1
|
Sun Y, Xu Z, He M, Alessi DS, Tsang DCW. Unlocking the solution-phase molecular transformation of biochar during intensive rainfall events: Implications for the long-term carbon cycle under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176708. [PMID: 39383956 DOI: 10.1016/j.scitotenv.2024.176708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The unclear turnover of soluble and solid phases of biochar during increasingly severe climate change (e.g., intensive rainfall) raised questions about the carbon stability of biochar in soil. Here, we present an in-depth analysis of the molecular-level transformations occurring in both the soluble and solid phases of biochar subjected to prolonged wet-dry cycles with simulated rainwater. Biochar properties, including surface functionality and carbon texture, greatly affected the transformation route and led to a distinct stability variation. The rich alkyl -CH3 on the low-temperature biochar (450 °C) was oxidized to hydroxymethyl -CH2OH or formyl -CHO, and the ester -COOC- or peptide -CONHC- bonds were fragmented in the meantime, causing the release of protein- or lipid-like organic carbon and the declined carbon stability (Æ, tested by H2O2 oxidation, from 60.1% to 53.2%). After a high-temperature (750 °C) pyrolysis process, only oxidation of the surface -OH with limited bond breaking occurred after rainwater elution, presenting a marginal composition difference with constant stability. However, the fragile carbon nature of biochar, caused by CO2 activation, led to enhanced fragmentation, oxidation, and hydration, resulting in the release of tannin-like organic carbon, which compromised the carbon storage (Æ decreased from 81.2% to 73.0%). Our findings evaluated the critical transformation of biochar during intensive rainfall, offering crucial insights for designing sustainable biochar and achieving carbon neutrality.
Collapse
Affiliation(s)
- Yuqing Sun
- School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Mingjing He
- Deloitte China, 88 Queensway, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
2
|
Li S, Wen Y, Wang Y, Liu M, Su L, Peng Z, Zhou Z, Zhou N. Novel α-amino acid-like structure decorated biochar for heavy metal remediation in acid soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132740. [PMID: 37856962 DOI: 10.1016/j.jhazmat.2023.132740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Neither chemical nor physical adsorption play well in heavy metals remediation in acid soil due to the competing behavior of abundant protons, where stable chelators that can be reused are of significant demand. Herein, biochar with abundant nitro and carboxyl groups is prepared, which can be assembled into self-supporting electrode. Under the catalyzation of electricity, the surface decorated -NO2 on the biochar can be in situ transformed into -NH2. Combined with the carboxyl group that attached on the same carbon atom, a special α-amino acid-like structure modified biochar (α-AC@BC) can be successfully constructed. Due to the strong affinity between the α-amino acid-like ligand and heavy metals, this α-AC@BC exhibits high removal efficiencies of 83.41%, 80.94%, 92.54% and 77.05% for available copper, cadmium, lead and zinc respectively, even in a strong acid soil with low pH of 4. After four adsorption-desorption cycles, the α-AC@BC could still eliminate 83.88% of copper. The high adsorption energy among -NH2, -COOH and heavy metals (-2.99 eV for copper, -1.90 eV for lead, -1.30 eV for zinc and -0.91 eV for cadmium) could form steady coordination structure to guarantee a highly practical application potential of α-AC@BC in strong acid soil. This study provides a novel concept for the decontamination of multiple heavy metal polluted acid soil.
Collapse
Affiliation(s)
- Shikai Li
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yujiao Wen
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yifan Wang
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Meng Liu
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Lezhu Su
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Zhengjie Peng
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Nan Zhou
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Research Progress on Adsorption of Arsenic from Water by Modified Biochar and Its Mechanism: A Review. WATER 2022. [DOI: 10.3390/w14111691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Arsenic (As) is a non-metallic element, which is widely distributed in nature. Due to its toxicity, arsenic is seriously harmful to human health and the environment. Therefore, it is particularly important to effectively remove arsenic from water. Biochar is a carbon-rich adsorption material with advantages such as large specific surface area, high porosity, and abundant functional groups, but the original biochar has limitations in application, such as limited adsorption capacity and adsorption range. The modified biochar materials have largely enhanced the adsorption capacity of As in water due to their improved physicochemical properties. In this review, the changes in the physicochemical properties of biochar before and after modification were compared by SEM, XRD, XPS, FT-IR, TG, and other characterization techniques. Through the analysis, it was found that the adsorbent dosage and pH are the major factors that influence the As adsorption capacity of the modified biochar. The adsorption process of As by biochar is endothermic, and increasing the reaction temperature is conducive to the progress of adsorption. Results showed that the main mechanisms include complexation, electrostatic interaction, and precipitation for the As removal by the modified biochar. Research in the field of biochar is progressing rapidly, with numerous achievements and new types of biochar-based materials prepared with super-strong adsorption capacity for As. There is still much space for in-depth research in this field. Therefore, the future research interests and applications are put forward in this review.
Collapse
|