1
|
Lovecchio N, Giuseppetti R, Bertuccini L, Columba-Cabezas S, Di Meo V, Figliomeni M, Iosi F, Petrucci G, Sonnessa M, Magurano F, D’Ugo E. Hydrocarbonoclastic Biofilm-Based Microbial Fuel Cells: Exploiting Biofilms at Water-Oil Interface for Renewable Energy and Wastewater Remediation. BIOSENSORS 2024; 14:484. [PMID: 39451698 PMCID: PMC11506689 DOI: 10.3390/bios14100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water-oil interface, creating a distinct environment for microbial activity. In this work, we engineered a novel MFC that harnesses these biofilms by strategically positioning the positive electrode at this critical junction, integrating the biofilm's natural properties into the MFC design. These biofilms, composed of specialized hydrocarbon-degrading bacteria, are vital in supporting electron transfer, significantly enhancing the system's power generation. Next-generation sequencing and scanning electron microscopy were used to characterize the microbial community, revealing a significant enrichment of hydrocarbonoclastic Gammaproteobacteria within the biofilm. Notably, key genera such as Paenalcaligenes, Providencia, and Pseudomonas were identified as dominant members, each contributing to the degradation of complex hydrocarbons and supporting the electrogenic activity of the MFCs. An electrochemical analysis demonstrated that the MFC achieved a stable power output of 51.5 μW under static conditions, with an internal resistance of about 1.05 kΩ. The system showed remarkable long-term stability, which maintained consistent performance over a 5-day testing period, with an average daily energy storage of approximately 216 mJ. Additionally, the MFC effectively recovered after deep discharge cycles, sustaining power output for up to 7.5 h before requiring a recovery period. Overall, the study indicates that MFCs based on hydrocarbonoclastic biofilms provide a dual-functionality system, combining renewable energy generation with environmental remediation, particularly in wastewater treatment. Despite lower power output compared to other hydrocarbon-degrading MFCs, the results highlight the potential of this technology for autonomous sensor networks and other low-power applications, which required sustainable energy sources. Moreover, the hydrocarbonoclastic biofilm-based MFC presented here offer significant potential as a biosensor for real-time monitoring of hydrocarbons and other contaminants in water. The biofilm's electrogenic properties enable the detection of organic compound degradation, positioning this system as ideal for environmental biosensing applications.
Collapse
Affiliation(s)
- Nicola Lovecchio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
| | - Roberto Giuseppetti
- Department of Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (R.G.); (F.M.)
| | - Lucia Bertuccini
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (F.I.)
| | - Sandra Columba-Cabezas
- Department of Neuroscience, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Valentina Di Meo
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Mario Figliomeni
- Department of Environment and Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Francesca Iosi
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (F.I.)
| | - Giulia Petrucci
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
| | | | - Fabio Magurano
- Department of Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (R.G.); (F.M.)
| | - Emilio D’Ugo
- Department of Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (R.G.); (F.M.)
| |
Collapse
|
2
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
3
|
Pan P, Bhattacharyya N. Bioelectricity Production from Microbial Fuel Cell (MFC) Using Lysinibacillus xylanilyticus Strain nbpp1 as a Biocatalyst. Curr Microbiol 2023; 80:252. [PMID: 37354374 DOI: 10.1007/s00284-023-03338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/22/2023] [Indexed: 06/26/2023]
Abstract
Microbial fuel cells (MFCs) function by using microorganisms to decompose the substrate at the anode, producing electrons and protons. These charges are then transported to the cathode, where electricity is generated. Previous studies have shown their promising probabilities for practical applications. MFCs are praised for their ability to address energy shortages and environmental pollution simultaneously. They have the potential to generate electricity directly from organic substances, reducing energy losses that occur during intermediate conversion steps. The main challenge lies in transitioning these technologies from the laboratory setting to practical systems that can be implemented on a large scale for bioenergy production along with various engineering hurdles. This study focused on investigating the power production potential of a soil-isolated bacterial strain taxonomically classified as Lysinibacillus xylanilyticus nbpp1, which is a relatively new addition to the extensive range of biocatalysts known for their ability to generate electricity. The study analyzed the electrochemical performance of an H-type MFC setup. LB broth was used as the substrate, while aluminum and graphite served as electrode materials. Other parameters, such as Coulombic efficiency, internal resistance, and electrode corrosion rate, were also measured. The MFC produced a high open circuit voltage of 1127 mV and achieved a maximum power density of 6.71 mW/cm2 at a current density of 11.14 mA/cm2. The MFC setup successfully powered LED lamps when connected in a joint circuit, showcasing its potential for practical applications. These findings suggest the promising high electrochemical performance of the MFC system in terms of electricity generation using the specified conditions.
Collapse
Affiliation(s)
- Palash Pan
- Department of Biotechnology, Panskura Banamali College, P.O. Panskura R.S, Purba Medinipur, West Bengal, 721152, India
| | - Nandan Bhattacharyya
- Department of Biotechnology, Panskura Banamali College, P.O. Panskura R.S, Purba Medinipur, West Bengal, 721152, India.
| |
Collapse
|
4
|
Sergeevna KA, Vladimirovna PD, Valerievich MA, Alekseevich AV. Acceptor properties of "carbon nanotubes-redox-active polymer based on bovine serum albumin modified with ferrocenecarboxaldehyde" composite for creating a BOD biosensor with Blastobotrys adeninivorans BKM Y-2677 yeast. 3 Biotech 2023; 13:112. [PMID: 36883049 PMCID: PMC9985533 DOI: 10.1007/s13205-023-03500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The possibility of using a composite material based on bovine serum albumin (BSA) covalently bonded with ferrocenecarboxaldehyde and containing carbon nanotubes (CNT) for the immobilization of Blastobotrys adeninivorans BKM Y-2677 (B. adeninivorans) yeast is discussed. The optimal ratio of ferrocenecarboxaldehyde to BSA for the redox-active polymer synthesis is 1:2, since the heterogeneous electron transfer constant is 0.45 ± 0.01 s-1. When carbon nanotubes (CNTs) are added to this polymer, the heterogeneous electron transfer constant increases: at a CNT specific density of 2.5 µg/mm2, it reaches a maximum value of 0.55 ± 0.01 s-1. The addition of CNTs into the conducting system leads to increasing of the rate constant of interaction redox species with B. adeninivorans yeast by an order: the rate constant of interaction between B. adeninivorans yeast and electroactive particles in a redox-active polymer is 0.056 ± 0.005 dm3/g × s and in a composite material based on CNTs is 0.51 ± 0.02 dm3/g × s. The yeast specific density at the electrode of 0.1 mg/mm2 and electrolyte pH of 6.2 was chosen as the working value for the receptor system operation. Immobilized in a composite material, yeast oxidizes a wider range of substrates compared with a similar receptor element based on the ferrocene mediator. The biosensors formed on the basis of hybrid polymers have a high sensitivity with a lower limit of determined concentrations of 1.5 mg/dm3 with an assay time of 5 min and a high correlation (R = 0.9945) with the results of the standard method for determining biochemical oxygen demand (BOD) in nine real surface water samples of the Tula region.
Collapse
Affiliation(s)
| | | | - Machulin Andrey Valerievich
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, A Separate Subdivision of the FRC Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prosp. Science 3, Pushchino, Moscow Oblast 142290 Russia
| | | |
Collapse
|
5
|
Verma M, Singh V, Mishra V. Moving towards the enhancement of extracellular electron transfer in electrogens. World J Microbiol Biotechnol 2023; 39:130. [PMID: 36959310 DOI: 10.1007/s11274-023-03582-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Electrogens are very common in nature and becoming a contemporary theme for research as they can be exploited for extracellular electron transfer. Extracellular electron transfer is the key mechanism behind bioelectricity generation and bioremediation of pollutants via microbes. Extracellular electron transfer mechanisms for electrogens other than Shewanella and Geobacter are less explored. An efficient extracellular electron transfer system is crucial for the sustainable future of bioelectrochemical systems. At present, the poor extracellular electron transfer efficiency remains a decisive factor in limiting the development of efficient bioelectrochemical systems. In this review article, the EET mechanisms in different electrogens (bacteria and yeast) have been focused. Apart from the well-known electron transfer mechanisms of Shewanella oneidensis and Geobacter metallireducens, a brief introduction of the EET pathway in Rhodopseudomonas palustris TIE-1, Sideroxydans lithotrophicus ES-1, Thermincola potens JR, Lysinibacillus varians GY32, Carboxydothermus ferrireducens, Enterococcus faecalis and Saccharomyces cerevisiae have been included. In addition to this, the article discusses the several approaches to anode modification and genetic engineering that may be used in order to increase the rate of extracellular electron transfer. In the side lines, this review includes the engagement of the electrogens for different applications followed by the future perspective of efficient extracellular electron transfer.
Collapse
Affiliation(s)
- Manisha Verma
- School of Biochemical Engineering, IIT (BHU), 221005, Varanasi, India
| | - Vishal Singh
- School of Biochemical Engineering, IIT (BHU), 221005, Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT (BHU), 221005, Varanasi, India.
| |
Collapse
|
6
|
Hubenova Y, Chorbadzhiyska E, Kostov KL, Mitov M. Efficient gold recovery by microbial electrochemical technologies. Bioelectrochemistry 2022; 149:108311. [DOI: 10.1016/j.bioelechem.2022.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
|
7
|
Aliyah, Nasution MAF, Ayudia Putri YMT, Gunlazuardi J, Ivandini TA. Modification of carbon foam with 4-mercaptobenzoic acid functionalised gold nanoparticles for an application in a yeast-based microbial fuel cell. RSC Adv 2022; 12:28647-28657. [PMID: 36320496 PMCID: PMC9540246 DOI: 10.1039/d2ra05100a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 02/24/2023] Open
Abstract
Modification of carbon foam with gold nanoparticles (AuNPs) was successfully performed through a hydrothermal method. The modified AuNPs were functionalised with 4-mercaptobenzoic acid (MBA) to improve their affinity toward microorganisms. TEM and SEM characterization indicated that although polydisperse spherical nanoparticles of AuNPs with particle sizes around 17 nm were obtained, the attached nanoparticles were agglomerated to be around 0.4 to 1.5 μm in size on the carbon foam surface. The electrochemical studies using cyclic voltammetry technique affirmed that the modified carbon foam electrodes have electroactive properties against glucose. Evaluation of the electrode was performed for a microbial fuel cell using Candida fukuyamaensis yeast as the microorganisms. The polarization curves showed that functionalisation of AuNPs-modified carbon foam with MBA provides around three times higher current density (1226.93 mA m-2) and power density (330.61 mW m-2) compared to the unmodified one. This result indicated that the modification is suitable to improve yeast attachment on the electrode surface.
Collapse
Affiliation(s)
- Aliyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok Depok 16424 Indonesia
| | | | - Yulia Mariana Tesa Ayudia Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok Depok 16424 Indonesia
| | - Jarnuzi Gunlazuardi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok Depok 16424 Indonesia
| | - Tribidasari Anggraningrum Ivandini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok Depok 16424 Indonesia
| |
Collapse
|
8
|
Wang J, Ren K, Zhu Y, Huang J, Liu S. A Review of Recent Advances in Microbial Fuel Cells: Preparation, Operation, and Application. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040044. [PMID: 36278556 PMCID: PMC9589990 DOI: 10.3390/biotech11040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 12/07/2022]
Abstract
The microbial fuel cell has been considered a promising alternative to traditional fossil energy. It has great potential in energy production, waste management, and biomass valorization. However, it has several technical issues, such as low power generation efficiency and operational stability. These issues limit the scale-up and commercialization of MFC systems. This review presents the latest progress in microbial community selection and genetic engineering techniques for enhancing microbial electricity production. The summary of substrate selection covers defined substrates and some inexpensive complex substrates, such as wastewater and lignocellulosic biomass materials. In addition, it also includes electrode modification, electron transfer mediator selection, and optimization of operating conditions. The applications of MFC systems introduced in this review involve wastewater treatment, production of value-added products, and biosensors. This review focuses on the crucial process of microbial fuel cells from preparation to application and provides an outlook for their future development.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Kexin Ren
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Yan Zhu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- The Center for Biotechnology & Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- Correspondence:
| |
Collapse
|
9
|
Tarasov S, Plekhanova Y, Kashin V, Gotovtsev P, Signore MA, Francioso L, Kolesov V, Reshetilov A. Gluconobacter Oxydans-Based MFC with PEDOT:PSS/Graphene/Nafion Bioanode for Wastewater Treatment. BIOSENSORS 2022; 12:bios12090699. [PMID: 36140084 PMCID: PMC9496339 DOI: 10.3390/bios12090699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
Abstract
Microbial fuel cells (MFCs) are a variety of bioelectrocatalytic devices that utilize the metabolism of microorganisms to generate electric energy from organic matter. This study investigates the possibility of using a novel PEDOT:PSS/graphene/Nafion composite in combination with acetic acid bacteria Gluconobacter oxydans to create a pure culture MFC capable of effective municipal wastewater treatment. The developed MFC was shown to maintain its activity for at least three weeks. The level of COD in municipal wastewater treatment was reduced by 32%; the generated power was up to 81 mW/m2 with a Coulomb efficiency of 40%. Combining the MFC with a DC/DC boost converter increased the voltage generated by two series-connected MFCs from 0.55 mV to 3.2 V. A maximum efficiency was achieved on day 8 of MFC operation and was maintained for a week; capacitors of 6800 µF capacity were fully charged in ~7 min. Thus, G. oxydans cells can become an important part of microbial consortia in MFCs used for treatment of wastewaters with reduced pH.
Collapse
Affiliation(s)
- Sergei Tarasov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
- Correspondence:
| | - Yulia Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
| | - Vadim Kashin
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Pavel Gotovtsev
- Biotechnology and Bioenergy Department, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow Region, 141701 Dolgoprudny, Russia
| | - Maria Assunta Signore
- CNR IMM, Institute for Microelectronics and Microsystems, Via Monteroni, I-73100 Lecce, Italy
| | - Luca Francioso
- CNR IMM, Institute for Microelectronics and Microsystems, Via Monteroni, I-73100 Lecce, Italy
| | - Vladimir Kolesov
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
| |
Collapse
|
10
|
Improved energy efficiency in microbial fuel cells by bioethanol and electricity co-generation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:84. [PMID: 35978352 PMCID: PMC9382818 DOI: 10.1186/s13068-022-02180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Microbial electricity production has received considerable attention from researchers due to its environmental friendliness and low price. The increase in the number of intracellular electrons in a microbial fuel cell (MFC) helps to improve the MFC performance.
Results
In this study, we accumulated excess electrons intracellularly by knocking out the gene related to intracellular electron consumption in Saccharomyces cerevisiae, and the elevated intracellular electron pool positively influenced the performances of MFCs in terms of electricity production, while helping to increase ethanol production and achieve ethanol and electricity co-production, which in turn improved the utilization of substrates. The final knockout strain reached a maximum ethanol yield of 7.71 g/L and a maximum power density of 240 mW/m2 in the MFC, which was 12 times higher than that of the control bacteria, with a 17.3% increase in energy utilization.
Conclusions
The knockdown of intracellular electron-consuming genes reported here allowed the accumulation of excess electrons in cells, and the elevated intracellular electron pool positively influenced the electrical production performance of the MFC. Furthermore, by knocking out the intracellular metabolic pathway, the yield of ethanol could be increased, and co-production of ethanol and electricity could be achieved. Thus, the MFC improved the utilization of the substrate.
Collapse
|
11
|
Saravanan A, Kumar PS, Srinivasan S, Jeevanantham S, Kamalesh R, Karishma S. Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy. CHEMOSPHERE 2022; 290:133295. [PMID: 34914952 DOI: 10.1016/j.chemosphere.2021.133295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) is one of the promising alternative energy systems where the catalytic conversion of chemical energy into electrical energy takes places with the help of microorganisms. The basic configuration of MFC consists of three major components such as electrodes (anode and cathode), catalyst (microorganism) and proton transport/exchange membrane (PEM). MFC classified into four types based on the substrate utilized for the catalytic energy conversion process such as Liquid-phase MFC, Solid-phase MFC, Plant-MFC and Algae-MFC. The core performance of MFC is organic substrate oxidation and electron transfer. Microorganisms and electrodes are the key factors that decide the efficiency of MFC system for electricity generation. Microorganism catalysis degradation of organic matters and assist the electron transfer to anode surface, the conductivity of anode material decides the rate of electron transport to cathode through external circuit where electrons are reduced with hydrogen and form water with oxygen. Not limited to electricity generation, MFC also has diverse applications in different sectors including wastewater treatment, biofuel (biohydrogen) production and used as biosensor for detection of biological oxygen demand (BOD) of wastewater and different contaminants concentration in water. This review explains different types of MFC systems and their core performance towards energy conversion and waste management. Also provides an insight on different factors that significantly affect the MFC performance and different aspects of application of MFC systems in various sectors. The challenges of MFC system design, operations and implementation in pilot scale level and the direction for future research are also described in the present review.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| |
Collapse
|