1
|
Adeel M, Cirillo C, Sarno M, Rizzo L. Urban wastewater disinfection by FeCl 3-activated biochar/peroxymonosulfate system: Escherichia coli inactivation and microplastics interference. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124607. [PMID: 39053802 DOI: 10.1016/j.envpol.2024.124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Biochar coupled with peroxymonosulfate (PMS) to produce sulfate radicals and its application to urban wastewater disinfection has been rarely investigated and no information is available about microplastics (MPs) interference on the disinfection process. In this study, FeCl3-activated biochar (Fe-BC) was coupled to PMS to evaluate the inactivation of Escherichia coli (E. coli) in real secondary treated urban wastewater. Surface morphology of Fe-BC sample, characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), showed a rough texture with uniform distribution of iron particles over the entire surface area. E. coli inactivation improved (∼3.8 log units, detection limit = 1 CFU/100 mL) as Fe-BC concentration was decreased (from 1.0 g/L to 0.5 g/L), at a constant PMS dose (300 mg/L). Besides, removal efficiency of E. coli was negatively affected by the presence of small (30-50 μm) polyethylene MPs (PE MPs) (200 mg/L), which could be attributed to the adsorption of MPs on Fe-BC surface, according to SEM images of post-treated Fe-BC. The low disinfection efficiency of Fe-BC/PMS system in presence MPs could be due to blocking of Fe-BC sites for PMS activation and/or radicals scavenging during treatment. These results allowed to unveil the mechanisms of MPs interference on E. coli inactivation by Fe-BC/PMS, as well as the potential of this process to make the effluent in compliance with the stringent limit for agricultural reuse.
Collapse
Affiliation(s)
- Mister Adeel
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Claudia Cirillo
- Department of Physics "E.R. Caianiello" and Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Maria Sarno
- Department of Physics "E.R. Caianiello" and Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
2
|
Liu Y, Dai J, Li C, Wang Y, Zhao J, Li B, Ye J. 3D variable Co species carbon foam enhanced reactive oxygen species generation and ensured long-term stability for water purification. J Colloid Interface Sci 2023; 641:737-746. [PMID: 36965344 DOI: 10.1016/j.jcis.2023.03.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Cobalt (Co) and oxides are the most common catalysts for activating peroxymonosulfate (PMS). However, practical applications of Co-based PMS-advanced oxidation processes are difficult to realize the degradation of the targeted pollutants due to poor yield of reactive oxygen species (ROS) and inaccessible active sites. Here, we designed 3D oxygen vacancy-rich (Vo-rich) variable Co species@carbon foam (CoxOy@CF) via coupling solvent-free and pyrolysis strategies for degrading tetracycline by PMS activation. The kinetic rate of optimized (Co@CoO) CoxOy@CF-1.0 (1.0 presented the molar ratio of Co2+ and 2-methylimidazole) enhanced by an order of magnitude compared to that of ZIFs derivatives (ZIFs-500) (0.073 vs 0.155 min-1) due to the special structure. The flow-through unit maintained over 90% removal within 12 h, which was far better than that of ZIFs-500/PMS system. We used electrochemical analysis, quenching experiment, in-situ FTIR and Raman spectra to further investigate the possible mechanism of the 3D CoxOy@CF-1.0/PMS system. 3D CoxOy@CF-1.0 stimulated the production of the metastable catalyst-PMS* complex obtained O2- as intermediates accompanied by the redox cycling of Co2+/Co3+, which created the dominant ROS (more 1O2) in the presence of Vo, which was completely different for ZIFs-500/PMS with coordinated and dominant radical and non-radical pathways. This study could large-scale generate variable cobalt-based catalysts for enhanced ROS generation, leading the new insight for boosting practical applications.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Agrochem Laboratory Co., Ltd, Chang Zhou, Jiangsu 213022, China
| | - ChunXiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Binrong Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| |
Collapse
|
3
|
Xie F, Shi Q, Bai H, Liu M, Zhang J, Qi M, Zhang J, Li Z, Zhu W. An anode fabricated by Co electrodeposition on ZIF-8/CNTs/CF for peroxymonosulfate (PMS) activation. CHEMOSPHERE 2023; 313:137384. [PMID: 36436580 DOI: 10.1016/j.chemosphere.2022.137384] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
A Co@ZIF-8/CNTs-CF anode for PMS activation was prepared by Co electrodeposition on carbon felt (CF) modified with ZIF-8 and carbon nanotubes (CNTs). The results showed that the fabricated Co@ZIF-8/CNTs-CF anode was an effective peroxymonosulfate (PMS) activator toward tetracycline (TC) removal. Compared with that in reaction system of bare CF anode + PMS, the reaction system of Co@ZIF-8/CNTs-CF anode + PMS exhibited 3.08 times decrease in the activation energy demanded and 4.21 times increase in the reaction rate constant (k), resulting in a kinetic favorable process of PMS activation by the Co@ZIF-8/CNTs-CF anode. The enhanced activation performance of the fabricated anode was ascribed to the high contents of the pyrrolic N and low valence state of Co in the Co@ZIF-8/CNTs-CF anode. Furthermore, the influence factors on the characteristics of transformation among the generated reactive species during the anodic PMS activation process were comprehensively investigated by the quenching experiments and the electron paramagnetic resonance (EPR) tests. The results showed that the SO4•- and reactive oxygen-containing reactive species (O2•- and 1O2) were generated during the activation of PMS by anode and became the major contributors toward TC removal. The production of 1O2 was through the dismutation of O2•-. In addition, the EPR experiments demonstrated that O2•- was generated mainly through the anodic PMS activation but the electrochemically driven molecular oxygen reduction reaction (ORR) process. The fabricated Co@ZIF-8/CNTs-CF anode for PMS activation provided a reference for the wastewater treatment based on the electrochemical advanced oxidation processes (EAOPs).
Collapse
Affiliation(s)
- Fangshu Xie
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiyu Shi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiling Bai
- College of Literature, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meiyu Liu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingbin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meiyun Qi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
4
|
Zuo X, Nie J, Jiang B, Jiang A, Zou S, Wu J, Ding B, Wang XH, Liu Y. Direct degradation of methylene blue by unactivated peroxymonosulfate: reaction parameters, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75597-75608. [PMID: 35661306 DOI: 10.1007/s11356-022-21197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) are efficient methods for water purification. However, there are few studies on using peroxymonosulfate (PMS) to remove pollutants directly. In this study, about 76% of methylene blue (MB) was removed by PMS directly within 180 min through a non-radical pathway, verified by scavenging tests, electron paramagnetic resonance and kinetic calculations. Additionally, the effects of PMS dosage, MB concentration, temperature, initial pH and competitive anions were determined. High PMS dosage, temperature and pH promoted MB degradation (from 76 to 98%) while MB concentration showed no effect on MB removal. Besides, MB degradation followed pseudo-first-order kinetic with rate constants of 0.0082 to 0.3912 min-1. The second-order rate constant for PMS reaction with MB was 0.08 M-1 s-1 at pH 3-6, but increased dramatically to 4.68 M-1 s-1 at pH 10.50. Chlorine could be catalysed by PMS at high concentration Cl- and degradation efficiency reached 98% within 90 min. High concentration of bicarbonate accelerated MB removal due to the high pH value while humic acid showed a marginal effect on MB degradation. Furthermore, TOC removal rate of MB in the presence of chloride reached 45%, whereas PMS alone caused almost no mineralisation. This study provides new insights into pollutant removal and an additional strategy for water purification.
Collapse
Affiliation(s)
- Xu Zuo
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200433, China
| | - Jianxin Nie
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Beier Jiang
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200433, China
| | - Aijun Jiang
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200433, China
| | - Shiyang Zou
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200433, China.
| | - Junrong Wu
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200433, China
| | - Bingquan Ding
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200433, China
| | - Xue Hui Wang
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200433, China
| | - Yang Liu
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
5
|
Wang L, Li J, Liu X, Zhang J, Wen X, Song Y, Zeng P. High yield M-BTC type MOFs as precursors to prepare N-doped carbon as peroxymonosulfate activator for removing sulfamethazine: The formation mechanism of surface-bound SO 4•- on Co-N x site. CHEMOSPHERE 2022; 295:133946. [PMID: 35151702 DOI: 10.1016/j.chemosphere.2022.133946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
M-BTCs (M = Fe, Co and Mn)/melamine were used to prepare N-doped carbon materials, and their performances as activator of peroxymonosulfate (PMS) for sulfamethazine (SMZ) removal were compared. M-BTC type metal-organic frameworks (MOFs) were synthesized under room temperature, with their yield about 7.5 times of ZIF-67 which is the most used MOFs to prepare N-doped carbon materials as the catalyst of persulfate-based advanced oxidation processes. Co-BTC/melamine derived N-doped carbon materials (Co-BTC/5MNC) performed the best, even better than that of ZIF-67 derived N-doped carbon materials. Initial pH (3-9), 0-10 mM inorganic anions (Cl-, NO3-, HCO3- and H2PO42-) and humic acid (5 and 10 mg/L) had no obvious inhibition on SMZ removal with Co-BTC/5MNC as catalyst. The results of both X-ray photoelectron spectroscopy and density functional theory (DFT) calculations indicated that N-coordinated cobalt single atom site (Co-Nx) was the possible active site of Co-BTC/5MNC. Importantly, surface-bound SO4•- was identified as the dominant reactive oxygen species for SMZ removal. The SO4•- generated through the charge transfer between PMS and catalyst, and was tightly adsorbed on Co-Nx site.
Collapse
Affiliation(s)
- Liangjie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Juan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment Science, Liaoning University, Shenyang, 110136, China
| | - Jiali Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|