1
|
Falahudin D, Arifin Z, Yogaswara D, Edward E, Wulandari I, Dharmawan IWE, Sudaryanto A, Hoang AQ, Takahashi S. Halogenated organic compounds in mangrove sediments from Bintan Island, Indonesia: Occurrence, profiles, sources, and potential ecological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125667. [PMID: 39793644 DOI: 10.1016/j.envpol.2025.125667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The first comprehensive analysis of halogenated organic compounds (HOCs), including 209 full congeners of polychlorinated biphenyls (PCBs), 26 organochlorinated pesticides (OCPs), 41 polybrominated diphenyl ethers (PBDEs), and four other brominated flame retardants (BFRs), was performed on surface mangrove sediments from Bintan Island, Province of the Riau Archipelago, Indonesia. Among the measured HOC contaminants, the mean concentration of ∑209PCBs (2.3 ± 0.96 ng g-1 dw) was higher than that of p,p'-DDE (1.8 ± 0.70 ng g-1 dw), ∑41PBDEs (1.8 ± 1.1 ng g-1 dw), trans-nonachlor (0.42 ± 0.13 ng g-1 dw), and other BFRs (0.20 ± 0.29 ng g-1 dw), while other OCP related compounds less than 0.2 ng g-1 dw. In addition, concentrations of unintentionally produced PCBs such as PCB-11 and PCB-47/48/75 ranged from 0.57 to 1.5 ng g-1 dw. Variations in HOCs accumulation and profiles among mangrove habitats and species indicate different anthropogenic stressors and species-specific accumulations. The ecological risk estimation from HOCs exposure on dwelling sediment biota in mangrove sediments varied from no risk to potentially causing adverse effects in several locations. Overall, this study provides fundamental information on the function of mangrove ecosystems as an accumulation zone for HOCs in tropical regions.
Collapse
Affiliation(s)
- Dede Falahudin
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Zainal Arifin
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Deny Yogaswara
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Edward Edward
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Ita Wulandari
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - I Wayan Eka Dharmawan
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Agus Sudaryanto
- Research Center for Environment and Clean Technology, National Research and Innovation Agency, Puspitek, Serpong, 15314, Banten, Indonesia
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
2
|
Hoang AQ, Duong HT, Trinh HT, Kadokami K, Takahashi S. Sediment contamination with polybrominated diphenyl ethers and alternative brominated flame retardants: case study in urban lakes of Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31436-31445. [PMID: 36449233 DOI: 10.1007/s11356-022-24393-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Information regarding the contamination of brominated flame retardants (BFRs) in lake sediments from Vietnam and Southeast Asia is still very limited. To fill such knowledge gaps, surface sediment samples from five urban lakes in Hanoi, Vietnam, were analyzed for polybrominated diphenyl ethers (PBDEs) and some other BFRs. Concentrations of total PBDEs ranged from 1.1 to 26 (median 6.6) ng/g dry weight with the most predominant congeners as BDE-209 (62 ± 17%), BDE-99 (10 ± 8%), and BDE-47 (6 ± 5%). Concentrations of other BFRs decreased in the order: decabromodiphenyl ethane (DBDPE) > 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) > hexabromobiphenyl (BB-153) > pentabromoethylbenzene (PBEB), which were about one to two orders of magnitude lower than PBDEs. BDE-209 and DBDPE were highly correlated (Pearson's r = 0.879; p < 0.01), suggesting their similar applications and/or environmental fate. Potential sources of BFRs in lake sediments are estimated to be wastewater discharge, riverine inflow, and atmospheric deposition.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Hanh Thi Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11300, Vietnam.
| | - Ha Thu Trinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11300, Vietnam
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| |
Collapse
|
3
|
Fei L, Bilal M, Qamar SA, Imran HM, Riasat A, Jahangeer M, Ghafoor M, Ali N, Iqbal HMN. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2022; 211:113060. [PMID: 35283076 DOI: 10.1016/j.envres.2022.113060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.
Collapse
Affiliation(s)
- Liu Fei
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Areej Riasat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Misbah Ghafoor
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
4
|
Lee HK, Bak G, Lim JE, Lee JW, Lee S, Moon HB. Historical record of legacy and alternative halogenated flame retardants in dated sediment from a highly industrialized saltwater lake in Korea. CHEMOSPHERE 2022; 297:134264. [PMID: 35271898 DOI: 10.1016/j.chemosphere.2022.134264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Legacy and alternative halogenated flame retardants (HFRs), such as polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and dechlorane plus (DP), were measured in dated sediments from a highly industrialized lake in Korea. All HFRs were detected in almost all of the sediment depth layers for more than 70 years, indicating a history of long-term contamination. Similar historical trends in PBDEs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and DP were observed in dated sediments, whereas decabromodiphenylethane (DBDPE), and 2-ethylhexyl-2,3,4,5-octabromo-1,3,3-trimethyl-1-phenylindane (OBIND) concentrations sharply increased since the 1990s. Moreover, the concentration ratios of DBDPE/BDE 209 increased from the early 1990s to the present. Our findings suggest that DBDPE and OBIND have been used as HFR alternatives. The historical record of the concentrations and profiles of legacy and alternative HFRs corresponded with industrial activities, consumption of FRs, and coastal development activities. Inventories of legacy and alternative HFRs were similar to those reported for highly industrialized regions around the globe.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Geunhan Bak
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Won Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|