti-cancer properties, ZnO NPs were found to possess potent anti-tumor effects on MCF-7 and MDA-MB-231 breast cancer cells. Their efficacy was dose-dependent, with IC50 values ranging from 35.04-44.86 μg/mL for MCF-7 and 55.54-63.71 µg/mL for MDA-MB-231 cells. Mechanistic studies in MDA-MB-231 cells revealed apoptosis induction, validated by DAPI staining, confocal microscopy, and Annexin V/PI staining, showing apoptosis by 12.59% and 81.57% at ½ IC50 and IC50 values, respectively. Additionally, ZnO NPs were observed to provoke S-phase arrest and inhibit colony-forming and metastatic potential by modulating apoptosis and metastasis-related genes. This study unravels new insights into how ZnO NPs provoke cancer cell death and inhibit metastasis, revealing new prospects in cancer nanotechnology.
Collapse
Affiliation(s)
- Youssef Mongy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt.
| | - Thanaa Shalaby
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
- Nanotechnology Training Center, Medical Technology Center, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Reza A, Chen L, Mao X. Response surface methodology for process optimization in livestock wastewater treatment: A review. Heliyon 2024; 10:e30326. [PMID: 38726140 PMCID: PMC11078649 DOI: 10.1016/j.heliyon.2024.e30326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/25/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
With increasing demand for meat and dairy products, the volume of wastewater generated from the livestock industry has become a significant environmental concern. The treatment of livestock wastewater (LWW) is a challenging process that involves removing nutrients, organic matter, pathogens, and other pollutants from livestock manure and urine. In response to this challenge, researchers have developed and investigated different biological, physical, and chemical treatment technologies that perform better upon optimization. Optimization of LWW handling processes can help improve the efficacy and sustainability of treatment systems as well as minimize environmental impacts and associated costs. Response surface methodology (RSM) as an optimization approach can effectively optimize operational parameters that affect process performance. This review article summarizes the main steps of RSM, recent applications of RSM in LWW treatment, highlights the advantages and limitations of this technique, and provides recommendations for future research and practice, including its cost-effectiveness, accuracy, and ability to improve treatment efficiency.
Collapse
Affiliation(s)
- Arif Reza
- Department of Soil and Water Systems, Twin Falls Research and Extension Center, University of Idaho, 315 Falls Avenue, Twin Falls, ID, 83303-1827, USA
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794-5000, USA
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Lide Chen
- Department of Soil and Water Systems, Twin Falls Research and Extension Center, University of Idaho, 315 Falls Avenue, Twin Falls, ID, 83303-1827, USA
| | - Xinwei Mao
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794-5000, USA
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794-4424, USA
| |
Collapse
|
4
|
Gamboa DMP, Abatal M, Lima E, Franseschi FA, Ucán CA, Tariq R, Elías MAR, Vargas J. Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from Haematoxylum campechianum Waste: Gradient Boosting Machine Learning-Assisted Bayesian Optimization for Improved Adsorption Process. Int J Mol Sci 2024; 25:4771. [PMID: 38731990 PMCID: PMC11083778 DOI: 10.3390/ijms25094771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from Haematoxylum campechianum waste (ABHC). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar. The surface morphology of the adsorbent (before and after dye adsorption) was characterized by scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and, lastly, pHpzc was also determined. Batch studies were carried out in the following intervals of pH = 4-10, temperature = 300.15-330.15 K, the dose of adsorbent = 1-10 g/L, and isotherms evaluated the adsorption process to determine the maximum adsorption capacity (Qmax, mg/g). Kinetic studies were performed starting from two different initial concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of activated biochar was evaluated by adsorption-desorption cycles. The maximum adsorption capacity obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset, a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization within a Python programming environment. The optimization algorithm efficiently navigated the input space to maximize the removal percentage, resulting in a predicted efficiency of approximately 90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in similar removal processes, showcasing the potential of machine learning in process optimization and environmental remediation.
Collapse
Affiliation(s)
| | - Mohamed Abatal
- Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche, Mexico;
| | - Eder Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, Porto Alegre 91501-970, RS, Brazil;
| | - Francisco Anguebes Franseschi
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 No. 4 Av. Concordia, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.F.); (C.A.U.); (M.A.R.E.)
| | - Claudia Aguilar Ucán
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 No. 4 Av. Concordia, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.F.); (C.A.U.); (M.A.R.E.)
| | - Rasikh Tariq
- Tecnologico de Monterrey, Institute for the Future of Education, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico;
| | - Miguel Angel Ramírez Elías
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 No. 4 Av. Concordia, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.F.); (C.A.U.); (M.A.R.E.)
| | - Joel Vargas
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, Morelia 58190, Michoacán, Mexico;
| |
Collapse
|
5
|
Pakzad Toochaei S, Abyar H, Einollahipeer F. Comprehensive life cycle assessment of NH 2-functionalized magnetic graphene oxide for mercury removal: Carbon emissions and economic evaluation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123737. [PMID: 38462190 DOI: 10.1016/j.envpol.2024.123737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Heavy metals contamination critically affects human health and ecosystems, necessitating pioneering approaches to diminish their adverse impacts. Hence, this study synthesized aminated magnetic graphene oxide (mGO-NH2) for the removal of mercury (Hg) from aqueous solutions. Although functionalized GO is an emerging technology at the early stages of development, its synthesis and application require special attention to the eco-environmental assessment. Therefore, the life cycle assessment and life cycle cost of mGO-NH2 were investigated from the cradle-to-gate approach for the removal of 1 kg Hg. The adsorption process was optimized based on pH, Hg concentration, adsorbent dose, and contact time at 6.48, 40 mg/l, 150 mg/l, and 35 min, respectively, resulting in an adsorption capacity of 184.17 mg/g. Human carcinogenic toxicity with a 40.42% contribution was the main environmental impact, relating to electricity (35.76%) and ethylenediamine (31.07%) usage. The endpoint method also revealed the pivotal effect of the mGO-NH2 synthesis on human health (90.52%). The most energy demand was supplied by natural gas and crude oil accounting for 70.8% and 22.1%, respectively. A 99.02% CO2 emission originated from fossil fuels consumption based on the greenhouse gas protocol (GGP). The cost of mGO-NH2 was about $143.7/kg with a net present value of $21064.8 per kg Hg removal for a 20-year lifetime. Considering the significant role of material cost (>70%), the utilization of industrial-grade raw materials is recommended to achieve a low-cost adsorbent. This study demonstrated that besides the appropriate performance of mGO-NH2 for Hg removal, it is essential that further studies evaluate eco-friendly approaches to decrease the adverse impacts of this emerging product.
Collapse
Affiliation(s)
- Sahel Pakzad Toochaei
- Department of Natural Ecosystems, Hamoun International Wetland Research Institute, Research Institute of Zabol, Zabol, Sistan and Baluchestan, Iran.
| | - Hajar Abyar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Fatemeh Einollahipeer
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| |
Collapse
|
6
|
Aliannezhadi M, Mirsanaee SZ, Jamali M, Shariatmadar Tehrani F. The physical properties and photocatalytic activities of green synthesized ZnO nanostructures using different ginger extract concentrations. Sci Rep 2024; 14:2035. [PMID: 38263199 PMCID: PMC10807023 DOI: 10.1038/s41598-024-52455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The green synthesis method which is aligned with the sustainable development goals (SDGs) theory, is proposed to synthesize ZnO nanoparticles using ginger extract to treat the acidic wastewater and acidic factory effluent as a current challenge and the effects of the concentration of extracts on the synthesized ZnO nanostructures are investigated. The results declare that the single-phase hexagonal ZnO is formed using ginger extract concentration of less than 25 mL and the crystallite size of green synthesized ZnO NPs increased with increasing the concentration of ginger extract. Also, the significant effects of ginger extract concentration on the morphology of nanoparticles (nanocone, nanoflakes, and flower-like) and the particle size are demonstrated. The low concentration of ginger extract leads to the formation of the ZnO nanoflakes, while the flower-like structure is gradually completed by increasing the concentration of the ginger extract. Furthermore, significant changes in the specific surface area (SSA) of the samples are observed (in the range of 6.1-27.7 m2/g) by the variation of ginger extract concentration and the best SSA is related to using 10 mL ginger extract. Also, the strong effect of using ginger extract on the reflectance spectra of the green synthesized ZnO NPs, especially in the UV region is proved. The indirect (direct) band gap energies of the ZnO samples are obtained in the range of 3.09-3.20 eV (3.32-3.38 eV). Furthermore, the photocatalytic activities of the samples for the degradation of methylene blue indicate the impressive effect of ginger extract concentration on the degradation efficiency of ZnO nanoparticles and it reaches up to 44% and 83% for ZnO NPs prepared using 5 mL ginger extract in a pH of 4.3 and 5.6, respectively. This study provided new insights into the fabrication and practical application of high-performance ZnO photocatalysts synthesized using ginger extract in degrading organic pollutants in an acidic solution.
Collapse
Affiliation(s)
| | | | - Mohaddeseh Jamali
- Faculty of Physics, Semnan University, PO Box: 35195-363, Semnan, Iran
| | | |
Collapse
|
7
|
GadelHak Y, El-Azazy M, Shibl MF, Mahmoud RK. Cost estimation of synthesis and utilization of nano-adsorbents on the laboratory and industrial scales: A detailed review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162629. [PMID: 36889388 DOI: 10.1016/j.scitotenv.2023.162629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The recent regulations pertaining to the circular economy have unlocked new prospects for researchers. In contrast to the unsustainable models associated with the linear economy, integration of concepts of circular economy braces reducing, reusing, and recycling of waste materials into high-end products. In this regard, adsorption is a promising and cost-effective water treatment technology for handling conventional and emerging pollutants. Numerous studies are published annually to investigate the technical performance of nano-adsorbents and nanocomposites in terms of adsorption capacity and kinetics. Yet, economic performance evaluation is rarely discussed in the literature. Even if an adsorbent shows high removal efficiency towards a specific pollutant, its high preparation and/or utilization costs might hinder its real-life use. This tutorial review aims at illustrating cost estimation methods for the synthesis and utilization of conventional and nano-adsorbents. The current treatise discusses the synthesis of adsorbents on a laboratory scale where the raw material, transportation, chemical, energy, and any other costs are discussed. Moreover, equations for estimating the costs at the large-scale adsorption units for wastewater treatment are illustrated. This review focuses on introducing these topics to non-specialized readers in a detailed but simplified manner.
Collapse
Affiliation(s)
- Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar.
| | - Rehab K Mahmoud
- Chemistry Department. Faculty of Sciences, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
8
|
Singh N, Singh R, Shah K, Pramanik BK. Green synthesis of zinc oxide nanoparticles using lychee peel and its application in anti-bacterial properties and CR dye removal from wastewater. CHEMOSPHERE 2023; 327:138497. [PMID: 37001759 DOI: 10.1016/j.chemosphere.2023.138497] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
In nanoscience and nanobiotechnology, using plant extracts in synthesizing metal nanoparticles (NPs) has recently come to light as an exciting opportunity with several benefits over traditional physicochemical methods. In the present work, zinc oxide (ZnO) based nanoparticles (NPs) were synthesized by green chemistry route using lychee peel extract to capture hazardous congo red dye from wastewater and illustrate their antimicrobial behavior. The X-Ray Diffraction (XRD) spectra confirm the wurtzite crystal structure, and Fourier Transform Infrared (FTIR) spectra confirm the functional group in ZnO, which is suitable for dye adsorption. It was found that the NPs were spherical and had a size of <10 nm. The synthesized ZnO NPs could effectively remove >98% of CR dye from wastewater within 120 min of contact time at a wide pH range from 2 to 10. The primary mechanism involved in removing dye was the electrostatic interaction between ZnO adsorbent and CR dye. The antimicrobial performance of synthesized ZnO NPs was found to show 34% inhibition against Bacillus subtilis (ATCC 6538), 52% against Escherichia coli (ATCC 11103), 58% against Pseudomonas aeruginosa (ATCC 25668) and 32% against Staphylococcus aureus (ATCC 25923) using well diffusion assay. ZnO demonstrates a suitable anti-bacterial property over both gram-positive and gram-negative pathogenic bacteria. Overall, the green synthesized method for developing ZnO NPs shows promising and significant anti-bacterial performance and is a highly potential adsorbent for removing CR dye from wastewater.
Collapse
Affiliation(s)
- Nahar Singh
- BND Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, 3000, Australia
| | | |
Collapse
|
9
|
Das C, Ghosh NN, Pulhani V, Biswas G, Singhal P. Bio-functionalized magnetic nanoparticles for cost-effective adsorption of U(vi): experimental and theoretical investigation. RSC Adv 2023; 13:15015-15023. [PMID: 37200695 PMCID: PMC10187032 DOI: 10.1039/d3ra00799e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
U(vi) removal using cost-effective (production cost: $14.03 per kg), biocompatible, and superparamagnetic Cinnamomum tamala (CT) leaf extract-coated magnetite nanoparticles (CT@MNPs or CT@Fe3O4 nanoparticles) from water resources was studied. From pH-dependent experiments, the maximum adsorption efficiency was found to be at pH 8. Isotherm and kinetic studies were performed and found to follow Langmuir isotherm and pseudo-second order kinetics, respectively. The maximum adsorption capacity of CT@MNPs was calculated to be 45.5 mg of U(vi) per g of nanoparticles (NPs). Recyclability studies suggest that over 94% sorption was retained even after four consecutive cycles. The sorption mechanism was explained by the point of the zero-charge experiment and the XPS measurement. Additionally, calculations using density functional theory (DFT) were carried out to support the experimental findings.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar West Bengal India 736101
| | | | - Vandana Pulhani
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre Mumbai 400085 India 91-22-2550-5313 91-22-2559-2349
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar West Bengal India 736101
| | - Pallavi Singhal
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre Mumbai 400085 India 91-22-2550-5313 91-22-2559-2349
| |
Collapse
|
10
|
Assimeddine M, Farid Z, Abdennouri M, Barka N, Lemdek EM, Sadiq M. Improvement of photocatalytic degradation of methyl orange by impregnation of natural clay with nickel: optimization using the Box-Behnken design (BBD). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62494-62507. [PMID: 36943563 DOI: 10.1007/s11356-023-26417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 05/10/2023]
Abstract
In this research work, the photocatalytic degradation of methyl orange dye was studied on nickel oxide supported on a natural Moroccan clay (Ni/NC). These catalysts have been prepared by dry impregnation of a nickel nitrate solution with different weight percentages (5, 10, 20% NiO). Experimental responses were obtained by a Box-Behnken (BBD) experimental design by varying the catalyst mass, solution pH, and initial dye concentration at three levels (low, medium, and high). The prepared catalysts were characterized using powder X-ray diffraction (XRD) to assess crystallinity and structure, Fourier transform infrared spectroscopy (FTIR) to detect different functional groups, scanning electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis to study the surface morphology, and the optical characteristics of the catalysts were studied using absorption and diffuse reflectance measurements in the UV-visible range. The photocatalytic activity of the catalysts was evaluated in aqueous solutions under UV irradiation. ANOVA (analysis of variance) test is employed to recognize the significant factors and their interactions and then give the model equation for the percent dye degradation. The optimal values of the studied factors were determined by numerical optimization, and the results showed that about 100% degradation of the methyl orange dye could be achieved under the following optimal conditions, which are pH = 4.38, catalyst concentration of 0.99 g/L, and initial dye concentration of 30.42 mg/L.
Collapse
Affiliation(s)
- Meryem Assimeddine
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - Zohra Farid
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - Mohamed Abdennouri
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - Noureddine Barka
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - El Mokhtar Lemdek
- Laboratory of Materials, Membranes, and Nanotechnology, Faculty of Sciences, Moulay Ismail University, Zitoune, PB 11201, 50050, Meknes, Morocco
| | - M'hamed Sadiq
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco.
| |
Collapse
|
11
|
Amalina F, Razak ASA, Krishnan S, Zularisam A, Nasrullah M. The effects of chemical modification on adsorbent performance on water and wastewater treatment - A review. BIORESOURCE TECHNOLOGY REPORTS 2022; 20:101259. [DOI: 10.1016/j.biteb.2022.101259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Akintelu SA, Olabemiwo OM, Ibrahim AO, Oyebamiji JO, Oyebamiji AK, Olugbeko SC. Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Saad MS, Kai OB, Wirzal MDH. Process modelling and techno economic analysis for optimal design of integrated electrocoagulation-membrane system for dye removal in wastewater. CHEMOSPHERE 2022; 306:135623. [PMID: 35817180 DOI: 10.1016/j.chemosphere.2022.135623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Textile industry, one of the largest exporting industries in Malaysia, generates azo dyes wastewater which cannot be easily decomposed biologically due to its high stability and xenobiotic nature. Conventional electrocoagulation (EC) system requires high energy consumption, resulting in higher operating cost while membrane system suffers from fouling. To eliminate these drawbacks, an integrated electrocoagulation - membrane (ECM) system has been proposed as one of the emerging methods for treating dye wastewater. However, feasibility analysis of the proposed system is yet to be conducted. This study proposes a statistical technique to evaluate the techno-economic feasibility of the system via John's Macintosh Project (JMP) software. From JMP, an equation represents the whole model had been obtained for each of the system, EC standalone and ECM system. The models have been validated experimentally it is proven all the models can reach dye removal efficiency of 96%. Overall, the total cost for ECM system (1 V and 1.0 g of NaCl) was 40.44% cheaper than the conventional dye treatment method with total cost of 1.079 million MYR. EC standalone system at 1 V and 1.0 g however were found to be more economically feasible with 0.325 million MYR or 82.07% cheaper compared to conventional photocatalytic method. EC standalone system was also more economical than ECM system due to lower capital cost expended for installation of membrane tank and additional membrane purchase.
Collapse
Affiliation(s)
- Muhammad Syaamil Saad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Ong Ben Kai
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Mohd Dzul Hakim Wirzal
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
14
|
Brindha R, Rajeswari S, Jennet Debora J, Rajaguru P. Evaluation of global research trends in photocatalytic degradation of dye effluents using scientometrics analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115600. [PMID: 35772271 DOI: 10.1016/j.jenvman.2022.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/26/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Photocatalysis technology is observed to be an effective approach for its outstanding performance to eliminate wide range of organic pollutants including dyes in textile effluent. Despite growing number of studies, there is no scientometric perspective addressing the research topic "photocatalytic degradation of dye effluents". In this regard, a total of 954 documents were extracted from the Web of Science (WoS) database using keywords search to cover all the published documents during the period 1996-2020. Publications in this area started to increase exponentially from year 2007. The most dominant subject categories were Engineering, Chemistry and Environmental Science & Ecology. Applied Catalysis B-Environmental and Desalination & Water Treatment were identified as the most-impactful and productive journals respectively. Authors based in India accounted for 29.6% of total publications followed by China (14.2%); but in terms of citations Spain and Italy were more influential. Based on keyword analysis, azo dyes, TiO2, nanoparticles, adsorption, methylene blue, visible light, ZnO and kinetics are the most studied, and visible light mediated photocatalysis, hybrid treatment systems, nano based photocatalysis and more recently, metal based photocatalysis, have received most attention. Studies on cost and energy analysis, recovery of value-added products, development of more efficient photocatalytic materials and new photocatalyst regeneration approaches should be considered for future research. This study therefore, provides a comprehensive understanding about the trends and patterns of the specified research field worldwide.
Collapse
Affiliation(s)
- R Brindha
- Department of Biotechnology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - S Rajeswari
- Department of Library, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - J Jennet Debora
- Department of Biotechnology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - P Rajaguru
- Department of Life Sciences, Central University of Tamilnadu, Thiruvarur, 610005, Tamilnadu, India.
| |
Collapse
|
15
|
Biomimetically synthesized Physalis minima fruit extract-based zinc oxide nanoparticles as eco-friendly biomaterials for biological applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
A Review of the Techno-Economic Feasibility of Nanoparticle Application for Wastewater Treatment. WATER 2022. [DOI: 10.3390/w14101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increase in heavy metal contamination has led to an increase in studies investigating alternative sustainable ways to treat heavy metals. Nanotechnology has been shown to be an environmentally friendly technology for treating heavy metals and other contaminants from contaminated water. However, this technology is not widely used in wastewater treatment plants (WWTPs) due to high operational costs. The increasing interest in reducing costs by applying nanotechnology in wastewater treatment has resulted in an increase in studies investigating sustainable ways of producing nanoparticles. Certain researchers have suggested that sustainable and cheap raw materials must be used for the production of cheaper nanoparticles. This has led to an increase in studies investigating the production of nanoparticles from plant materials. Additionally, production of nanoparticles through biological methods has also been recognized as a promising, cost-effective method of producing nanoparticles. Some studies have shown that the recycling of nanoparticles can potentially reduce the costs of using freshly produced nanoparticles. This review evaluates the economic impact of these new developments on nanotechnology in wastewater treatment. An in-depth market assessment of nanoparticle application and the economic feasibility of nanoparticle applications in WWTPs is presented. Moreover, the challenges and opportunities of using nanoparticles for heavy metal removal are also discussed.
Collapse
|
17
|
Mabrouki J, Abbassi MA, Khiari B, Jellali S, Zorpas AA, Jeguirim M. The dairy biorefinery: Integrating treatment process for Tunisian cheese whey valorization. CHEMOSPHERE 2022; 293:133567. [PMID: 35026199 DOI: 10.1016/j.chemosphere.2022.133567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
In order to set up a cost-efficient biorefinery in a Tunisian dairy industry, the production unit effluents are recovered. The main objective is to develop an optimum method for the production of bioethanol from whey. An energy analysis as well as environmental and economic analyses are performed for a bioethanol production plant. Four production scenarios are examined in order to determine the most provident as well as the less polluting ones. The process and cost models were developed using SuperPro Designer software which a simulation program that is able to estimate both process and economic parameters. This software uses energy and mass balances. The model can be used to assess the efficiency, the resources consumption, the profitability and the environmental impact of each scenario. The results demonstrate that the third scenario, in which a reverse osmosis procedure is added to concentrate the whey, a continuous stoichiometric reaction procedure is integrated to model the biotransformation in the fermenter and where streams are added in order to recycle the biomass, produces the highest amount of bioethanol with 1.65 MT/year but the second one (where no streams were added) is the most profitable one with revenues as high as 570 000 $/year. The corresponding cost of ethanol production is 0.271 US $ ethanol per liter. The net present value (NPV) and the return on investment (ROI) of each scenario are positive. Such result indicates that all these investments could be undertaken in order to find an eco-friendly issue for the dairy industry effluents. Cheese whey could serve as an alternative raw material for producing ethanol.
Collapse
Affiliation(s)
- Jemaa Mabrouki
- Unité de Recherche Matériaux, Energie et Energies Renouvelables (MEER), Faculté des Sciences de Gafsa, B.P.19, Zarroug, Gafsa, 2112, Tunisia.
| | - Mohammed Ammar Abbassi
- Unité de Recherche Matériaux, Energie et Energies Renouvelables (MEER), Faculté des Sciences de Gafsa, B.P.19, Zarroug, Gafsa, 2112, Tunisia.
| | - Besma Khiari
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Antonis A Zorpas
- Open University of Cyprus, Faculty of Pure and Applied Sciences, Laboratory of Chemical Engineering and Engineering Sustainability, P.O.Box 12794, Giannou Kranidioti, 33, Latsia, 2220, Nicosia, Cyprus.
| | - Mejdi Jeguirim
- The Institute of Materials Science of Mulhouse (IS2M), University of Haute Alsace, University of Strasbourg, CNRS, UMR 7361, F-68100, Mulhouse, France.
| |
Collapse
|
18
|
Han G, Du Y, Huang Y, Wang W, Su S, Liu B. Study on the removal of hazardous Congo red from aqueous solutions by chelation flocculation and precipitation flotation process. CHEMOSPHERE 2022; 289:133109. [PMID: 34856235 DOI: 10.1016/j.chemosphere.2021.133109] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Dyes are intensively used in textile and dyeing industries, and substantial volumes of organic wastewater with residual dye require treatment before discharges to public waterways. Flotation separation is an efficient and widely used method for the treatment of massive organic dye wastewaters. The key scientific problems for dye flotation separation lie in the mineralization transformation of dissolved dye to tangible flocs. In this work, a high-efficiency removal of hazardous azo dye Congo red (CR) from simulated wastewaters via metal ions chelation flocculation followed by flotation separation was proposed. It's demonstrated that CR can be chelated by the trivalent metal ions, including Al(III), Fe(III), and its mixture to form hydrophobic flocs, and then the flocs were efficiently removed via flotation in a microbubble column. The effects of chelation flocculation and flotation separation conditions on the removal efficiencies of CR, COD, and chromaticity from CR simulated wastewaters were optimized. Chelation effect of CR by trivalent metal ions was in this order: Al(III)+Fe(III)>Fe(III)>Al(III). The chelation mechanism suggested that CR molecules gradually changed from hydrazones to electronegative azo with the increase of pH to 6-7, and electrostatic attraction between the Al3(OH)45+ or Fe(OH)2+ with the CR was favorable for the chelation reaction, in which the metal ions chelated with N atoms on naphthalene ring and amino groups of CR. Over 99% CR was removed under the optimal chelation and flotation conditions: chelation by composite Al(III)/Fe(III) with a concentration of 25 mg/L at pH of 7 for 25min; followed by flotation with SDS concentration of 20 mg/L and air flow rate of 50 mL/min for 20min. Under this condition, the COD and chromaticity removal efficiency were over 96% and 98%, respectively, and the turbidity was lower than 0.1 NTU, meeting the water discharge requirement. Eventually, resourceful utilization of flotation sludge via calcination was conducted to prepare Al-Fe spinel refractory material.
Collapse
Affiliation(s)
- Guihong Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
| | - Yifan Du
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
| | - Yanfang Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, PR China.
| | - Wenjuan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
| | - Shengpeng Su
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
| | - Bingbing Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, PR China.
| |
Collapse
|
19
|
Wang K, Liu H, Wang Y, Zhao D, Zhai J. Study on the Flocculation Performance of a Cationic Starch‐Based Flocculant on Humic Substances in Textile Dyeing Wastewater. STARCH-STARKE 2022. [DOI: 10.1002/star.202100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kexu Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Hongfei Liu
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Yating Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Dishun Zhao
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Jianhua Zhai
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| |
Collapse
|
20
|
Shaida MA, Dutta RK, Sen AK, Ram SS, Sudarshan M, Naushad M, Boczkaj G, Nawab MS. Chemical analysis of low carbon content coals and their applications as dye adsorbent. CHEMOSPHERE 2022; 287:132286. [PMID: 34600349 DOI: 10.1016/j.chemosphere.2021.132286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Coal is primarily a fuel material but lately it has been utilized as an adsorbent for removing toxic metal ions. However, its usage for removing organic pollutants is not well studied. We report here a systematic study on the use of coal samples of varying carbon contents as adsorbents for removing Basic Blue 41 as a model cationic dye. The coal samples were collected from coal mines and were thoroughly characterized. The concentrations of carbon, hydrogen, oxygen, nitrogen and sulphur contents were measured by CHNS analyzer. The concentrations of aluminum, silicon, sulphur, titanium and iron were determined by EDXRF, which corresponded to silicon dioxide (quartz) and aluminium silicate (kaolinite) as the major mineral inclusions, corroborated by XRD results and micrographs showing elemental maps determined from SEM-EDAX. The coal samples with low carbon content revealed higher adsorption capacity (qe ∼ 8.0-9.3 mg/g) of Basic Blue dye at optimized adsorbent dose (2 mg/mL), pH 9 and contact time (120 min). The adsorption kinetic studies satisfied pseudo second order model and the intra-particle diffusion of the dye was evident. The dye adsorption followed Langmuir adsorption isotherm, and the qmax values ranged between 17 and 30 mg/g for low carbon content coal. The FT-IR, Brunauer-Emmett-Teller (BET) surface area and zeta potential results of the coal samples could explain the adsorption phenomenon of cationic dye. The kinetic and thermodynamic studies revealed that the adsorption of Basic Blue 41 dye was based on chemisorptions mechanism.
Collapse
Affiliation(s)
- Mohd Azfar Shaida
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | - R K Dutta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - A K Sen
- Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - S S Ram
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata, 700098, India
| | - M Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata, 700098, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Md Sadique Nawab
- Environmental Engineering, Department of Civil Engineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
21
|
Cuong HN, Pansambal S, Ghotekar S, Oza R, Thanh Hai NT, Viet NM, Nguyen VH. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. ENVIRONMENTAL RESEARCH 2022; 203:111858. [PMID: 34389352 DOI: 10.1016/j.envres.2021.111858] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 05/22/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are one of the most widely used nanomaterials nowadays. CuO NPs have numerous applications in biological processes, medicine, energy devices, environmental remediation, and industrial fields from nanotechnology. With the increasing concern about the energy crisis and the challenges of chemical and physical approaches for preparing metal NPs, attempts to develop modern alternative chemistry have gotten much attention. Biological approaches that do not produce toxic waste and therefore do not require purification processes have been the subject of numerous studies. Plants may be extremely useful in the study of biogenic metal NP synthesis. This review aims to shed more light on the interactions between plant extracts and CuO NP synthesis. The use of living plants for CuO NPs biosynthesis is a cost-effective and environmentally friendly process. To date, the findings have revealed many aspects of plant physiology and their relationships to the synthesis of NPs. The current state of the art and potential challenges in the green synthesis of CuO NPs are described in this paper. This study found a recent increase in the green synthesis of CuO NPs using various plant extracts. As a result, a thorough explanation of green synthesis and stabilizing agents for CuO NPs made from these green sources is given. Additionally, the multifunctional applications of CuO NPs synthesized with various plant extracts in environmental remediation, sensing, catalytic reduction, photocatalysis, diverse biological activities, energy storage, and several organic transformations such as reduction, coupling, and multicomponent reactions were carefully reviewed. We expect that this review could serve as a useful guide for readers with a general interest in the plant extract mediated biosynthesis of CuO NPs and their potential applications.
Collapse
Affiliation(s)
- Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Shreyas Pansambal
- Department of Chemistry, Shri Saibaba College Shirdi, 423 109, Savitribai Phule Pune University, Maharashtra, India.
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa, 396 230, Dadra and Nagar Haveli (UT), India; Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India.
| | - Rajeshwari Oza
- Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India
| | - Nguyen Thi Thanh Hai
- Institute of Environmental Technology (IET), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Minh Viet
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| |
Collapse
|
22
|
Al-Buriahi AK, Al-Gheethi AA, Senthil Kumar P, Radin Mohamed RMS, Yusof H, Alshalif AF, Khalifa NA. Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. CHEMOSPHERE 2022; 287:132162. [PMID: 34826899 DOI: 10.1016/j.chemosphere.2021.132162] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Rhodamine B (RhB) dye used in the textile industries is associated with carcinogenic and neurotoxic effects with a high potential to cause a variety of human diseases. Semiconductor photocatalysts synthesised through agriculture waste extracts exhibited high efficiency for RhB removal. The current review aimed to explore the efficiency and mechanism of RhB degradation using different photocatalysts that have been used in recent years, as well as the effect of various factors on the removal process. Zinc oxide nanoparticles (ZnO NPs) synthesised from plant extract is the most effective for the RhB degradation with the efficiency reaching 100% after 210 min. The photocatalysis process depends on the pH because pH changes the balance of water dissociation, which impacts the formation of hydroxyl radicals and the surface load of the catalyst. Analysis using Jupyter Notebook revealed a strong correlation between the concentration of ZnO NPs and the photocatalysis efficiency (R = 0.72). These findings reveal that man-sized photocatalysts have a high potential for removing RhB from the wastewater.
Collapse
Affiliation(s)
- Abdullah Khaled Al-Buriahi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Adel Ali Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Hanita Yusof
- Department of Architecture, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Abdullah Faisal Alshalif
- Jamilus Research Centre for Sustainable Construction (JRC- SC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia
| | - Nasradeen A Khalifa
- Smart Driving Research Centre, Department of Civil Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
| |
Collapse
|