1
|
Soltanian M, Gitipour S, Baghdadi M, Rtimi S. PFOA-contaminated soil remediation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49985-50011. [PMID: 39088169 DOI: 10.1007/s11356-024-34516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Soil and groundwater contamination has been raised as a concern due to the capability of posing a risk to human health and ecology, especially in facing highly toxic and emerging pollutants. Because of the prevalent usage of perfluorooctanoic acid (PFOA), in industrial and production processes, and subsequently the extent of sites contaminated with these pollutants, cleaning up PFOA polluted sites is paramount. This research provides a review of remediation approaches that have been used, and nine remediation techniques were reviewed under physical, chemical, and biological approaches categorization. As the pollutant specifications, environmental implications, and adverse ecological effects of remediation procedures should be considered in the analysis and evaluation of remediation approaches, unlike previous research that considered a couple of PFAS pollutants and generally dealt with technical issues, in this study, the benefits, drawbacks, and possible environmental and ecological adverse effects of PFOA-contaminated site remediation also were discussed. In the end, in addition to providing sufficient and applicable understanding by comprehensively considering all aspects and field-scale challenges and obstacles, knowledge gaps have been found and discussed.
Collapse
Affiliation(s)
- Mehdi Soltanian
- School of Civil and Environmental Engineering, Faculty of engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Saeid Gitipour
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
2
|
Dhulia A, Abou-Khalil C, Kewalramani J, Sarkar D, Boufadel MC. Mobilization of per- and poly-fluoroalkyl substances (PFAS) in soils with different organic matter contents. CHEMOSPHERE 2024; 361:142503. [PMID: 38825242 DOI: 10.1016/j.chemosphere.2024.142503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
There is considerable interest in addressing soils contaminated with per- and polyfluoroalkyl substances (PFAS) because of the PFAS in the environment and associated health risks. The neutralization of PFAS in situ is challenging. Consequently, mobilizing the PFAS from the contaminated soils into an aqueous solution for subsequent handling has been pursued. Nonetheless, the efficiency of mobilization methods for removing PFAS can vary depending on site-specific factors, including the types and concentrations of PFAS compounds, soil characteristics. In the present study, the removal of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) from artificially contaminated soils was investigated in a 2D laboratory setup using electrokinetic (EK) remediation and hydraulic flushing by applying a hydraulic gradient (HG) for a duration of 15 days. The percent removal of PFOA by EK was consistent (∼80%) after a 15-day treatment for all soils. The removal efficiency of PFOS by EK significantly varied with the OM content, where the PFOS removal increased from 14% at 5% OM to 60% at 50% OM. With HG, the percent removal increased for both PFOA and PFOS from about 20% at 5% OM up to 80% at 75% OM. Based on the results, the mobilization of PFAS from organic soil would be appropriate using both hydraulic flushing and EK considering their applicability and advantages over each other for site-specific factors and requirements.
Collapse
Affiliation(s)
- Anirban Dhulia
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Charbel Abou-Khalil
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| | | | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
3
|
Zhu Y, Chen F, Jiang F, Hua Z, Luo Z, Ma J. Enhanced remediation of PFAS-metal co-contaminated soil by ceramsite supported Fe 3O 4-MoS 2 heterojunction as a high-performance piezocatalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121716. [PMID: 38968897 DOI: 10.1016/j.jenvman.2024.121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
In this study, a novel piezoremediation system was developed to remediate an actual soil co-polluted by high contents of per- and polyfluoroalkyl substances (PFAS, 5725 μg/kg soil) and heavy metals (6455 mg/kg soil). Two piezocatalysts, MoS2/ceramsite (MC) and Fe3O4-MoS2/ceramsite (FMC), were synthesized using a facile hydrothermal-coprecipitation method. These two materials were employed to treat the co-contaminated soil in soil slurry environment under sonication. FMC exhibited significantly higher piezoremediation performance than MC, wherein 91.6% of PFAS, 97.8% of Cr6+ ions and 81% of total metals (Cr, Cu, Zn and Ni) were removed from the soil after 50 min of the FMC piezoremediation process. FMC also exhibited the advantages of easy separation from the slurry phase and excellent reusability. In comparison with MC, the Fe3O4-MoS2 heterojunction in FMC can stabilize MoS2 particles on the surface of ceramsite granules, promote the separation of electron/hole pairs, accelerate charge transfer, therefore enhancing piezocatalytic performance. The electron spin resonance analysis and free radical quenching tests show that •OH was the dominant oxidative radical responsible for PFAS degradation. The count of bacteria and the bacterial community structure in the treated soil can be basically restored to the initial states after 30 days of incubation under nutrient stimulation. Overall, this study not only provides a deep insight on soil remediation process, but also offers an efficient and reliable technique for simultaneous decontamination of organic and metal pollutants in soil.
Collapse
Affiliation(s)
- Yanfeng Zhu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221008, China
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China.
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing, 211000, China
| | - Zhanbin Luo
- School of Public Administration, Hohai University, Nanjing, 211000, China
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211000, China
| |
Collapse
|
4
|
Ma Y, Wang P, Hua Z, Dong Y, Yu L, Huang S. Field study on endogenous perfluoroalkyl acid release and their spatiotemporal distribution processes induced by inland navigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170394. [PMID: 38280584 DOI: 10.1016/j.scitotenv.2024.170394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Dense populations and industries in regions with developed inland waterways have caused the significant discharge of perfluoroalkyl acids (PFAAs) into surrounding waterways. Despite being the dominant energy input in the waterways, the impact of ship navigation on endogenous PFAA release is unclear. In this study, a field experiment was carried out in the Wangyu River (Taihu Basin, China) to investigate the spatiotemporal distribution processes of PFAAs in the water column after passage of ships with different tonnages, speeds, and draughts. The results showed that the PFAA contents did not decrease continuously with time but increased with a lag after the passing ship triggered a transient massive dissolution of PFAAs into the overlying water. In addition, PFAA contents in suspended particulate matter (SPM) exhibited a fluctuating downward trends after their peak at the moment of ship passage. Vertically, the PFAA concentrations among the layers of overlying water were relatively homogeneous, whereas SPM exhibited substantial heterogeneity in its distribution and adsorption of PFAAs. Moreover, the differences in jet scouring velocity (u), disturbance duration (t), and draught (h) of ships resulted in large variability in PFAA contents in the water column. Variance partitioning analysis further quantified the effects of u, t, and h on total PFAAs in the water column, with individual contributions of 53 %, 12 %, and 6 %, respectively. Furthermore, the release of endogenous PFAAs induced by ship passage involved rapid and slow processes, the former determining the overall PFAA release and the latter affecting PFAA concentration recovery in the water column. The findings provide in-situ observational data on spatiotemporal variations of PFAAs in multiphase media following ship passage, enhancing our understanding of endogenous pollution in inland waterways.
Collapse
Affiliation(s)
- Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Peng Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Yueyang Dong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Shanheng Huang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
5
|
Zhou T, Li X, Liu H, Dong S, Zhang Z, Wang Z, Li J, Nghiem LD, Khan SJ, Wang Q. Occurrence, fate, and remediation for per-and polyfluoroalkyl substances (PFAS) in sewage sludge: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133637. [PMID: 38306831 DOI: 10.1016/j.jhazmat.2024.133637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Addressing per-and polyfluoroalkyl substances (PFAS) contamination is an urgent environmental concern. While most research has focused on PFAS contamination in water matrices, comparatively little attention has been given to sludge, a significant by-product of wastewater treatment. This critical review presents the latest information on emission sources, global distribution, international regulations, analytical methods, and remediation technologies for PFAS in sludge and biosolids from wastewater treatment plants. PFAS concentrations in sludge matrices are typically in hundreds of ng/g dry weight (dw) in developed countries but are rarely reported in developing and least-developed countries due to the limited analytical capability. In comparison to water samples, efficient extraction and cleaning procedures are crucial for PFAS detection in sludge samples. While regulations on PFAS have mainly focused on soil due to biosolids reuse, only two countries have set limits on PFAS in sludge or biosolids with a maximum of 100 ng/g dw for major PFAS. Biological technologies using microbes and enzymes present in sludge are considered as having high potential for PFAS remediation, as they are eco-friendly, low-cost, and promising. By contrast, physical/chemical methods are either energy-intensive or linked to further challenges with PFAS contamination and disposal. The findings of this review deepen our comprehension of PFAS in sludge and have guided future research recommendations.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shiman Dong
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Turin 10123, Italy
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Stuart J Khan
- School of Civil Engineering, University of Sydney, NSW 2006, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
6
|
Bui TH, Zuverza-Mena N, Dimkpa CO, Nason SL, Thomas S, White JC. PFAS remediation in soil: An evaluation of carbon-based materials for contaminant sequestration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123335. [PMID: 38211874 PMCID: PMC10922530 DOI: 10.1016/j.envpol.2024.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The presence of per- and poly-fluoroalkyl substances (PFAS) in soils is a global concern as these emerging contaminants are highly resistant to degradation and cause adverse effects on human and environmental health at very low concentrations. Sequestering PFAS in soils using carbon-based materials is a low-cost and effective strategy to minimize pollutant bioavailability and exposure, and may offer potential long-term remediation of PFAS in the environment. This paper provides a comprehensive evaluation of current insights on sequestration of PFAS in soil using carbon-based sorbents. Hydrophobic effects originating from fluorinated carbon (C-F) backbone "tail" and electrostatic interactions deriving from functional groups on the molecules' "head" are the two driving forces governing PFAS sorption. Consequently, varying C-F chain lengths and polar functional groups significantly alter PFAS availability and leachability. Furthermore, matrix parameters such as soil organic matter, inorganic minerals, and pH significantly impact PFAS sequestration by sorbent amendments. Materials such as activated carbon, biochar, carbon nanotubes, and their composites are the primary C-based materials used for PFAS adsorption. Importantly, modifying the carbon structural and surface chemistry is essential for increasing the active sorption sites and for strengthening interactions with PFAS. This review evaluates current literature, identifies knowledge gaps in current remediation technologies and addresses future strategies on the sequestration of PFAS in contaminated soil using sustainable novel C-based sorbents.
Collapse
Affiliation(s)
- Trung Huu Bui
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Nubia Zuverza-Mena
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Christian O Dimkpa
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Sara L Nason
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Sara Thomas
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA.
| |
Collapse
|
7
|
McTaggart M, Malardier-Jugroot C. The role of helicity in PFAS resistance to degradation: DFT simulation of electron capture and defluorination. Phys Chem Chem Phys 2024; 26:4692-4701. [PMID: 38251935 DOI: 10.1039/d3cp04973f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Defluorination of perfluorinated alkyl substances (PFASs) via the direct capture of excess electrons poses a promising path to environmental decontamination. Herein we show that quantum-chemical model optimization methods can be adapted to simulate the changes to molecular geometry that result from electron capture. These reaction pathways demonstrate that the introduction of an additional electron causes a loss of the helical arrangement along linear carbon tail chains. Regaining helicity is sufficiently favourable to enable fluoride release in C7-C10 PFAS chains; shorter chains are enthalpically hindered from degradation while the additional charge is stabilized on longer chains by the greater entropy their flexibility permits. These results suggest that reductive PFAS treatment processes could be made more effective under high pressure or confined conditions.
Collapse
Affiliation(s)
- Matt McTaggart
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| | - Cécile Malardier-Jugroot
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
8
|
Vatankhah H, Anderson RH, Ghosh R, Willey J, Leeson A. A review of innovative approaches for onsite management of PFAS-impacted investigation derived waste. WATER RESEARCH 2023; 247:120769. [PMID: 37931356 DOI: 10.1016/j.watres.2023.120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
The historic use of aqueous film-forming foam (AFFF) has led to widespread detection of per- and polyfluoroalkyl substance (PFAS) in groundwater, soils, sediments, drinking water, wastewater, and receiving aquatic systems throughout the United States (U.S.). Prior to any remediation activities, in order to identify the PFAS-impacted source zones and select the optimum management approach, extensive site investigations need to be conducted. These site investigations have resulted in the generation of considerable amount of investigation-derived waste (IDW) which predominantly consists of well purging water and drill fluid, equipment washing residue, soil, drill cuttings, and residues from the destruction of asphalt and concrete surfaces. IDW is often impacted by varying levels of PFAS which poses a substantial challenge concerning disposal to prevent potential mobilization of PFAS, logistical complexities, and increasing requirement for storage as a result of accumulation of the associated wastes. The distinct features of IDW involve the intermittent generation of waste, substantial volume of waste produced, and the critical demand for onsite management. This article critically focuses on innovative technologies and approaches employed for onsite treatment and management of PFAS-impacted IDW. The overall objective of this study centers on developing and deploying end-of-life treatment technology systems capable of facilitating unrestricted disposal, discharge, and/or IDW reuse on-site, thereby reducing spatial footprints and mobilization time.
Collapse
Affiliation(s)
- Hooman Vatankhah
- Strategic Environmental Research and Development Program and the Environmental Security Technology Certification Program, Arlington, VA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| | | | | | | | - Andrea Leeson
- Strategic Environmental Research and Development Program and the Environmental Security Technology Certification Program, Arlington, VA, USA
| |
Collapse
|
9
|
Krafft MP, Riess JG. About Perfluoropolyhedranes, Their Electron-Accepting Ability and Questionable Supramolecular Hosting Capacity. Angew Chem Int Ed Engl 2023; 62:e202302942. [PMID: 37208990 DOI: 10.1002/anie.202302942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Polyhedral molecules are appealing for their eye-catching architecture and distinctive chemistry. Perfluorination of such, often greatly strained, compounds is a momentous challenge. It drastically changes the electron distribution, structure and properties. Notably, small high-symmetry perfluoropolyhedranes feature a centrally located, star-shaped low-energy unoccupied molecular orbital that can host an extra electron within the polyhedral frame, thus producing a radical anion, without loss of symmetry. This predicted electron-hosting capacity was definitively established for perfluorocubane, the first perfluorinated Platonic polyhedrane to be isolated pure. Hosting atoms, molecules, or ions in such "cage" structures is, however, all but forthright, if not illusionary, offering no easy access to supramolecular constructs. While adamantane and cubane have fostered numerous applications in materials science, medicine, and biology, specific uses for their perfluorinated counterparts remain to be established. Some aspects of highly fluorinated carbon allotropes, such as fullerenes and graphite, are briefly mentioned for context.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess., 67034, Strasbourg Cedex, France
| | - Jean G Riess
- Harangoutte Institute, 68160, Ste-Croix-aux-Mines, France
| |
Collapse
|
10
|
Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. CHEMOSPHERE 2023; 330:138666. [PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Bahareh KarimiDermani
- Department of Geological Sciences, Hydrogeology, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Elham Razmi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
11
|
Marquínez-Marquínez AN, Loor-Molina NS, Quiroz-Fernández LS, Maddela NR, Luque R, Rodríguez-Díaz JM. Recent advances in the remediation of perfluoroalkylated and polyfluoroalkylated contaminated sites. ENVIRONMENTAL RESEARCH 2023; 219:115152. [PMID: 36572331 DOI: 10.1016/j.envres.2022.115152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are compounds used since 1940 in various formulations in the industrial and consumer sectors due to their high chemical and thermal stability. In recent years, PFASs have caused global concern due to their presence in different water and soil matrices, which threatens the environment and human health. These compounds have been reported to be linked to the development of serious human diseases, including but not limited to cancer. For this reason, PFASs have been considered as persistent organic compounds (COPs) and contaminants of emerging concern (CECs). Therefore, this work aims to present the advances in remediation of PFASs-contaminated soil and water by addressing the current literature. The performance and characteristics of each technique were addressed deeply in this work. The reviewed literature found that PFASs elimination studies in soil and water were carried out at a laboratory and pilot-scale in some cases. It was found that ball milling, chemical oxidation and thermal desorption are the most efficient techniques for the removal of PFASs in soils, however, phyto-microbial remediation is under study, which claims to be a promising technique. For the remediation of PFASs-contaminated water, the processes of electrocoagulation, membrane filtration, ozofractionation, catalysis, oxidation reactions - reduction, thermolysis and destructive treatments with plasma have presented the best results. It is noteworthy that hybrid treatments have also proved to be efficient techniques in the removal of these contaminants from soil and water matrices. Therefore, the improvisation and implication of existing techniques on a field-scale are greatly warranted to corroborate the yields obtained on a pilot- and laboratory-scale.
Collapse
Affiliation(s)
- Angelo Noe Marquínez-Marquínez
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador.
| | - Nikolt Stephanie Loor-Molina
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador.
| | | | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador.
| |
Collapse
|
12
|
Li J, Xi B, Zhu G, Yuan Y, Liu W, Gong Y, Tan W. A critical review of the occurrence, fate and treatment of per- and polyfluoroalkyl substances (PFASs) in landfills. ENVIRONMENTAL RESEARCH 2023; 218:114980. [PMID: 36460077 DOI: 10.1016/j.envres.2022.114980] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The aim of this critical review is i) to summarize the occurrence of Per- and polyfluoroalkyl substances (PFASs) in landfills; ii) to outline the environmental fate and transport of PFASs in landfills; iii) to compare the treatment technologies of PFASs in landfill leachate and remediation methods of PFASs in surrounding groundwater; iv) to identify the research gaps and suggest future research directions. In recent years, PFASs have been detected in landfills around the world, among which Perfluoroalkyl acids (PFAAs) especially Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonic acid (PFOS) are mostly studied due to their long-term stability. Short-chain PFASs (<8 carbons) are more common than long-chain PFASs (≧8 carbons) in landfill leachate. PFASs in landfill leachate are eventually transported to the surrounding groundwater, surface water and soil. Some PFASs evaporate from landfills to the ambient air. To avoid the environmental and health risks of PFASs in landfills, new technologies and combined use of existing technologies have been implemented to treat PFASs in landfill leachate. Integrated remediation methods are applied to control the diffusion of PFASs in groundwater surrounding landfills. In future, the mechanisms of PFAAs precursors degradation, the correlation among PFASs in different environmental media around landfills, as well as the environmental behavior and toxic effect of combined pollutants together with PFASs in landfill leachate and surrounding groundwater should be studied.
Collapse
Affiliation(s)
- Jia Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Weijiang Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
13
|
Anderson RH, Feild JB, Dieffenbach-Carle H, Elsharnouby O, Krebs RK. Assessment of PFAS in collocated soil and porewater samples at an AFFF-impacted source zone: Field-scale validation of suction lysimeters. CHEMOSPHERE 2022; 308:136247. [PMID: 36049637 DOI: 10.1016/j.chemosphere.2022.136247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) measurable in soil porewater authoritatively represent the mobile mass fraction critical to accurate assessment of leaching from source zones. This study evaluated PFAS occurrence in lysimeter-collected porewater samples for two depth intervals at a decades-old aqueous film-forming foam (AFFF)-impacted field site quarterly for a year. Notably, site-wide Log10 (∑PFAS) concentrations did not significantly differ among sampling events despite highly variable sample yields due to a heterogeneous and dynamic soil moisture regime. However, Log10 (∑PFAS) concentrations were significantly higher in the shallow interval concordant with higher mean soil concentrations and higher total organic carbon (TOC) reflecting net retention, which is supported by soil-to-groundwater annual mass discharge estimates less than 0.2% of the total source mass for any given PFAS. Interestingly, PFAS-specific Log10 (soil-to-porewater ratios) significantly increased with soil concentration in both depth intervals contrary to concentration dependence resulting from the saturation of sorption sites potentially implicating self-assembly as an additional operative retention mechanism. Overall, these data validate the use of suction lysimeters for short-term site characterization deployments and emphasize the importance of in situ porewater samples for interrogating PFAS transport within source zones.
Collapse
Affiliation(s)
| | - James B Feild
- Wood Environment & Infrastructure Solutions, Inc., Knoxville, TN, USA
| | | | - Omneya Elsharnouby
- Wood Environment & Infrastructure Solutions, Inc., Cambridge, Ontario, Canada
| | - Rita K Krebs
- Air Force Civil Engineer Center, Ellsworth AFB, SD, USA
| |
Collapse
|
14
|
Contrastive study on organic contaminated soils remediated using dielectric barrier discharge (DBD) plasma. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Nighojkar A, Sangal VK, Dixit F, Kandasubramanian B. Sustainable conversion of saturated adsorbents (SAs) from wastewater into value-added products: future prospects and challenges with toxic per- and poly-fluoroalkyl substances (PFAS). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78207-78227. [PMID: 36184702 DOI: 10.1007/s11356-022-23166-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Following circular economy principles, the reuse or recycling of saturated adsorbents (SAs or adsorbate-laden adsorbents) into a low-cost engineered product is a valuable alternative to eliminate secondary pollution after adsorption. This review evaluates the application of SAs for the generation of products that can serve as (i) antimicrobial agents or disinfectants, (ii) materials for civil construction, (iii) catalysts, (iv) fertilizers, and (v) secondary adsorbents. The importance of SAs configuration in terms of functional groups, surface area and pore morphology played a crucial role in their reutilization. The SAs-laden silver ions (Ag+) strongly inhibit (~ 99%) the growth of Escherichia coli and Staphylococcus aureus microbes found in drinking and wastewaters. The intra-solidification of SAs containing toxic metal pollutants (As3+ and F-) with cementitious materials can effectively reduce their leaching below permissible limits of USEPA standards for their utility as additives in construction work. The existence of transition metal ions (Cu2+, Cr3+/6+, Ni2+) on the surface of SAs boosted activity and selectivity towards the desired product during catalytic oxidation, degradation, and conversion processes. The thermally recycled SAs can assist in the secondary adsorption of pollutants from another waste solution due to a larger surface area (> 1000 m2g-1). However, there are chances that the SAs discussed above will contain traces of PFAS. The article summarizes the challenges, performance efficacy, and future prospects at the end of each value-added product. We also highlight critical challenges for managing PFAS-laden SAs and stimulate new perspectives to minimize PFAS in air, water, and soils.
Collapse
Affiliation(s)
- Amrita Nighojkar
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (D.U.), Pune, India
| | - Vikas Kumar Sangal
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, India
| | - Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (D.U.), Pune, India.
| |
Collapse
|
16
|
Hitzelberger M, Khan NA, Mohamed RAM, Brusseau ML, Carroll KC. PFOS Mass Flux Reduction/Mass Removal: Impacts of a Lower-Permeability Sand Lens within Otherwise Homogeneous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13675-13685. [PMID: 36126139 PMCID: PMC9664819 DOI: 10.1021/acs.est.2c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is one of the most common per- and polyfluoroalkyl substances (PFAS) and is a significant risk driver for these emerging contaminants of concern. A series of two-dimensional flow cell experiments was conducted to investigate the impact of flow field heterogeneity on the transport, attenuation, and mass removal of PFOS. A simplified model heterogeneous system was employed consisting of a lower-permeability fine sand lens placed within a higher-permeability coarse sand matrix. Three nonreactive tracers with different aqueous diffusion coefficients, sodium chloride, pentafluorobenzoic acid, and β-cyclodextrin, were used to characterize the influence of diffusive mass transfer on transport and for comparison to PFOS results. The results confirm that the attenuation and subsequent mass removal of the nonreactive tracers and PFOS were influenced by mass transfer between the hydraulically less accessible zone and the coarser matrix (i.e., back diffusion). A mathematical model was used to simulate flow and transport, with the values for all input parameters determined independently. The model predictions provided good matches to the measured breakthrough curves, as well as to plots of reductions in mass flux as a function of mass removed. These results reveal the importance of molecular diffusion and pore water velocity variability even for systems with relatively minor hydraulic conductivity heterogeneity. The impacts of the diffusive mass transfer limitation were quantified using an empirical function relating reductions in contaminant mass flux (MFR) to mass removal (MR). Multi-step regression was used to quantify the nonlinear, multi-stage MFR/MR behavior observed for the heterogeneous experiments. The MFR/MR function adequately reproduced the measured data, which suggests that the MFR/MR approach can be used to evaluate PFOS removal from heterogeneous media.
Collapse
Affiliation(s)
- Michael Hitzelberger
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Naima A Khan
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Ruba A M Mohamed
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Mark L Brusseau
- University of Arizona Environmental Science Department, University of Arizona, Tucson, Arizona 85721, United States
| | - Kenneth C Carroll
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
- University of Arizona Hydrology and Atmospheric Sciences Department, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
17
|
Kobayashi T, Phuoc Tri P. Effect of High-Power Ultrasound Washing on Arsenic-Polluted Soil. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.22we027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takaomi Kobayashi
- Department of Science and Technology Innovation, Nagaoka University of Technology, Japan
| | - Phan Phuoc Tri
- Department of Science and Technology Innovation, Nagaoka University of Technology, Japan
| |
Collapse
|
18
|
Zhou W, Sarpong F, Zhou C. Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Foods 2022; 11:foods11182874. [PMID: 36141006 PMCID: PMC9498452 DOI: 10.3390/foods11182874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
In an era of rapid technological development, ultrasound technology is being used in a wide range of industries. The use of ultrasound technology in fruit and vegetable processing to improve production efficiency and product quality has been an important research topic. The cleaning of whole fresh fruits and vegetables is an important part of fruit and vegetable processing. This paper discusses the development process of components of the ultrasonic equipment, the application of ultrasonic technology in fruit and vegetable cleaning, and the research advances in ultrasonic cleaning technology. Moreover, the feasibility of ultrasonication of fruits and vegetables for cleaning from the perspectives of microbial inactivation, commodity storage, and sensory analysis were discussed. Finally, the paper identified the inevitable disadvantages of cavitation noise, erosion, and tissue damage in fruit and vegetable processing and points out the future directions of ultrasonic fruit and vegetable cleaning technology.
Collapse
Affiliation(s)
- Wenhao Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Frederick Sarpong
- Value Addition Division, CSIR-Oil Palm Research Institute, Kade P.O. Box 74, Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: ; Tel.: +86-511-88780201
| |
Collapse
|
19
|
Kewalramani JA, Wang B, Marsh RW, Meegoda JN, Rodriguez Freire L. Coupled high and low-frequency ultrasound remediation of PFAS-contaminated soils. ULTRASONICS SONOCHEMISTRY 2022; 88:106063. [PMID: 35738199 PMCID: PMC9218828 DOI: 10.1016/j.ultsonch.2022.106063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Solids such as soils and sediments contaminated with per- and polyfluorinated alkyl substances (PFAS) from exposure to impacted media, e.g., landfill leachate or biosolids, direct contaminated discharge, and contaminant transport from atmospheric deposition, have caused significant environmental pollution. Such solids can act as secondary sources of PFAS for groundwater and surface water contamination. There are currently no proven technologies that can degrade PFAS in soil and sediments in a cost-effective, environmentally-friendly, and energy-efficient manner. This study examines the use of coupled high and low-frequency ultrasound in desorbing and degrading PFAS in soil, thereby achieving concurrent treatment and destruction of PFAS in soil. Two common PFAS, namely perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were used to evaluate treatment performance in soils with both low and high organic matter contents. The test results showed that the ultrasound treatment could significantly reduce PFAS concentrations in artificially contaminated soil; however, no significant degradation was achieved. Ultrasound treatment did improve desorption of PFAS from solid particles, particularly from the highly absorbent organic soil; 68.8 ± 1.8% of PFOA and 45.4 ± 4.1% of PFOS were leached from the soil after ultrasound treatment compared to only 28 ± 0.2% of PFOA and 1 ± 3.1% of PFOSafter desorption in water. This work shows that sonication treatment is an effective technology for the removal of PFAS from solids, however, the presence of solids in the solid-liquid slurry can negatively impact ultrasonic cavitation, inhibiting the sonolytic degradation of desorbed PFAS.
Collapse
Affiliation(s)
- Jitendra A Kewalramani
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Boran Wang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Richard W Marsh
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Jay N Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| | - Lucia Rodriguez Freire
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| |
Collapse
|
20
|
PFAS Molecules: A Major Concern for the Human Health and the Environment. TOXICS 2022; 10:toxics10020044. [PMID: 35202231 PMCID: PMC8878656 DOI: 10.3390/toxics10020044] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments.
Collapse
|