1
|
Liu S, Yuan X, Shao Z, Xiang K, Huang W, Tian H, Hong F, Huang Y. Investigation of singlet oxygen and superoxide radical produced from vortex-based hydrodynamic cavitation: Mechanism and its relation to cavitation intensity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172761. [PMID: 38670357 DOI: 10.1016/j.scitotenv.2024.172761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Presently, the hydroxyl radical oxidation mechanism is widely acknowledged for the degradation of organic pollutants based on hydrodynamic cavitation technology. The presence and production mechanism of other potential reactive oxygen species (ROS) in the cavitation systems are still unclear. In this paper, singlet oxygen (1O2) and superoxide radical (·O2-) were selected as the target ROS, and their generation rules and mechanism in vortex-based hydrodynamic cavitation (VBHC) were analyzed. Computational fluid dynamics (CFD) were used to simulate and analyze the intensity characteristics of VBHC, and the relationship between the generation of ROS and cavitation intensity was thoroughly revealed. The results show that the operating conditions of the device have a significant and complicated influence on the generation of 1O2 and ·O2-. When the inlet pressure reaches to 4.5 bar, it is more favorable for the generation of 1O2 and ·O2- comparing with those lower pressure. However, higher temperature (45 °C) and aeration rate (15 (L/min)/L) do not always have positive effect on the 1O2 and ·O2- productions, and their optimal parameters need to be analyzed in combination with the inlet pressure. Through quenching experiments, it is found that 1O2 is completely transformed from ·O2-, and ·O2- comes from the transformation of hydroxyl radicals and dissolved oxygen. Higher cavitation intensity is captured and shown more disperse in the vortex cavitation region, which is consistent with the larger production and stronger diffusion of 1O2 and ·O2-. This paper shed light to the generation mechanism of 1O2 and ·O2- in VBHC reactors and the relationship with cavitation intensity. The conclusion provides new ideas for the research of effective ROS in hydrodynamic cavitation process.
Collapse
Affiliation(s)
- Shuchang Liu
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Xi Yuan
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Zhewen Shao
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Kexin Xiang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Wenfang Huang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Hailin Tian
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Feng Hong
- College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Yingping Huang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
2
|
Taheri E, Fatehizadeh A, Hadi S, Amin MM, Khiadani M, Ghasemian M, Rafiei N, Rezakazemi M, Aminabhavi TM. Mesoporous bimetallic S-doped nanoparticles prepared via hydrothermal method for enhanced photodegradation of 4-chlorophenol. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119460. [PMID: 37939471 DOI: 10.1016/j.jenvman.2023.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Magnesium oxides (MgO) have gained shown significant promise for a variety of applications, which can be modified by ions doping. In this study, bimetallic Ag-doped S-MgO nanoparticles were prepared by hydrothermal method and used for photocatalytic degradation of 4-chlorophenl (4-CP). EDX suggested the presence of no impurities, which mainly contained Mg, Ag, and S elements, suggesting that S and Ag were incorporated into the lattice of MgO as a result of successful doping. Estimated bandgap of Ag-doped S-MgO nanoparticles was 3.7 eV, lower than MgO (7.8 eV), but useful to improve optical characteristics and photocatalytic efficiency to degrade 4-CP up to a maximum of 99.60 ± 0.50%. The synergetic parameter during photocatalysis of 4-CP was 6.91, confirming the degradation of 4-CP. Quenching experiments proved the presence of hydroxyl radicals (•OH) and singlet dioxygen (1O2) that were critical in 4-CP degradation. The kinetics rate constant was increased by 24.8% from 0.086 ± 0.004 to 0.108 ± 0.005 min-1 by the addition of sulfate in the reaction medium. The work proposes a new synthetic method for preparing catalysts that are capable of producing in-situ •OH radicals and 1O2 to decompose the organic contaminants.
Collapse
Affiliation(s)
- Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sousan Hadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Mohammad Ghasemian
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nasim Rafiei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| |
Collapse
|
3
|
Noori E, Eris S, Omidi F, Asadi A. Hybrid approaches based on hydrodynamic cavitation, peroxymonosulfate and UVC irradiation for treatment of organic pollutants: fractal like kinetics, modeling and process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85835-85849. [PMID: 37393590 DOI: 10.1007/s11356-023-28492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Hydrodynamic cavitation (HC) was emerged as one of the most potential technologies for industrial-scale wastewater or water treatment. In this work, a combined system of HC, peroxymonosulfate (PMS) and UVC irradiation (HC - PMS - UVC) was constructed for effective degradation of carbamazepine. The effect of several experimental parameters and conditions on the carbamazepine degradation was considered. The results show that the degradation and mineralization rates increases with an increase in the inlet pressure from 1.3 to 4.3 bars. The rates of carbamazepine degradation with the combined processes of HC - PMS - UVC, HC - PMS, HC - UVC, and UVC - PMS were 73%, 67%, 40% and 31%, respectively. Under the optimal conditions of reactor, the carbamazepine degradation and mineralization rates were 73% with 59%, respectively. The kinetics of carbamazepine degradation was studied applying a fractal-like approach. So, a new model was proposed by combining first order kinetics model and fractal-like concept. The obtained results show that the proposed fractal-like model gives a better performance compared with traditional first order kinetics model. It has been demonstrated that the HC - PMS - UVC process is a potential treatment method to destroy pharmaceutical pollutants from water and wastewater sources.
Collapse
Affiliation(s)
- Elham Noori
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Setareh Eris
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Fariborz Omidi
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anvar Asadi
- Department of Environmental Health Engineering, School of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Azizollahi N, Fatehizadeh A, Pourzamani H, Taheri E, Aminabhavi TM. Degradation of 2,4-diclorophenol via coupling zero valent iron and hydrodynamic cavitation for sulfite activation: A turbulence modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117295. [PMID: 36738716 DOI: 10.1016/j.jenvman.2023.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The 2,4-dichlorophenol (2,4-DCP) is an important chemical precursor that can affect human endocrine system and induce pathological symptoms. This research reports the degradation of 2,4-DCP using lab-scale hydrodynamic cavitation (HC) approach, which is considered a green and effective method. To promote the degradation efficiency, the zero-valent iron (Fe0) as the catalyst for sulfate radical (SO4•-) generation via activation of sulfite (SO32-) salts was simultaneously used. Degradation efficiency was favorable in acidic pH than the alkaline pH due to higher production of active radicals and was dependent on the dose of Fe0 and SO32-. Under optimal condition, degradation efficiency by Fe0/HC/sulfite (96.67 ± 2.90%) was considerably enhanced compared to HC alone (45.37 ± 2.26%). Quenching experiments suggested that SO4•-, •OH, 1O2, and O2•- radicals were involved in the degradation of 2,4-DCP by Fe0/HC/sulfite process, but the dominant role was related to •OH (70.09% contribution) and SO4•- (29.91% contribution) radicals. From the turbulence model, turbulent pressure at venturi throat decreased from -0.42 MPa to -2.02 MPa by increasing the inlet pressure from 1.0 to 4.0 bar and increase in pressure gradient has intensified bubble collapse due to higher turbulence tension.
Collapse
Affiliation(s)
- Nastaran Azizollahi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Pourzamani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India; School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India; Center for Energy and Environment,School of Advanced Sciences,KLE Technological University,Hubballi 580031 India.
| |
Collapse
|
5
|
Wu F, Nan J, Wang T, Ge Z, Liu B, Chen M, Ye X. Highly selective electrosynthesis of H 2O 2 by N, O co-doped graphite nanosheets for efficient electro-Fenton degradation of p-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130733. [PMID: 36630877 DOI: 10.1016/j.jhazmat.2023.130733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The activity and selectivity of the cathode towards electrosynthesis of H2O2 are critical for electro-Fenton process. Herein, nickel-foam modified with N, O co-doped graphite nanosheets (NO-GNSs/Ni-F) was developed as a cathode for highly efficient and selective electrosynthesis of H2O2. Expectedly, the accumulation of H2O2 at pH= 3 reached 494.2 mg L-1 h-1, with the selectivity toward H2O2 generation reaching 93.0%. The synergistic effect of different oxygen-containing functional groups and N species on the performance and selectivity of H2O2 electrosynthesis was investigated by density functional theory calculations, and the combination of epoxy and graphitic N (EP + N) was identified as the most favorable configuration with the lowest theoretical overpotential for H2O2 generation. Moreover, NO-GNSs/Ni-F was applied in the electro-Fenton process for p-nitrophenol degradation, resulting in 100% removal within 15 min with the kinetic rate constant of 0.446 min-1 and 97.6% mineralization within 6 h. The efficient removal was mainly attributed to the generation of bulk ·OH. Furthermore, NO-GNSs/Ni-F exhibited excellent stability. This work provides a workable option for the enhancement of H2O2 accumulation and the efficient degradation of pollutants in electro-Fenton system.
Collapse
Affiliation(s)
- Fangmin Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Tianzuo Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhencheng Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Bohan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Meng Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xuesong Ye
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
6
|
Roy K, Moholkar VS. Sulfadiazine degradation by combination of hydrodynamic cavitation and Fenton-persulfate: parametric optimization and deduction of chemical mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25569-25581. [PMID: 35624375 DOI: 10.1007/s11356-022-20846-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This paper reports the degradation of the sulfadiazine (SDZ) drug with a hybrid advanced oxidation process (AOP) of heterogeneous α-Fe2O3/persulfate coupled with hydrodynamic cavitation. The major objectives of the study are parametric optimization of the process and elucidation of the chemical mechanism of degradation. The optimum conditions for maximum SDZ degradation of 93.07 ± 1.67% were as follows: initial SDZ concentration = 20 ppm, pH = 4, α-Fe2O3 = 181.82 mg/L, Na2S2O8 = 348.49 mg/L, H2O2 = 0.95 mL/L, inlet pressure = 0.81 MPa (8 atm), orifice plate configuration: hole dia. = 2 mm and number of holes = 4. Density functional theory (DFT) calculations revealed that the atoms of SDZ with a high Fukui index (f 0) were potentially active sites for the attack of •OH and [Formula: see text] radicals. Fukui index calculation revealed that atom 11 N has a higher value of f 0 (0.1026) for oxidation at the α-amine group of the sulfadiazine molecule. Degradation intermediates detected through LC-MS/MS analysis corroborated the results of DFT simulations. Using these results, a chemical pathway has been proposed for SDZ degradation.
Collapse
Affiliation(s)
- Kuldeep Roy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| | | |
Collapse
|
7
|
Hybrid technology combining hydrodynamic cavitation and oxidative processes to degrade surfactants from a real effluent. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Carpenter J, Pinjari DV, Kumar Saharan V, Pandit AB. Critical Review on Hydrodynamic Cavitation as an Intensifying Homogenizing Technique for Oil-in-Water Emulsification: Theoretical Insight, Current Status, and Future Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jitendra Carpenter
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| | - Dipak V. Pinjari
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| | - Virendra Kumar Saharan
- Department of Chemical Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Aniruddha B. Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| |
Collapse
|
9
|
Waste-Tire-Derived Activated Carbon as Efficient Adsorbent of P-Nitrophenol from Wastewater. J CHEM-NY 2022. [DOI: 10.1155/2022/7313899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this work, a two-stage activation method was used to prepare adsorbents from scrap tire rubber. Firstly, KOH was mixed with rubber using different impregnation ratios (1–2) for primary activation; a second activation was performed after pyrolysis at 650°C and 750°C; and finally, the samples were acid-washed using HNO3. The prepared materials were characterized by elemental analysis, nitrogen adsorption isotherms, SEM, FTIR, and XPS. The adsorption capacity and mechanism of these materials on p-nitrophenol in wastewater were also investigated. It was found that after two-stage activation, the specific surface area of the materials can be effectively increased, and the surface of the materials can be enriched with oxygen-containing functional groups. The maximum adsorption capacity of PNP could reach 143.9 mg g−1, which is slightly higher than the literature data under the same conditions. The adsorption process is in the form of chemisorption and is dominated by hydrogen bonding and π-πEDA formation, but the adsorption tends to be monolayer, and the adsorption behavior can be described by a proposed secondary model. In addition, the adsorbent has a stronger adsorption capacity under acidic conditions.
Collapse
|
10
|
Stanbury DM. The principle of detailed balancing, the iron-catalyzed disproportionation of hydrogen peroxide, and the Fenton reaction. Dalton Trans 2022; 51:2135-2157. [PMID: 35029613 DOI: 10.1039/d1dt03645a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The iron-catalyzed disproportionation of H2O2 has been investigated for over a century, as has been its ability to induce the oxidation of other species present in the system (Fenton reaction). The mechanisms of these reactions have been under consideration at least since 1932. Unfortunately, little or no attention has been paid to ensuring the conformity of the proposed mechanisms and rate constants with the constraints of the principle of detailed balancing. Here we identify more than 200 publications having mechanisms that violate the principle of detailed balancing. These violations occur through the use of incorrect values for certain rate constants, the use of incorrect forms of the rate laws for certain steps in the mechanisms, and the inclusion of illegal loops. A core mechanism for the iron-catalyzed decomposition of H2O2 is proposed that is consistent with the principle of detailed balancing and includes both the one-electron oxidation of H2O2 by Fe(III) and the Fe(II) reduction of HO2˙.
Collapse
Affiliation(s)
- David M Stanbury
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
11
|
Tian Y, Jia N, Zhou L, Lei J, Wang L, Zhang J, Liu Y. Photo-Fenton-like degradation of antibiotics by inverse opal WO 3 co-catalytic Fe 2+/PMS, Fe 2+/H 2O 2 and Fe 2+/PDS processes: A comparative study. CHEMOSPHERE 2022; 288:132627. [PMID: 34678345 DOI: 10.1016/j.chemosphere.2021.132627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Advanced oxidation processes (AOPs) such as Fenton and Fenton-like process for pollutant removal have been widely reported. However, most papers choose one of the popular oxidants (H2O2, peroxymonosulfate (PMS) or peroxydisulfate (PDS)) as the oxidant via AOPs for pollutant degradation. The purpose of this work is to compare the degradation rates of the Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes. Furthermore, to solve the problem of slow regeneration of Fe2+, the visible light irradiation and inverse opal WO3 cocatalyst were added to the Fenton/Fenton-like process. The IO WO3 co-catalytic visible light assisted Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes greatly improved the degradation efficiency of norfloxacin (NOR), reaching about 30 times, 9 times and 12 times that of the homogeneous Fenton/Fenton-like process, respectively. On average, the TOC removal rates of PMS-based, H2O2-based and PMS-based processes for the five pollutants were 71.6%, 54.0%, and 59.6% within 60 min, and the corresponding co-catalyst treatment efficiencies were 0.215 mmol/g/h, 0.162 mmol/g/h, and 0.179 mmol/g/h, respectively. 1O2 and •O2- have been proven to play a vital role in the degradation of NOR via all the three IO WO3 co-catalytic photo-Fenton-like processes. In addition, the effects of different reaction parameters on the activity of degrading norfloxacin were explored. The IO WO3 co-catalytic visible light assisted Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes for removal of different persistent organic pollutants and norfloxacin in different actual wastewater have also been studied. Nonetheless, this study proves that IO WO3 co-catalytic visible light assisted Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes could effectively remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Yunhao Tian
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Nan Jia
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Liang Zhou
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Juying Lei
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Lingzhi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jinlong Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Yongdi Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
12
|
Pak S, Ri K, Xu C, Ji Q, Sun D, Qi C, Yang S, He H, Pak M. Fabrication of g-C 3N 4/Y-TiO 2 Z-scheme heterojunction photocatalysts for enhanced photocatalytic activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj03691b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The g-C3N4/Y-TiO2 Z-scheme heterojunction photocatalysts for enhanced photocatalytic activity that use yttrium instead of noble metals was successfully manufactured.
Collapse
Affiliation(s)
- SongSik Pak
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
- Department of Applied Chemical Engineering, Hamhung University of Chemical Industry, Hamhung, Democratic People's Republic of Korea
| | - KwangChol Ri
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
- Institute of Chemical Engineering, Hamhung University of Chemical Industry, Hamhung, Democratic People's Republic of Korea
| | - Chenmin Xu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Qiuyi Ji
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Dunyu Sun
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Chengdu Qi
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - MyongNam Pak
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
- Department of Physics, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| |
Collapse
|