1
|
Guan Y, Deng Q, Wu D, Wang S, Li Z, Yan S, Zou Z. Distinct Promotion of PEC Water Oxidation of Ta 2O 5/α-Fe 2O 3/Co-Ni PBA via Coupling Ni 3d with O 2p. Inorg Chem 2025; 64:2080-2095. [PMID: 39846419 DOI: 10.1021/acs.inorgchem.4c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The development of robust and effective photoanodes is crucial for photoelectrochemical hydrogen production via total water splitting. Herein, the Ta2O5/α-Fe2O3/Co-Ni PBA (TFPB-1) photoanode was constructed by the compositing n-type Ta2O5 and n-type α-Fe2O3 followed by the deposition of p-type Co-Ni PBA. The IPCE of TFPB-1 was increased to 35.4% compared to 13.9% for Ta2O5 owing to the significantly improved light absorption efficiency, carrier separation efficiency and injection efficiency. The TFPB-1 achieved a current density of 2.78 mA cm-2 at 1.23 V (vs RHE), which was around 18.5 times that of Ta2O5. The OER overpotential over TFPB-1 was reduced to 0.59 V compared to 1.13 V for Ta2O5, resulting in a substantial reduction in the free energy of PEC water oxidation over TFPB-1. As a result, TFPB-1 exhibited remarkably enhanced photoelectrocatalytic activity for oxygen evolution through water oxidation.
Collapse
Affiliation(s)
- Yuan Guan
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Qiankun Deng
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Dayu Wu
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shaomang Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
2
|
Jin L, Huang Y, Ye L, Huang D, Liu X. Challenges and opportunities in the selective degradation of organophosphorus herbicide glyphosate. iScience 2024; 27:110870. [PMID: 39381744 PMCID: PMC11459065 DOI: 10.1016/j.isci.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The wide and continuous usage of glyphosate in the environment poses a serious threat to biological systems. Besides the accumulation of glyphosate in vivo, a growing body of research has revealed that aminomethylphosphonic acid (AMPA), the main degradation intermediate of glyphosate, has significant environmental and biological influences by inducing chromosome aberration of fish and canceration of human erythrocyte. Therefore, the development of new strategies avoiding the generation of the toxic AMPA intermediate during the full degradation of glyphosate is becoming of high importance. Herein, we provide a mini-review that includes the most recent advances in the selective degradation of glyphosate avoiding the generation of AMPA in the last several years from 2018. The developments of the selective degradation of glyphosate, highlighting its synthesis and selective degradation mechanism, are summarized here. This review intends to attract more attention from researchers toward this area and to emphasize the recent developments of selective degradation of glyphosate in highlighting future challenges.
Collapse
Affiliation(s)
- Lei Jin
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Liqun Ye
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
3
|
Zabara MA, Ölmez B, Buldu‐Akturk M, Yarar Kaplan B, Kırlıoğlu AC, Alkan Gürsel S, Ozkan M, Ozkan CS, Yürüm A. Photoelectrocatalytic Hydrogen Generation: Current Advances in Materials and Operando Characterization. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400011. [PMID: 39130676 PMCID: PMC11316250 DOI: 10.1002/gch2.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Photoelectrochemical (PEC) hydrogen generation is a promising technology for green hydrogen production yet faces difficulties in achieving stability and efficiency. The scientific community is pushing toward the development of new electrode materials and a better understanding of the underlying reactions and degradation mechanisms. Advances in photocatalytic materials are being pursued through the development of heterojunctions, tailored crystal nanostructures, doping, and modification of solid-solid and solid-electrolyte interfaces. Operando and in situ techniques are utilized to deconvolute the charge transfer mechanisms and degradation pathways. In this review, both materials development and Operando characterization are covered for advancing PEC technologies. The recent advances made in the PEC materials are first reviewed including the applied improvement strategies for transition metal oxides, nitrites, chalcogenides, Si, and group III-V semiconductor materials. The efficiency, stability, scalability, and electrical conductivity of the aforementioned materials along with the improvement strategies are compared. Next, the Operando characterization methods and cite selected studies applied for PEC electrodes are described. Operando studies are very successful in elucidating the reaction mechanisms, degradation pathways, and charge transfer phenomena in PEC electrodes. Finally, the standing challenges and the potential opportunities are discussed by providing recommendations for designing more efficient and electrochemically stable PEC electrodes.
Collapse
Affiliation(s)
| | - Burak Ölmez
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| | - Merve Buldu‐Akturk
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| | - Begüm Yarar Kaplan
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Ahmet Can Kırlıoğlu
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| | - Selmiye Alkan Gürsel
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| | - Mihrimah Ozkan
- Department of Electrical and Computer EngineeringUniversity of CaliforniaRiversideCA02521USA
| | - Cengiz Sinan Ozkan
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCA02521USA
| | - Alp Yürüm
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| |
Collapse
|
4
|
Zhang J, Xiong Z, Wang Z, Sun J. Study on the Preparation and PEC-Type Photodetection Performance of β-Bi 2O 3 Thin Films. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3779. [PMID: 39124443 PMCID: PMC11313558 DOI: 10.3390/ma17153779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Bismuth-based compounds have been regarded as a kind of promising material due to their narrow bandgap, high carrier mobility, low toxicity, and strong oxidation ability, showing potential applications in the field of photoelectrochemical (PEC) activities. They can be applied in sustainable energy production, seawater desalination and treatment, optical detection and communication, and other fields. As a member of the broader family of bismuth-based materials, β-Bi2O3 exhibits significant advantages for applications in engineering, including high photoelectric response, stability in harsh environments, and excellent corrosion resistance. This paper presents the synthesis of β-Bi2O3 thin films utilizing the mist chemical vapor deposition (CVD) method at the optimal temperature of 400 °C. Based on the β-Bi2O3 thin film synthesized at optimal temperature, a PEC-type photodetector was constructed with the highest responsivity R of 2.84 mA/W and detectivity D of 6.01 × 1010 Jones, respectively. The photodetection performance was investigated from various points like illumination light wavelength, power density, and long-term stability. This study would broaden the horizontal and practical applications of β-Bi2O3.
Collapse
Affiliation(s)
- Jiaji Zhang
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572025, China; (J.Z.); (Z.X.)
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
- Hainan Yourui Cohesion Technology Co., Ltd., Sanya 572025, China
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, Birmingham B152TT, UK
| | - Zhihua Xiong
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572025, China; (J.Z.); (Z.X.)
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
- Hainan Yourui Cohesion Technology Co., Ltd., Sanya 572025, China
| | - Zi Wang
- School of Art and Design, Wuhan University of Technology, Wuhan 430070, China;
| | - Jinlong Sun
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| |
Collapse
|
5
|
Ateia M, Butzlaff AH. Photoelectrode materials for photo-assisted electrochemical water treatment. CHEM CATALYSIS 2024; 4:101032. [PMID: 39391596 PMCID: PMC11463066 DOI: 10.1016/j.checat.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mohamed Ateia Ibrahim (environmental engineer and group leader at the US Environmental Protection Agency and adjunct assistant professor at Rice University) and Ashley Hesterberg Butzlaff (environmental engineer at the US Environmental Protection Agency) discuss material-based guidelines for optimizing photoelectrode design with a focus on utilizing advanced nanostructure fabrication techniques to enhance charge separation and transport, as well as identifying and integrating the most effective co-catalysts to improve efficiency and stability. These insights are critical for the development of practical and efficient photo-assisted electrochemical systems, essential for future water-treatment technologies.
Collapse
Affiliation(s)
- Mohamed Ateia
- Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, Cincinnati, OH, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Ashley Hesterberg Butzlaff
- Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, Cincinnati, OH, USA
| |
Collapse
|
6
|
Li Q, Fang X, Jin L, Sun X, Huang H, Ma R, Zhao H, Ren H. Scientometric analysis of electrocatalysis in wastewater treatment: today and tomorrow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19025-19046. [PMID: 38374500 DOI: 10.1007/s11356-024-32472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Electrocatalytic methods are valuable tools for addressing water pollution and scarcity, offering effective pollutant removal and resource recovery. To investigate the current status and future trends of electrocatalysis in wastewater treatment, a detailed analysis of 9417 papers and 4061 patents was conducted using scientometric methods. China emerged as the leading contributor to publications, and collaborations between China and the USA have emerged as the most frequent partnerships. Primary article co-citation clusters focused on oxygen evolution reaction and electrochemical oxidation, transitioning towards advanced oxidation processes ("persulfate activation"), and electrocatalytic reduction processes ("nitrate reduction"). Bifunctional catalysts, theoretical calculations, electrocatalytic combination technologies, and emerging contaminants were identified as current research hotspots. Patent analysis revealed seven types of electrochemical technologies, which were compared using SWOT analysis, highlighting electrochemical oxidation as prominent. The technological evolution presented the pathway of electro-Fenton to combined electrocatalytic technologies with biochemical processes, and finally to coupling with electrocoagulation. Standardized evaluation systems, waste resource utilization, and energy conservation were important directions of innovation in electrocatalytic technologies. Overall, this study provided a reference for researchers to understand the framework of electrocatalysis in wastewater treatment and also shed light on potential avenues for further innovation in the field.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiangzhou Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Rui Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Han Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Priyadarshini N, Mansingh S, Das KK, Garg R, Sumit, Parida K, Parida K. Macroscopic Spontaneous Piezopolarization and Oxygen-Vacancy Coupled Robust NaNbO 3/FeOOH Heterojunction for Pharmaceutical Drug Degradation and O 2 Evolution: Combined Experimental and Theoretical Study. Inorg Chem 2024; 63:256-271. [PMID: 38112438 DOI: 10.1021/acs.inorgchem.3c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prompt recombination of photoproduced charges in bulk and surface of a photocatalyst significantly impedes catalytic efficiency. To address these challenges, FeOOH nanorods (NRs) anchored NaNbO3 (NNO) piezoelectric microcubes (MCs) have been fabricated for ciprofloxacin (CIP) degradation and oxygen evolution through water splitting by coupling macroscopic spontaneous piezoelectric polarization and a built-in electric field. The local electric field induced by surface oxygen vacancies (Ovs) and orientation of FeOOH NRs over NNO MCs afford the polarization electric field a significant boost, driving the quick separation/migration of charge carriers from bulk to the surface. The polarized NNO/FeOOH composite with ample Ovs demonstrates an outstanding piezophotocatalytic CIP degradation of 93% in 1 h, higher than pristine materials (NNO and FeOOH), and a high O2 evolution rate of 1155 μmol h-1. The effect of piezoelectric polarization on the catalytic activity is supplemented by theoretical simulations. This work offers an avenue for selective pollutant remediation and water splitting through the rational design of piezoelectric polarization-mediated heterostructure systems with surface Ovs.
Collapse
Affiliation(s)
- Newmoon Priyadarshini
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Sriram Mansingh
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Kundan Kumar Das
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Romy Garg
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Sumit
- Accelerator Physics and Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kaushik Parida
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh 247001, India
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| |
Collapse
|
8
|
Eddy NO, Garg R, Garg R, Ukpe RA, Abugu H. Adsorption and photodegradation of organic contaminants by silver nanoparticles: isotherms, kinetics, and computational analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:65. [PMID: 38112987 DOI: 10.1007/s10661-023-12194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
In view of the widespread and distribution of several classes and types of organic contaminants, increased efforts are needed to reduce their spread and subsequent environmental contamination. Although several remediation approaches are available, adsorption and photodegradation technologies are presented in this review as one of the best options because of their environmental friendliness, cost-effectiveness, accessibility, less selectivity, and wider scope of applications among others. The bandgap, particle size, surface area, electrical properties, thermal stability, reusability, chemical stability, and other properties of silver nanoparticles (AgNPS) are highlighted to account for their suitability in adsorption and photocatalytic applications, concerning organic contaminants. Literatures have been reviewed on the application of various AgNPS as adsorbent and photocatalyst in the remediation of several classes of organic contaminants. Theories of adsorption have also been outlined while photocatalysis is seen to have adsorption as the initial mechanism. Challenges facing the application of silver nanoparticles have also been highlighted and possible solutions have been presented. However, current information is dominated by applications on dyes and the view of the authors supports the need to strengthen the usefulness of AgNPS in adsorption and photodegradation of more classes of organic contaminants, especially emerging contaminants. We also encourage the simultaneous applications of adsorption and photodegradation to completely convert toxic wastes to harmless forms.
Collapse
Affiliation(s)
- Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Rajni Garg
- Department of Applied Science and Humanities, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | | | - Hillary Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
9
|
Ratchnashree SR, Karmegam N, Selvam M, Manikandan S, Deena SR, Subbaiya R, Vickram AS, Kim W, Govarthanan M. Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166563. [PMID: 37647970 DOI: 10.1016/j.scitotenv.2023.166563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The growing concentrations of micropollutants in aquatic ecosystems are a global water quality issue. Understanding micropollutants varied chemical composition and potency is essential to solving this complex issue. Micropollutants management requires identifying contaminants to reduce, optimal reduction targets, and the best wastewater recycling locations. Management requires appropriate technological measures. Pharmaceuticals, antibiotics, hormones, and other micropollutants can enter the aquatic environment from point and diffuse sources, with wastewater treatment plants (WWTPs) distributing them in urban areas. Micropollutants like pharmaceuticals and hormones may not be removed by conventional WWTPs. Micropollutants affect the EU, especially in densely populated areas where surface water is consumed. This review examines several technological options that can be integrated into existing treatment methods to address this issue. In this work, oxidation, activated carbon, and their combinations as potential solutions, considering their efficacy and cost were evaluated. This study illuminates micropollutants origin and physico-chemical properties, which affect distribution, persistence, and environmental impacts. Understanding these factors helps us develop targeted micropollutant mitigation strategies to protect water quality. This review can inform policy and decision-making to reduce micropollutant impacts on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- S R Ratchnashree
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India.
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
10
|
Du C, Chen X, Wu H, Pan Z, Chen C, Zhong G, Cai C. A novel cationic covalent organic framework as adsorbent for simultaneous removal of methyl orange and hexavalent chromium. RSC Adv 2023; 13:24064-24070. [PMID: 37577086 PMCID: PMC10415750 DOI: 10.1039/d3ra03726f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023] Open
Abstract
The simultaneous removal of toxic, carcinogenic organic dyes and metal ions from water by one material offers significant advantages when fast, facile, and robust water purification is required. Ionic covalent organic frameworks (ICOFs) have the combined properties of COFs and ion exchange resins and are expected to achieve simultaneous capture of heavy metal ions and organic dyes from water. Herein, a novel guanidinium-based ICOF was synthesized using a solvothermal method. Benefitting from the cationic character, porosity and nanoscale pore size of ICOFs, the adsorbent exhibited high simultaneous adsorption capacities of 290 mg g-1 and 158 mg g-1 for methyl orange (MO) and Cr(vi), respectively, and retained more than 90% adsorption capacity after six adsorption-desorption cycles. In addition, based on dual control of size-exclusion and charge-selection, precisely selective adsorption is achieved towards diverse mixed anionic and cationic pollutants. This strategy offers a practical solution for COFs to confront environmental pollution issues.
Collapse
Affiliation(s)
- Chang Du
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Xiaodi Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Hongping Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Zilu Pan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Guanqun Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| |
Collapse
|
11
|
Qi B, Chen T, Zhang T, Jiang R, Zhang W, Li X. A novel continuous all-weather photo-electric synergistic treatment system for refractory organic compounds and its application in degrading enrofloxacin. CHEMOSPHERE 2023; 329:138632. [PMID: 37030350 DOI: 10.1016/j.chemosphere.2023.138632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
A novel continuous all-weather photo-electric synergistic treatment system was proposed in this study for refractory organic compounds, which overcame the defects of conventional photo-catalytic treatments that rely on light irradiation and thus cannot achieve all-weather continuous treatment. The system used a new photocatalyst (MoS2/WO3/carbon felt) with the characteristics of easy recovery and fast charge transfer. The system was systematically tested in degrading enrofloxacin (EFA) under real environmental conditions in terms of treatment performance, pathways and mechanisms. The results showed that the EFA removal of photo-electric synergy substantially increased by 1.28 and 6.78 times, compared to photocatalysis and electrooxidation, respectively, with an average removal of 50.9% under the treatment load of 832.48 mg m-2 d-1. Possible treatment pathways of EFA and mechanism of the system were found to be mainly the loss of piperazine groups, the cleavage of the quinolone portion and the promotion of electron transfer by bias voltage.
Collapse
Affiliation(s)
- Bin Qi
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tiantian Chen
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongfei Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ruixue Jiang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
12
|
Najafinejad MS, Chianese S, Fenti A, Iovino P, Musmarra D. Application of Electrochemical Oxidation for Water and Wastewater Treatment: An Overview. Molecules 2023; 28:molecules28104208. [PMID: 37241948 DOI: 10.3390/molecules28104208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, the discharge of various emerging pollutants, chemicals, and dyes in water and wastewater has represented one of the prominent human problems. Since water pollution is directly related to human health, highly resistant and emerging compounds in aquatic environments will pose many potential risks to the health of all living beings. Therefore, water pollution is a very acute problem that has constantly increased in recent years with the expansion of various industries. Consequently, choosing efficient and innovative wastewater treatment methods to remove contaminants is crucial. Among advanced oxidation processes, electrochemical oxidation (EO) is the most common and effective method for removing persistent pollutants from municipal and industrial wastewater. However, despite the great progress in using EO to treat real wastewater, there are still many gaps. This is due to the lack of comprehensive information on the operating parameters which affect the process and its operating costs. In this paper, among various scientific articles, the impact of operational parameters on the EO performances, a comparison between different electrochemical reactor configurations, and a report on general mechanisms of electrochemical oxidation of organic pollutants have been reported. Moreover, an evaluation of cost analysis and energy consumption requirements have also been discussed. Finally, the combination process between EO and photocatalysis (PC), called photoelectrocatalysis (PEC), has been discussed and reviewed briefly. This article shows that there is a direct relationship between important operating parameters with the amount of costs and the final removal efficiency of emerging pollutants. Optimal operating conditions can be achieved by paying special attention to reactor design, which can lead to higher efficiency and more efficient treatment. The rapid development of EO for removing emerging pollutants from impacted water and its combination with other green methods can result in more efficient approaches to face the pressing water pollution challenge. PEC proved to be a promising pollutants degradation technology, in which renewable energy sources can be adopted as a primer to perform an environmentally friendly water treatment.
Collapse
Affiliation(s)
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Angelo Fenti
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Pasquale Iovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
13
|
Liu JJ, Sun SN, Liu J, Kuang Y, Shi JW, Dong LZ, Li N, Lu JN, Lin JM, Li SL, Lan YQ. Achieving High-Efficient Photoelectrocatalytic Degradation of 4-Chlorophenol via Functional Reformation of Titanium-Oxo Clusters. J Am Chem Soc 2023; 145:6112-6122. [PMID: 36883963 DOI: 10.1021/jacs.2c11509] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.
Collapse
Affiliation(s)
- Jing-Jing Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Nan Sun
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiang Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yi Kuang
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jing-Wen Shi
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Long-Zhang Dong
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jia-Ni Lu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jiao-Min Lin
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shun-Li Li
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Chen H, wang Y, Ye J, Chao Z, Zhu K, Yang H, Xu Z. Oxygen-doped protonated C3N4 nanosheet as particle electrode and photocatalyst to degrade dye by photoelectrocatalytic oxidation process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
15
|
Manna M, Sen S. Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25477-25505. [PMID: 35287196 DOI: 10.1007/s11356-022-19435-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The world faces tremendous challenges and environmental crises due to the rising strength of wastewater. The conventional technologies fail to achieve the quality water that can be reused after treatment means "zero effluent" discharge of the industrial effluent. Therefore, now the key challenge is to develop improved technologies which will have no contribution to secondary pollution and at the same time more efficient for the socio-economic growth of the environment. Sustainable technologies are needed for wastewater treatment, reducing footprint by recycling, reusing, and recovering resources. Advanced oxidation process (AOP) is one of the sustainable emerging technologies for treating refractory organic contaminants present in different industrial wastewaters like textile, paper and pulp, pharmaceuticals, petrochemicals, and refineries. This critical review emerges details of advanced oxidation processes (AOPs), mentioning all possible permutations and combinations of components like ozone, UV, the catalyst used in the process. Non-conventional AOP systems, microwave, ultrasound, and plasma pulse assisted are the future of the oxidation process. This review aims to enlighten the role of AOPs for the mineralization of refractory organic contaminants (ROC) to readily biodegradable organics that cannot be either possible by conventional treatment. The integrated AOPs can improve the biodegradability of recalcitrant organic compounds and reduce the toxicity of wastewater, making them suitable for further biological treatment.
Collapse
Affiliation(s)
- Madhumita Manna
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India
| | - Sujit Sen
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
16
|
Zhang X, Liang X, Xu M, Wang J, Wang F, Chen M. In situ recombination for durable photoelectrocatalytic degradation of organic dye in wastewater. CHEMOSPHERE 2023; 312:137237. [PMID: 36400199 DOI: 10.1016/j.chemosphere.2022.137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Photoelectrocatalysis (PEC) can effectively degrade organic pollutants by using photoelectrodes without secondary pollution. However, significant mass transport resistance and decreased catalytic activity caused by the shedding of active components remain a barrier to achieving the photocatalytic system with a high degradation rate and long-term durability. Here, an in situ recombination concept is presented to overcome this challenge. The bionic coral-like electrode, obtained by in situ assembly of UIO-66 around TiO2 nanoflowers (TNF) on Ti-foam substrate, is employed as the photoanode in PEC. Ex situ evaluation of photoelectrochemical activity demonstrates that the UIO-66@TNF/Ti-foam (U@T/T) design significantly improves the light-propagation, light-absorption and charge transfer. In Situ degradation evaluations also shows that the interesting design promotes rapid and stable degradation of organic dye (e.g. Rhodamine B (RhB)). At 2.0 V of bias potential and pH 7.0 in 5 mg L-1 RhB, under the action of active species such as ·O2- and ·OH (proved by the degradation mechanism experiments), the removal rate of RhB can reach 96.1% at 120 min and almost complete removal at 200 min (99.1%).
Collapse
Affiliation(s)
- Xiaoyan Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China; School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Xian Liang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China.
| | - Mai Xu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Jin Wang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Fengwu Wang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China.
| | - Minggong Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China.
| |
Collapse
|
17
|
Zhang B, Li X, Ma Y, Jiang T, Zhu Y, Ren H. Visible-light photoelectrocatalysis/H 2O 2 synergistic degradation of organic pollutants by a magnetic Fe 3O 4@SiO 2@mesoporous TiO 2 catalyst-loaded photoelectrode. RSC Adv 2022; 12:30577-30587. [PMID: 36337955 PMCID: PMC9597414 DOI: 10.1039/d2ra05183d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
In this paper, we describe a method for photoelectrocatalysis (PEC)/H2O2 synergistic degradation of organic pollutants with a magnetic Fe3O4@SiO2@mesoporous TiO2 (FST) photocatalyst-loaded electrode. At optimal conditions of pH 3.0, 2.25% H2O2, working electrode (fixed FST 30 mg) potential +0.6 V (vs. SCE), and 10 mg L-1 of all experimental pollutants, the FST PEC/H2O2 synergistic system exhibited high activity and stability for the removal of various organic pollutants under visible light with comparable degradation efficiencies, including MB (98.8%), rhodamine B (Rh B, 96.7%), methyl orange (MO, 97.7%), amoxicillin (AMX, 83.9%). Moreover, this system obtained TOC removal ratios of 83.5% (MB), 77.9% (Rh B), 80.2% (MO), 65.5% (AMX) within 8 min. The kinetic rate constants of the PEC/H2O2 synergistic system were nearly 53 and 1436 times higher than that of the PEC process and H2O2 photolysis under visible light, respectively. Furthermore, the main reactive oxidant species (˙OH, ˙O2 -) were studied and enhanced mechanisms of the photocatalytic-electro-H2O2 coupling system were proposed. This work brings new insights to efficiently purify organic pollutants by PEC coupled with peroxide under solar light illumination.
Collapse
Affiliation(s)
- Bo Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Xuemei Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Yongshan Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Yanyan Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Huixue Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| |
Collapse
|
18
|
Hazaraimi MH, Goh PS, Lau WJ, Ismail AF, Wu Z, Subramaniam MN, Lim JW, Kanakaraju D. The state-of-the-art development of photocatalysts for the degradation of persistent herbicides in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156975. [PMID: 35764157 DOI: 10.1016/j.scitotenv.2022.156975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Herbicides are one of the most recurring pollutants in the aquatic system due to their widespread usage in the agriculture sector for weed control. Semiconductor-based photocatalysts have gained recognition due to their ability to degrade and mineralize pollutants into harmless by-products completely. Lately, many studies have been done to design photocatalysts with efficient separation of photogenerated charge carriers and enhanced light absorption. Photocatalyst engineering through doping with metal and non-metal elements and the formation of heterojunction are proven effective for minimizing the recombination of electron-hole pairs and enlarging the absorption in the visible light region. This review focuses on discussing and evaluating the recent progress in the types of photocatalysts and their performance in the remediation of herbicides in wastewater. The development of innovative hybrid technologies is also highlighted. The limitations and challenges of photocatalysis technology in the present literature have been identified, and future studies are recommended.
Collapse
Affiliation(s)
- M H Hazaraimi
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - P S Goh
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - W J Lau
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Z Wu
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - M N Subramaniam
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - J W Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia
| | - D Kanakaraju
- Faculty of Resource and Science Technology, Universiti Malaysia, Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
19
|
Zawadzki P. Visible Light-Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:374. [PMID: 36090740 PMCID: PMC9440748 DOI: 10.1007/s11270-022-05831-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The scientific data review shows that advanced oxidation processes based on the hydroxyl or sulfate radicals are of great interest among the currently conventional water and wastewater treatment methods. Different advanced treatment processes such as photocatalysis, Fenton's reagent, ozonation, and persulfate-based processes were investigated to degrade contaminants of emerging concern (CECs) such as pesticides, personal care products, pharmaceuticals, disinfectants, dyes, and estrogenic substances. This article presents a general overview of visible light-driven advanced oxidation processes for the removal of chlorfenvinphos (organophosphorus insecticide), methylene blue (azo dye), and diclofenac (non-steroidal anti-inflammatory drug). The following visible light-driven treatment methods were reviewed: photocatalysis, sulfate radical oxidation, and photoelectrocatalysis. Visible light, among other sources of energy, is a renewable energy source and an excellent substitute for ultraviolet radiation used in advanced oxidation processes. It creates a high application potential for solar-assisted advanced oxidation processes in water and wastewater technology. Despite numerous publications of advanced oxidation processes (AOPs), more extensive research is needed to investigate the mechanisms of contaminant degradation in the presence of visible light. Therefore, this paper provides an important source of information on the degradation mechanism of emerging contaminants. An important aspect in the work is the analysis of process parameters affecting the degradation process. The initial concentration of CECs, pH, reaction time, and catalyst dosage are discussed and analyzed. Based on a comprehensive survey of previous studies, opportunities for applications of AOPs are presented, highlighting the need for further efforts to address dominant barriers to knowledge acquisition.
Collapse
Affiliation(s)
- Piotr Zawadzki
- Department of Water Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| |
Collapse
|
20
|
Fan Q, Lu T, Deng Y, Zhang Y, Ma W, Xiong R, Huang C. Bio-based materials with special wettability for oil-water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Sigcha-Pallo C, Peralta-Hernández JM, Alulema-Pullupaxi P, Carrera P, Fernández L, Pozo P, Espinoza-Montero PJ. Photoelectrocatalytic degradation of diclofenac with a boron-doped diamond electrode modified with titanium dioxide as a photoanode. ENVIRONMENTAL RESEARCH 2022; 212:113362. [PMID: 35525294 DOI: 10.1016/j.envres.2022.113362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The electrophoretic deposition of titanium dioxide (TiO2) nanoparticles (Degussa P25) onto a boron-doped diamond (BDD) substrate was carried out to produce a photoanode (TiO2/BDD) to apply in the degradation and mineralization of sodium diclofenac (DCF-Na) in an aqueous medium using photoelectrocatalysis (PEC). This study was divided into three stages: i) photoanode production through electrophoretic deposition using three suspensions (1.25%, 2.5%, 5.0% w/v) of TiO2 nanoparticles, applying 4.8 V for 15 and 20 s; ii) characterization of the TiO2/BDD photoanode using scanning electron microscopy and cyclic voltammetry response with the [Fe(CN)6]3-/4- redox system; iii) degradation of DCF-Na (25 mg L-1) through electrochemical oxidation (EO) on BDD and PEC on TiO2/BDD under dark and UVC-light conditions. The degradation of DCF-Na was evaluated using high-performance liquid chromatography and UV-Vis spectroscopy, and its mineralization measured using total organic carbon and chemical oxygen demand. The results showed that after 2 h, DCF-Na degradation and mineralization reached 98.5% and 80.1%, respectively, through PEC on the TiO2/BDD photoanode at 2.2 mA cm-2 under UVC illumination, while through EO on BDD applying 4.4 mA cm-2, degradation and mineralization reached 85.6% and 76.1%, respectively. This difference occurred because of the optimal electrophoretic formation of a TiO2 film with a 9.17 μm thickness on the BDD (2.5% w/v TiO2, time 15 s, 4.8 V), which improved the electrocatalysis and oxidative capacity of the TiO2/BDD photoanode. Additionally, PEC showed a lower specific energy consumption (1.55 kWh m-3). Thus, the use of nanostructured TiO2 films deposited on BDD is an innovative photoanode alternative for the photoelectrocatalytic degradation of DCF-Na, which substantially improves the degradation capacity of bare BDD.
Collapse
Affiliation(s)
- Carol Sigcha-Pallo
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador; Escuela Politécnica Nacional, Departamento de Ingeniería Civil y Ambiental, Ladrón de Guevara E11-253, Apartado Postal: 17-01-2759, Quito, Ecuador
| | - Juan M Peralta-Hernández
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Cerro de La Venda S/n, Pueblito de Rocha, Guanajuato, 36040, Mexico
| | - Paulina Alulema-Pullupaxi
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador
| | | | - Lenys Fernández
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador
| | - Pablo Pozo
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador
| | - Patricio J Espinoza-Montero
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador.
| |
Collapse
|
22
|
Bastug Azer B, Gulsaran A, Pennings JR, Saritas R, Kocer S, Bennett JL, Devdas Abhang Y, Pope MA, Abdel-Rahman E, Yavuz M. A Review: TiO2 based photoelectrocatalytic chemical oxygen demand sensors and their usage in industrial applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Qiao Z, Wang C, Zou Y, Wu X, Liu Z. Oxygen vacancy and pyroelectric polarization collaboratively enhancing PEC performance in BaTiO3 photoelectrodes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Borrás-Jiménez D, Silva-López W, Nieto-Londoño C. Towards the Configuration of a Photoelectrocatalytic Reactor: Part 1—Determination of Photoelectrode Geometry and Optical Thickness by a Numerical Approach. NANOMATERIALS 2022; 12:nano12142385. [PMID: 35889609 PMCID: PMC9322096 DOI: 10.3390/nano12142385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
Photoelectrocatalysis has been highlighted as a tertiary wastewater treatment in the textile industry due to its high dye mineralisation capacity. However, design improvements are necessary to overcome photo-reactors limitations. The present work proposes a preliminary configuration of a photoelectrocatalytic reactor to degrade Reactive Red 239 (RR239) textile dye, using computational fluid dynamics (CFD) to analyse the mass transfer rate, radiation intensity loss (RIL), and its effect on kinetics degradation, over a photoelectrode based on a TiO2 nanotube. A study to increase the space-time yield (STY) was carried out through mass transfer rate and kinetic analysis, varying the optical thickness (δ) between the radiation entrance and the photocatalytic surface, photoelectrode geometry, inlet flow rate, and the surface radiation intensity. The RIL was determined using a 1D Beer–Lambert-based model, and an extinction coefficient experimentally determined by UV-Vis spectroscopy. The results show that in RR239 solutions below concentrations of 6 mg/L, a woven mesh photoelectrode and an optimal optical thickness δ of 1 cm is enough to keep the RIL below 15% and maximise the mass transfer and the STY in around 110 g/m3-day.
Collapse
Affiliation(s)
- Daniel Borrás-Jiménez
- Grupo de Investigación en Óptica y Espectroscopía, Universidad Pontificia Bolivariana, Medellín 050031, Colombia;
| | - Wilber Silva-López
- Grupo de Investigación en Óptica y Espectroscopía, Universidad Pontificia Bolivariana, Medellín 050031, Colombia;
- Correspondence:
| | - César Nieto-Londoño
- Grupo de Investigación en Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín 050031, Colombia;
| |
Collapse
|
25
|
Castillo-Cabrera GX, Espinoza-Montero PJ, Alulema-Pullupaxi P, Mora JR, Villacís-García MH. Bismuth Oxyhalide-Based Materials (BiOX: X = Cl, Br, I) and Their Application in Photoelectrocatalytic Degradation of Organic Pollutants in Water: A Review. Front Chem 2022; 10:900622. [PMID: 35898970 PMCID: PMC9309798 DOI: 10.3389/fchem.2022.900622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
An important target of photoelectrocatalysis (PEC) technology is the development of semiconductor-based photoelectrodes capable of absorbing solar energy (visible light) and promoting oxidation and reduction reactions. Bismuth oxyhalide-based materials BiOX (X = Cl, Br, and I) meet these requirements. Their crystalline structure, optical and electronic properties, and photocatalytic activity under visible light mean that these materials can be coupled to other semiconductors to develop novel heterostructures for photoelectrochemical degradation systems. This review provides a general overview of controlled BiOX powder synthesis methods, and discusses the optical and structural features of BiOX-based materials, focusing on heterojunction photoanodes. In addition, it summarizes the most recent applications in this field, particularly photoelectrochemical performance, experimental conditions and degradation efficiencies reported for some organic pollutants (e.g., pharmaceuticals, organic dyes, phenolic derivatives, etc.). Finally, as this review seeks to serve as a guide for the characteristics and various properties of these interesting semiconductors, it discusses future PEC-related challenges to explore.
Collapse
Affiliation(s)
- G. Xavier Castillo-Cabrera
- Escuela de Ciencias Químicas, Pontificia Universidad Católica Del Ecuador, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central Del Ecuador, Quito, Ecuador
| | | | | | | | | |
Collapse
|
26
|
Dong F, Pang Z, Yang S, Lin Q, Song S, Li C, Ma X, Nie S. Improving Wastewater Treatment by Triboelectric-Photo/Electric Coupling Effect. ACS NANO 2022; 16:3449-3475. [PMID: 35225606 DOI: 10.1021/acsnano.1c10755] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ability to meet higher effluent quality requirements and the reduction of energy consumption are the biggest challenges in wastewater treatment worldwide. A large proportion of the energy generated during wastewater treatment processes is neglected and lost in traditional wastewater treatment plants. As a type of energy harvesting system, triboelectric nanogenerators (TENGs) can extensively harvest the microscale energies generated from wastewater treatment procedures and auxiliary devices. This harvested energy can be utilized to improve the removal efficiency of pollutants through photo/electric catalysis, which has considerable potential application value in wastewater treatment plants. This paper gives an overall review of the generated potential energies (e.g., water wave energy, wind energy, and acoustic energy) that can be harvested at various stages of the wastewater treatment process and introduces the application of TENG devices for the collection of these neglected energies during wastewater treatment. Furthermore, the mechanisms and catalytic performances of TENGs coupled with photo/electric catalysis (e.g., electrocatalysis, photoelectric catalysis) are discussed to realize higher pollutant removal efficiencies and lower energy consumption. Then, a thorough, detailed investigation of TENG devices, electrode materials, and their coupled applications is summarized. Finally, the intimate coupling of self-powered photoelectric catalysis and biodegradation is proposed to further improve removal efficiencies in wastewater treatment. This concept is conducive to improving knowledge about the underlying mechanisms and extending applications of TENGs in wastewater treatment to better solve the problems of energy demand in the future.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen Pang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuyi Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
27
|
Cu-MOF for effectively organic pollutants degradation and E. coli inactivation via catalytic activation of peroxymonosulfate. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Fu MY, Wang HY, Zhai HL, Zhu QY, Dai J. A Convenient Procedure for Preparing BiOX-TiO 2 Photoelectrocatalytic Electrodes from a Titanium-Oxo Compound-Modified Carbon Fiber Cloth. Inorg Chem 2022; 61:4024-4032. [PMID: 35179867 DOI: 10.1021/acs.inorgchem.1c03779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photoelectrocatalysis (PEC) has shown great advantages in sustainable organic synthesis and wastewater treatment because the PEC process can minimize electron-hole recombination, thereby improving the photocatalytic performance. Here, we report a convenient procedure for preparing immobilized BiOX-TiO2 photoelectrocatalytic electrodes from a titanium-oxo compound (TOC)-modified carbon fiber cloth (CFC). Crystalline TOCs composed of Ti12 cations and bismuth halide anions, [Ti12O14(OiPr)18][Bi3Br11(THF)2] (1) and [Ti12O14(OiPr)18][Bi4I14(THF)2] (2), were grown on CFC. Taking advantage of the easy hydrolysis of the titanium-oxo cation and bismuth halide anion, we could easily transform these CFC-immobilized crystals into BiOX-TiO2/CFC (X = Br or I) photocatalysts, which facilitates recycling of the catalysts. The photocatalytic dye degradation test showed that the efficiency did not decrease obviously after 10 photocatalytic cycles. Using BiOX-TiO2-modified CFC as electrodes, electrocatalysis (EC), photocatalysis (PC), and PEC were examined. PEC showed an attractive synergistic effect of EC and PC. These TOC-modified CFCs would be potential candidates for catalytic electrodes for sustainable wastewater purification.
Collapse
Affiliation(s)
- Meng-Yuan Fu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hao-Yu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hang-Ling Zhai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|