1
|
Fan Y, Zhang F, He K, Yu D, Chen H, Tian D, Shi Y, Li Z, Wang X. Functional microorganisms in hydrogen production: Mechanisms and applications. BIORESOURCE TECHNOLOGY 2024; 419:132007. [PMID: 39733810 DOI: 10.1016/j.biortech.2024.132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
The rapid growth of global energy demand accelerates the development of sustainable, clean, and renewable energy sources. Biohydrogen production, driven by functional microorganisms, offers a promising solution. Multiple species of bacteria, fungi, microalgae, and archaea were able to produce hydrogen. This study reviewed the typical strains, together with their hydrogen-production mechanisms, e.g., bio-photolysis, photo fermentation, and dark fermentation. Bacteria (e.g., purple non-sulfur bacteria) and microalgae (e.g., cyanobacteria) have been widely investigated, with respect to the limited fungi and archaea. It showed that temperature, pH, and substrate availability could all substantially influence the efficiency of biohydrogen production. Meanwhile, photo and dark fermentations are favored for future possible industrial applications. Furthermore, this review summarized practical applications of biohydrogen production, such as applications of bioreactors, waste treatments, and integrated systems for hydrogen production, highlighting the importance of functional microorganisms in advancing biohydrogen technology under global energy crisis.
Collapse
Affiliation(s)
- Yonghong Fan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feiran Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kun He
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China.
| | - Dan Yu
- North China Power Engineering Co., Ltd of China Power Engineering Consulting Group, Beijing 100120, China
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Da Tian
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xiaomei Wang
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| |
Collapse
|
2
|
Modzelewska A, Jackowski M, Boutikos P, Lech M, Grabowski M, Krochmalny K, Martínez MG, Aragón-Briceño C, Arora A, Luo H, Fiori L, Xiong Q, Arshad MY, Trusek A, Pawlak-Kruczek H, Niedzwiecki L. Sustainable production of biohydrogen: Feedstock, pretreatment methods, production processes, and environmental impact. FUEL PROCESSING TECHNOLOGY 2024; 266:108158. [DOI: 10.1016/j.fuproc.2024.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Correa-Villa C, Moreno-Cárdenas E, de Bruijn J. Presence of lactic acid bacteria in hydrogen production by dark fermentation: competition or synergy. World J Microbiol Biotechnol 2024; 40:380. [PMID: 39532795 DOI: 10.1007/s11274-024-04167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Dark fermentation in mixed cultures has been extensively studied due to its great potential for sustainable hydrogen production from organic wastes. However, microbial composition, substrate competition, and inhibition by fermentation products can affect hydrogen yield and production rates. Lactic acid bacteria have been identified as the key organisms in this process. On one hand, lactic acid bacteria can efficiently compete for carbohydrate rich substrates, producing lactic acid and secreting bacteriocins that inhibit the growth of hydrogen-producing bacteria, thereby decreasing hydrogen production. On the other hand, due to their metabolic capacity and synergistic interactions with certain hydrogen-producing bacteria, they contribute positively in several ways, for example by providing lactic acid as a substrate for hydrogen generation. Analyzing different perspectives about the role of lactic acid bacteria in hydrogen production by dark fermentation, a literature review was done on this topic. This review article shows a comprehensive view to understand better the role of these bacteria and their influence on the process efficiency, either as competitors or as contributors to hydrogen production by dark fermentation.
Collapse
Affiliation(s)
- Cindy Correa-Villa
- Facultad de Ingeniería Agrícola, Universidad de Concepción, 3780000, Chillán, Ñuble, Chile.
| | - Edilson Moreno-Cárdenas
- Departamento de Ingeniería Agrícola y de Alimentos, Universidad Nacional de Colombia-Sede Medellín, 050034, Antioquia, Colombia
| | - Johannes de Bruijn
- Facultad de Ingeniería Agrícola, Universidad de Concepción, 3780000, Chillán, Ñuble, Chile
- Centro de Desarrollo Tecnológico Agroindustrial, Facultad de Ingeniería Agrícola, Universidad de Concepción, 4440000, Los Ángeles, Biobio, Chile
| |
Collapse
|
4
|
Sanghvi AH, Manjoo A, Rajput P, Mahajan N, Rajamohan N, Abrar I. Advancements in biohydrogen production - a comprehensive review of technologies, lifecycle analysis, and future scope. RSC Adv 2024; 14:36868-36885. [PMID: 39559569 PMCID: PMC11572884 DOI: 10.1039/d4ra06214k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
The global shift towards sustainable energy sources, necessitated by climate change concerns, has led to a critical review of biohydrogen production (BHP) processes and their potential as a solution to environmental challenges. This review evaluates the efficiency of various reactors used in BHP, focusing on operational parameters such as substrate type, pH, temperature, hydraulic retention time (HRT), and organic loading rate (OLR). The highest yield reported in batch, continuous, and membrane reactors was in the range of 29-40 L H2/L per day at an OLR of 22-120 g/L per day, HRT of 2-3 h and acidic range of 4-6, with the temperature maintained at 37 °C. The highest yield achieved was 208.3 L H2/L per day when sugar beet molasses was used as a substrate with Clostridium at an OLR of 850 g COD/L per day, pH of 4.4, and at 8 h HRT. The integration of artificial intelligence (AI) tools, such as artificial neural networks and support vector machines has emerged as a novel approach for optimizing reactor performance and predicting outcomes. These AI models help in identifying key operational parameters and their optimal ranges, thus enhancing the efficiency and reliability of BHP processes. The review also draws attention to the importance of life cycle and techno-economic analyses in assessing the environmental impact and economic viability of BHP, addressing potential challenges like high operating costs and energy demands during scale-up. Future research should focus on developing more efficient and cost-effective BHP systems, integrating advanced AI techniques for real-time optimization, and conducting comprehensive LCA and TEA to ensure sustainable and economically viable biohydrogen production. By addressing these areas, BHP can become a key component of the transition to sustainable energy sources, contributing to the reduction of greenhouse gas emissions and the mitigation of environmental impacts associated with fossil fuel use.
Collapse
Affiliation(s)
- Aarnav Hetan Sanghvi
- Department of Electrical & Electronics Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus Shameerpet Hyderabad Telangana-500078 India
| | - Amarjith Manjoo
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus Shameerpet Hyderabad Telangana-500078 India
| | - Prachi Rajput
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus Shameerpet Hyderabad Telangana-500078 India
| | - Navya Mahajan
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus Shameerpet Hyderabad Telangana-500078 India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University Sohar P C-311 Oman
| | - Iyman Abrar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus Shameerpet Hyderabad Telangana-500078 India
| |
Collapse
|
5
|
Li SJ, Sun HY, Zhang S, Zhao Y, Zhou ZY, Yu L, Wang Q, Yin K. Enhancing biohydrogen production from xylose at low temperature (20 °C) using natural FeS 2 Ore: Thermodynamic analysis and mechanistic insights. BIORESOURCE TECHNOLOGY 2024; 406:131030. [PMID: 38917911 DOI: 10.1016/j.biortech.2024.131030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
This study investigates the efficacy of pyrite in enhancing biohydrogen production from xylose at low temperature (20 °C). Higher hydrogen yield rates (Rm) and reduced lag time (λ) were achieved across initial xylose concentrations ranging from 2-10 g/L. At an optimal xylose concentration of 5 g/L, pyrite reduced λ by 2.5 h and increased Rm from 1.3 to 2.7 mL h-1. These improvements are attributed to pyrite's ability to enhance the secretion of extracellular polymeric substance and flavins, facilitate NADH and NAD+ generation and transition, and favor biohydrogen production. Thermodynamic analyses and Gibbs free energy calculations further elucidated pyrite's role in the full reaction process and rate-limiting steps at low temperature. This study offers valuable insights into improving the efficiency of biohydrogen production at low temperature, with significant implications for energy conservation.
Collapse
Affiliation(s)
- Si-Jia Li
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hao-Yu Sun
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Su Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Yang Zhou
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Klebs Environmental Technology (Suzhou) Co., Ltd, Kunshan 215333, China.
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ke Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Zhao B, Yuan A, Cao S, Dong Z, Sha H, Song Z. Advancing two-stage hydrogen production from corn stover via dark fermentation: Contributions of thermally modified maifanite to microbial proliferation and pH self-regulation. BIORESOURCE TECHNOLOGY 2024; 403:130853. [PMID: 38759895 DOI: 10.1016/j.biortech.2024.130853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
This study introduces a two-stage hydrogen production enhancement mechanism using natural particle additives, with a focus on the effects of thermally modified maifanite (TMM) and pH self-regulation on dark fermentation (DF). Initial single-factor experiments identified preliminary parameters for the addition of TMM, which were further optimized using a Box-Behnken design. The established optimal conditions which include mass of 5.5 g, particle size of 120 mesh, and temperature of 324 °C, resulted in a 28.7 % increase in cumulative hydrogen yield (CHY). During the primary hydrogen production stage, TMM significantly boosted the growth and activity of Clostridium_sensu_stricto_1, enhancing hydrogen output. Additionally, a pH self-regulating phenomenon was observed, capable of initiating secondary hydrogen production and further augmenting CHY. These findings presented a novel and efficient approach for optimizing biohydrogen production, offering significant implications for future research and application in sustainable energy technologies.
Collapse
Affiliation(s)
- Bo Zhao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Ankai Yuan
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Shengxian Cao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Zheng Dong
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Hao Sha
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Zijian Song
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
7
|
Srivastava N, Singh R, Lal B, Haque S. Evaluation of bioprocess parameters for pilot scale fermentative biohydrogen production using organic waste: Environmental remediation, techno-economic challenges & future solutions. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024. [DOI: 10.1016/j.ijhydene.2024.05.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Bertasini D, Battista F, Mancini R, Frison N, Bolzonella D. Hydrogen and methane production through two stage anaerobic digestion of straw residues. ENVIRONMENTAL RESEARCH 2024; 247:118101. [PMID: 38220080 DOI: 10.1016/j.envres.2024.118101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Anaerobic digestion of agricultural waste can contribute to the European renewable energy needs. The 71% of the 20,000 anaerobic digestion plants in operation already uses these agro-waste as feedstock; part of these plants can be converted into two stage processes to produce hydrogen and methane in the same plant. Biomethane enriched in hydrogen can replace natural gas in grids while contributing to the sector decarbonisation. Straw is the most abundant agricultural residue (156 Mt/y) and its conventional final fate is uncontrolled soil disposal, landfilling, incineration or, in the best cases, composting. The present research work focuses on the fermentation of spent mushroom bed, an agricultural lignocellulosic byproduct, composed mainly from wheat straw. The substrate has been characterized and semi-continuous tests were performed evaluating the effect of the hydraulic retention time on hydrogen and volatile fatty acids production. It was found that all the tests confirmed the feasibility of the process even on this lignocellulosic substrate, and also, it was identified HRT 4.0 d as the best option to optimize the productivity of volatile fatty acids (17.09 gCODVFAs/(KgVS*d)), and HRT 6.0 d for hydrogen (7.98 LH2/(KgVS*d)). The fermentation effluent was used in biomethanation potential tests to evaluate how this process affects a subsequent digestion phase, reporting an increase in the energetical feedstock exploitation up to 30%.
Collapse
Affiliation(s)
- Davide Bertasini
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, Verona, 37134, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, Verona, 37134, Italy.
| | - Rosa Mancini
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, Verona, 37134, Italy
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, Verona, 37134, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, Verona, 37134, Italy
| |
Collapse
|
9
|
Chandran EM, Mohan E. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102129-102157. [PMID: 37684507 DOI: 10.1007/s11356-023-29617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Hydrogen production from biological processes has been hailed as a promising strategy for generating sustainable energy. Fermentative hydrogen production processes such as dark and photofermentation are considered more sustainable and economical than other biological methods such as biophotolysis. However, these methods have constraints such as low hydrogen yield and conversion efficiency, so practical implementations still need to be made. The present review provides an assessment and feasibility of producing biohydrogen through dark and photofermentation techniques utilizing various lignocellulosic biomass wastes as substrates. Furthermore, this review includes information about the strategies to increase the productivity rate of biohydrogen in an eco-friendly and sustainable manner, like integration of dark and photofermentation techniques, pretreatment of biomass, genetic modification of microorganisms, and application of nanoadditives.
Collapse
Affiliation(s)
- Eniyan Moni Chandran
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India
| | - Edwin Mohan
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India.
| |
Collapse
|
10
|
Zhao B, Dong Z, Sha H, Cao S, Duan J, Yuan A, Song Z. Thermally modified tourmaline enhances hydrogen production by influencing hydrolysis acidification in two stages during dark fermentation of corn stover. BIORESOURCE TECHNOLOGY 2023; 386:129568. [PMID: 37506940 DOI: 10.1016/j.biortech.2023.129568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
This study investigated the influence of thermally modified tourmaline (Tur) on hydrogen production during the dark fermentation of corn stover. Single-factor experimental results revealed influencing factors of particle size, mass, and temperature. Optimization of the experimental process was achieved using the Box-Behnken design, reaching optimum at conditions of 407 °C, 910-mesh, and 6.2 g. The principle analysis experiment showed that the Tur-enhanced group (Tur_En) amplified cumulative hydrogen production by elevating hydrogen production during the sugar-production stage. The Tur_En group's cumulative hydrogen production was measured at 396.2 ± 40.3 (mL/g VS), marking a 34.2% increase compared to the control group. Analysis of microbial diversity indicated that Firmicutes and Bacteroidota emerged as dominant colonies in both stages. Tur facilitated hydrogen production by stimulating the activity of Firmicutes. This study suggests a highly effective Tur-enhanced technology for hydrogen production from corn stover and elucidates the principles underpinning this method from two stages.
Collapse
Affiliation(s)
- Bo Zhao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Zheng Dong
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Hao Sha
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Shengxian Cao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jie Duan
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Ankai Yuan
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Zijian Song
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
11
|
Aldaby ESE, Mahmoud AHA, El-Bery HM, Ali MM, Shoreit AA, Mawad AMM. Microalgal upgrading of the fermentative biohydrogen produced from Bacillus coagulans via non-pretreated plant biomass. Microb Cell Fact 2023; 22:190. [PMID: 37730554 PMCID: PMC10512583 DOI: 10.1186/s12934-023-02193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Hydrogen is a promising source of alternative energy. Fermentative production is more feasible because of its high hydrogen generation rate, simple operating conditions, and utilization of various organic wastes as substrates. The most significant constraint for biohydrogen production is supplying it at a low cost with fewer impurities. RESULTS Leaf biomass of Calotropis procera was used as a feedstock for a dark fermentative production of hydrogen by Bacillus coagulans AH1 (MN923076). The optimum operation conditions for biohydrogen production were 5.0% substrate concentrationand pH 9.0, at 35 °C. In which the biohydrogen yield was 3.231 mmol H2/g dry biomass without any pretreatments of the biomass. A freshwater microalga Oscillatroia sp was used for upgrading of the produced biohydrogen. It sequestrated 97 and 99% % of CO2 from the gas mixture when it was cultivated in BG11 and BG11-N media, respectively After upgrading process, the residual microalgal cells exhibited 0.21mg/mL of biomass yield,high content of chlorophyll-a (4.8 µg/mL) and carotenoid (11.1 µg/mL). In addition to Oscillatroia sp residual biomass showed a lipid yield (7.5-8.7%) on the tested media. CONCLUSION Bacillus coagulans AH1 is a promising tool for biohydrogen production avoiding the drawbacks of biomass pretreatment. Oscillatroia sp is encouraged as a potent tool for upgrading and purification of biohydrogen. These findings led to the development of a multiproduct biorefinery with zero waste that is more economically sustainable.
Collapse
Affiliation(s)
- Eman S E Aldaby
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Aya H A Mahmoud
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Haitham M El-Bery
- Green Hydrogen Production Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt.
| | - Maysa M Ali
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Ahmed A Shoreit
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Asmaa M M Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
- Department of Biology, College of Science, Taibah University, 42317-8599, Madinah, Saudi Arabia
| |
Collapse
|
12
|
Mumtha C, Subashri D, Mahalingam PU. Enhancing biohydrogen production from mono-substrates and co-substrates using a novel bacterial strains. 3 Biotech 2023; 13:270. [PMID: 37449248 PMCID: PMC10335983 DOI: 10.1007/s13205-023-03687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
The staggering increase in pollution associated with a sharp tightening in global energy demand is a major concern for organic substances. Renewable biofuel production through simultaneous waste reduction is a sustainable approach to meet this energy demand. This study co-fermentation of dairy whey and SCB was performed using mixed and pure bacterial cultures of Salmonella bongori, Escherichia coli, and Shewanella oneidensis by dark fermentation process for hydrogen production. The maximum H2 production was 202.7 ± 5.5 H2/mL/L, 237.3 ± 6.0 H2/mL/L, and 198 ± 9.9 H2/mL/L obtained in fermentation reactions containing dairy whey, solid and liquid hydrolysis of pretreated sugarcane bagasse as mono-substrates. The H2 production was greater in co-substrate by 347.3 ± 18.5 H2/mL/L under optimized conditions (pH 7.0, temperature 37 °C, substrate concentration 30:50 g/L) than expected in mono-substrate conditions, which confirms that co-fermentation of different substrates enhances the H2 potential. Fermentation medium during bio-H2 production under GC analysis has stated that using mixed cultures in dark fermentation favored acetic acid and butyric acid. Co-substrate degradation produces ethyl alcohol, benzoic acid, propionic acid, and butanol as metabolic by-products. The difference in the treated and untreated substrate and carbon enrichment in the substrates was evaluated by FT-IR analysis. The present study justifies that rather than the usage of mono-substrate for bio-H2 production, the co-substrate provided highly stable H2 production by mixed bacterial cultures. Fabricate the homemade single-chamber microbial fuel cell to generate electricity. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03687-9.
Collapse
Affiliation(s)
- Chelladurai Mumtha
- Department of Biology, The Gandhigram Rural Institute (Deemed to Be University), Gandhigram, Dindigul, 624 302 Tamil Nadu India
| | - Dhanasekaran Subashri
- Department of Biology, The Gandhigram Rural Institute (Deemed to Be University), Gandhigram, Dindigul, 624 302 Tamil Nadu India
| | - Pambayan Ulagan Mahalingam
- Department of Biology, The Gandhigram Rural Institute (Deemed to Be University), Gandhigram, Dindigul, 624 302 Tamil Nadu India
| |
Collapse
|
13
|
Menzel T, Neubauer P, Junne S. Plug-flow hydrolysis with lignocellulosic residues: effect of hydraulic retention time and thin-sludge recirculation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:111. [PMID: 37415198 DOI: 10.1186/s13068-023-02363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Two parallel plug-flow reactors were successfully applied as a hydrolysis stage for the anaerobic pre-digestion of maize silage and recalcitrant bedding straw (30% and 66% w/w) under variations of the hydraulic retention time (HRT) and thin-sludge recirculation. RESULTS The study proved that the hydrolysis rate profits from shorter HRTs while the hydrolysis yield remained similar and was limited by a low pH-value with values of 264-310 and 180-200 gO2 kgVS-1 for 30% and 66% of bedding straw correspondingly. Longer HRT led to metabolite accumulation, significantly increased gas production, a higher acid production rate and a 10-18% higher acid yield of 78 gSCCA kgVS-1 for 66% of straw. Thin-sludge recirculation increased the acid yield and stabilized the process, especially at a short HRT. Hydrolysis efficiency can thus be improved by shorter HRT, whereas the acidogenic process performance is increased by longer HRT and thin-sludge recirculation. Two main fermentation patterns of the acidogenic community were found: above a pH-value of 3.8, butyric and acetic acid were the main products, while below a pH-value of 3.5, lactic, acetic and succinic acid were mainly accumulating. During plug-flow digestion with recirculation, at low pH-values, butyric acid remained high compared to all other acids. Both fermentation patterns had virtually equal yields of hydrolysis and acidogenesis and showed good reproducibility among the parallel reactor operation. CONCLUSIONS The suitable combination of HRT and thin-sludge recirculation proved to be useful in a plug-flow hydrolysis as primary stage in biorefinery systems with the benefits of a wider feedstock spectrum including feedstock with cellulolytic components at an increased process robustness against changes in the feedstock composition.
Collapse
Affiliation(s)
- Theresa Menzel
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK 24, 13355, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK 24, 13355, Berlin, Germany
| | - Stefan Junne
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK 24, 13355, Berlin, Germany.
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
14
|
Woon JM, Khoo KS, Al-Zahrani AA, Alanazi MM, Lim JW, Cheng CK, Sahrin NT, Ardo FM, Yi-Ming S, Lin KS, Lan JCW, Hossain MS, Kiatkittipong W. Epitomizing biohydrogen production from microbes: Critical challenges vs opportunities. ENVIRONMENTAL RESEARCH 2023; 227:115780. [PMID: 36990197 DOI: 10.1016/j.envres.2023.115780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Hydrogen is a clean and green biofuel choice for the future because it is carbon-free, non-toxic, and has high energy conversion efficiency. In exploiting hydrogen as the main energy, guidelines for implementing the hydrogen economy and roadmaps for the developments of hydrogen technology have been released by several countries. Besides, this review also unveils various hydrogen storage methods and applications of hydrogen in transportation industry. Biohydrogen productions from microbes, namely, fermentative bacteria, photosynthetic bacteria, cyanobacteria, and green microalgae, via biological metabolisms have received significant interests off late due to its sustainability and environmentally friendly potentials. Accordingly, the review is as well outlining the biohydrogen production processes by various microbes. Furthermore, several factors such as light intensity, pH, temperature and addition of supplementary nutrients to enhance the microbial biohydrogen production are highlighted at their respective optimum conditions. Despite the advantages, the amounts of biohydrogen being produced by microbes are still insufficient to be a competitive energy source in the market. In addition, several major obstacles have also directly hampered the commercialization effors of biohydrogen. Thus, this review uncovers the constraints of biohydrogen production from microbes such as microalgae and offers solutions associated with recent strategies to overcome the setbacks via genetic engineering, pretreatments of biomass, and introduction of nanoparticles as well as oxygen scavengers. The opportunities of exploiting microalgae as a suastainable source of biohydrogen production and the plausibility to produce biohydrogen from biowastes are accentuated. Lastly, this review addresses the future perspectives of biological methods to ensure the sustainability and economy viability of biohydrogen production.
Collapse
Affiliation(s)
- Jia Min Woon
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Asla A Al-Zahrani
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center- College of Science -Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Meznah M Alanazi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, P. O. Box 127788, United Arab Emirates
| | - Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fatima Musa Ardo
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Sun Yi-Ming
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
15
|
Sadh PK, Chawla P, Kumar S, Das A, Kumar R, Bains A, Sridhar K, Duhan JS, Sharma M. Recovery of agricultural waste biomass: A path for circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161904. [PMID: 36736404 DOI: 10.1016/j.scitotenv.2023.161904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Circular bio-economy is a significant approach to resolving global issues elevated by environmental pollution. The generation of bioenergy and biomaterials can withstand the energy-environment connection as well as substitute petroleum-based materials as the feed stock production, thereby contributing to a cleaner and low-carbon-safe environment. Open discarding of waste is a major cause of environmental pollution in developing and under developed countries. Agricultural bio-wastes are obtained through various biological sources and industrial processing, signifying a typical renewable source of energy with ample nutrients and readily biodegradable organic substances. These waste materials are competent to decompose under aerobic and anaerobic conditions. The projected global population, urbanization, economic development, and changing production and consumption behavior result in bounteous bio-waste production. These bio-wastes mainly contain starch, cellulose, protein, hemicellulose, and lipids, which can operate as low-cost raw materials to develop new value-added products. Thus, this review discussed specifically the agricultural waste and valorization processes used to convert this waste into value-added products (biofuel, enzymes, antibiotics, ethanol and single cell protein). These value added products are used in the supply chain and enhance the overall performance of agriculture waste management, execution of circular bio-economy has attained significant importance and it explains a closed-loop system in which the potential resources remain in the loop, allowing them to be sustained into a new value.
Collapse
Affiliation(s)
- Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Prince Chawla
- Department of Food Science and Technology, Lovely Professional University, Phagwara 144 411, Punjab, India
| | - Suresh Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Anamika Das
- Department of Paramedical Sciences, Guru Kashi University, Talwandi Sabo 151 302, Punjab, India
| | - Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144 411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium.
| |
Collapse
|
16
|
Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
17
|
Mozhiarasi V, Natarajan TS, Dhamodharan K. A high-value biohythane production: Feedstocks, reactor configurations, pathways, challenges, technoeconomics and applications. ENVIRONMENTAL RESEARCH 2023; 219:115094. [PMID: 36535394 DOI: 10.1016/j.envres.2022.115094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In recent years, the demand for high-quality biofuels from renewable sources has become an aspirational goal to offer a clean environment by alternating the depleting fossil fuels to meet future energy needs. In this aspect, biohythane production from wastes has received extensive research interest since it contains superior fuel characteristics than the promising conventional biofuel i.e. biogas. The main aim is to promote research and potentials of biohythane production by a systematic review of scientific literature on the biohythane production pathways, substrate/microbial consortium suitability, reactor design, and influential process/operational factors. Reactor configuration also decides the product yield in addition to other key factors like waste composition, temperature, pH, retention time and loading rates. Hence, a detailed emphasis on different reactor configurations with respect to the type of feedstock has also been given. The technical challenges are highlighted towards process optimization and system scale up. Meanwhile, solutions to improve product yield, technoeconomics, applications and key policy and governance factors to build a hydrogen based society have also been discussed.
Collapse
Affiliation(s)
- Velusamy Mozhiarasi
- CLRI Regional Centre, CSIR-Central Leather Research Institute (CSIR-CLRI), Jalandhar, 144 021, Punjab, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, 600 020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Kondusamy Dhamodharan
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, 147 004, Punjab, India
| |
Collapse
|
18
|
Faisal S, Ebaid R, Xiong M, Huang J, Wang Q, El-Hefnawy M, Abomohra A. Maximizing the energy recovery from rice straw through two-step conversion using eggshell-catalytic pyrolysis followed by enhanced anaerobic digestion using calcium-rich biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159984. [PMID: 36356751 DOI: 10.1016/j.scitotenv.2022.159984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion of lignocelluloses for biogas production is greatly restricted by the poor biomass degradability. Herein, a novel approach is suggested to enhance the energy recovery from rice straw through a two-step conversion using eggshell-based catalytic pyrolysis followed by biochar-based anaerobic co-digestion. Pyrolysis with eggshell significantly enhanced the crude bio-oil yield by 4.6 %. Anaerobic digestion of rice straw using 4 g L-1 of rice straw biochar (RB) showed the highest recorded biogas yield of 503.7 L kg-1 VS, with 268.6 L kg-1 VS biomethane yield. However, 4 g L-1 of calcium-enriched eggshell rice straw biochar (ERB) enhanced the biomethane yield to 281.8 L kg-1 VS, which represented 95.6 % higher than the control. It was attributed to enhancement of biomethanation, which resulted in 74.5 % maximum recorded biomethane content at the 7th day of anaerobic digestion. Microbial analysis confirmed that Methanosarciniales was the most dominant Archael group in the control (14.84 %), which increased sharply to 73.91 % and 91.66 % after addition of 4 g L-1 RB and ERB, respectively. The suggested route enhanced the energy recovery in the form of bio-oil and biomethane by 41.6 %.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Reham Ebaid
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Min Xiong
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China
| | - Jin Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qingyuan Wang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China.
| | - Mohamed El-Hefnawy
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia; Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
19
|
The Existing Recovery Approaches of the Huangjiu Lees and the Future Prospects: A Mini Review. Bioengineering (Basel) 2022; 9:bioengineering9110695. [DOI: 10.3390/bioengineering9110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Huangjiu lees (HL) is a byproduct in Chinese Huangjiu production with various nutrient and biological functional components. Without efficient treatment, it could cause environmental issues and bioresource wasting. Existing dominant recovery approaches focus on large-scale disposal, but they ignore the application of high-value components. This study discusses the advantages and limitations of existing resourcing approaches, such as feed, food and biogas biological production, considering the efficiency and value of HL resourcing. The extraction of functional components as a suggestion for HL cascade utilization is pointed out. This study is expected to promote the application of HL resourcing.
Collapse
|
20
|
Martínez-Mendoza LJ, Lebrero R, Muñoz R, García-Depraect O. Influence of key operational parameters on biohydrogen production from fruit and vegetable waste via lactate-driven dark fermentation. BIORESOURCE TECHNOLOGY 2022; 364:128070. [PMID: 36202282 DOI: 10.1016/j.biortech.2022.128070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
This study aims at investigating the influence of operational parameters on biohydrogen production from fruit-vegetable waste (FVW) via lactate-driven dark fermentation. Mesophilic batch fermentations were conducted at different pH (5.5, 6.0, 6.5, 7.0, and non-controlled), total solids (TS) contents (5, 7, and 9%) and initial cell biomass concentrations (18, 180, and 1800 mg VSS/L). Higher hydrogen yields and rates were attained with more neutral pH values and low TS concentrations, whereas higher biomass densities enabled higher production rates and avoided wide variations in hydrogen production. A marked lactate accumulation (still at neutral pH) in the fermentation broth was closely associated with hydrogen inhibition. In contrast, enhanced hydrogen productions matched with much lower lactate accumulations (even it was negligible in some fermentations) along with the acetate and butyrate co-production but not with carbohydrates removal. At pH 7, 5% TS, and 1800 mg VSS/L, 49.5 NmL-H2/g VSfed and 976.4 NmL-H2/L-h were attained.
Collapse
Affiliation(s)
- Leonardo J Martínez-Mendoza
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| |
Collapse
|
21
|
Chen H, Yang T, Shen Z, Yang E, Liu K, Wang H, Chen J, Sanjaya EH, Wu S. Can digestate recirculation promote biohythane production from two-stage co-digestion of rice straw and pig manure? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115655. [PMID: 35839651 DOI: 10.1016/j.jenvman.2022.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Digestate recirculation is often considered an important way to improve system stability (system acidification, ammonia inhibition, hydrolysis limitations, etc.) and gas production performance. However, it is not clear how the promotion of biohythane production works in anaerobic co-digestion with digestate recirculation of rice straw (RS) and pig manure (PM). Two sets of laboratory-scale two-stage continuous stirred tank reactors were operated continuously for 95 d to investigate the performance of biohythane production in the first/second phase under mesophilic (M)/thermophilic (T) and digestate recirculation conditions. Firstly, biohythane was not produced by PM with RS under digestate recirculation. The main reasons were: 1) Digestive recirculation promoted the growth of hydrogenotrophic methanogenic bacteria; and 2) limitations in hydrolysis. Secondly, digestate recirculation has positive effects on the removal rates (removal rates of TS, VS, polysaccharide, protein and TCOD increased by 30.4%, 22.3%, 9.9%, 31.4%, and 11.9%, respectively) and energy yield (up to 68.7%). Finally, there was a higher abundance of hydrogen-producing bacteria (Fervidobacterium [44.9%] and Coprothermobacter [18.8%]) in T2, accounting for >80% of the total, and of which the huge hydrogen production potential cannot be ignored. The results provide new ideas for alleviating the energy crisis and developing green energy in the future.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Tao Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ke Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | | | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
22
|
Liu X, Li X, Hua Y, Sinkkonen A, Romantschuk M, Lv Y, Wu Q, Hui N. Meat and bone meal stimulates microbial diversity and suppresses plant pathogens in asparagus straw composting. Front Microbiol 2022; 13:953783. [PMID: 36204619 PMCID: PMC9530395 DOI: 10.3389/fmicb.2022.953783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Meat and bone meal (MBM), as slaughterhouse waste, is a potential biostimulating agent, but its efficiency and reliability in composting are largely unknown. To access the MBM application to the composting process of asparagus straw rice, we followed the composting process for 60 days in 220-L composters and another 180 days in 20-L buckets in treatments applied with MBM or urea. The microbial succession was investigated by high-throughput sequencing. Compared with urea treatments, MBM addition stabilized pH and extended the thermophilic phase for 7 days. The germination index of MBM treatments was 24.76% higher than that of urea treatments. MBM also promoted higher microbial diversity and shifted community compositions. Organic matter and pH were the most significant factors that influence the bacterial and fungal community structure. At the genus level, MBM enriched relative abundances of organic matter-degrading bacteria (Alterococcus) and lignocellulose-degrading fungi (Trichoderma), as well as lignocellulolytic enzyme activities. Notably, MBM addition decreased sum abundances of plant pathogenic fungi of Phaeoacremonium, Acremonium, and Geosmithia from 17.27 to 0.11%. This study demonstrated the potential of MBM as an effective additive in asparagus straw composting, thus providing insights into the development of new industrial aerobic fermentation.
Collapse
Affiliation(s)
- Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, China
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinfeng Hua
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China
| | - Aki Sinkkonen
- Department of Garden Technologies, Horticulture Technologies, Natural Resources Institute Finland, Helsinki, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland
| | - Yanfang Lv
- Food Safety Key Lab of Liaoning Province, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Qian Wu
- Boda Environmental Protection Co., Ltd., Yixing, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland
- *Correspondence: Nan Hui
| |
Collapse
|
23
|
Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Utilising ‘wastes’ as ‘resources’ is key to a circular economy. While there are multiple routes to waste valorisation, anaerobic digestion (AD)—a biochemical means to breakdown organic wastes in the absence of oxygen—is favoured due to its capacity to handle a variety of feedstocks. Traditional AD focuses on the production of biogas and fertiliser as products; however, such low-value products combined with longer residence times and slow kinetics have paved the way to explore alternative product platforms. The intermediate steps in conventional AD—acidogenesis and acetogenesis—have the capability to produce biohydrogen and volatile fatty acids (VFA) which are gaining increased attention due to the higher energy density (than biogas) and higher market value, respectively. This review hence focusses specifically on the production of biohydrogen and VFAs from organic wastes. With the revived interest in these products, a critical analysis of recent literature is needed to establish the current status. Therefore, intensification strategies in this area involving three main streams: substrate pre-treatment, digestion parameters and product recovery are discussed in detail based on literature reported in the last decade. The techno-economic aspects and future pointers are clearly highlighted to drive research forward in relevant areas.
Collapse
|
24
|
Alexandropoulou M, Antonopoulou G, Lyberatos G. Modeling of continuous dark fermentative hydrogen production in an anaerobic up-flow column bioreactor. CHEMOSPHERE 2022; 293:133527. [PMID: 34998845 DOI: 10.1016/j.chemosphere.2022.133527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Dark fermentation (DF) of several types of wastes is a promising process to alleviate environmental pollution as it leads to the production of valuable hydrogen (H2) gas and high added value products, such as volatile fatty acids (VFAs). In this study a kinetic model for fermentative H2 production in an Up-flow column reactor (UFCR) is presented. Τhe model structure includes seven biochemical reactions taking place in a two-phase biofilm-liquid system. The observed difference in the overall stoichiometry of the bioconversion process for different hydraulic retention times (HRTs) is predicted by this model as it is attributed to the difference in the extent of individual bioconversion steps, each of which has a constant stoichiometry but a different rate depending on the HRT. The respective kinetic parameters were estimated through model fitting to the experimental results of the UFCR, which operated at different HRTs (12-2 h) and fed with the soluble fraction of a food industry waste (FIW). A good agreement of the experimental and predicted values of soluble metabolic products and H2 production was obtained, rendering this model as a useful tool for further investigation and prediction of the characteristics of the DF process in attached-biomass growth systems.
Collapse
Affiliation(s)
- Maria Alexandropoulou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, Patras, GR, 26504, Greece
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, Patras, GR, 26504, Greece.
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, Patras, GR, 26504, Greece; School of Chemical Engineering, National Technical University of Athens, GR, 15780, Athens, Greece
| |
Collapse
|
25
|
Li S, Li F, Zhu X, Liao Q, Chang JS, Ho SH. Biohydrogen production from microalgae for environmental sustainability. CHEMOSPHERE 2022; 291:132717. [PMID: 34757051 DOI: 10.1016/j.chemosphere.2021.132717] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen as a clean energy that is conducive to energy and environmental sustainability, playing a significant role in the alleviation of global climate change and energy crisis. Biohydrogen generation from microalgae has been reported as a highly attractive approach that can produce a benign clean energy carrier to achieve carbon neutrality and bioenergy sustainability. Thus, this review explored the mechanism of biohydrogen production from microalgae containing direct biophotolysis, indirect biophotolysis, photo fermentation, and dark fermentation. In general, dark fermentation of microalgae for biohydrogen production is relatively better than photo fermentation, biophotolysis, and microbial electrolysis, because it is able to consecutively generate hydrogen and is not reliant on energy supplied by natural sunlight. Besides, this review summarized potential algal strains for hydrogen production focusing on green microalgae and cyanobacteria. Moreover, a thorough review process was conducted to present hydrogen-producing enzymes targeting biosynthesis and localization of enzymes in microalgae. Notably, the most powerful hydrogen-producing enzymes are [Fe-Fe]-hydrogenases, which have an activity nearly 10-100 times better than [Ni-Fe]-hydrogenases and 1000 times better than nitrogenases. In addition, this work highlighted the major factors affecting low energy conversion efficiency and oxygen sensitivity of hydrogen-producing enzymes. Noting that the most practical pathway of biohydrogen generation was sulfur-deprivation compared with phosphorus, nitrogen, and magnesium deficiency. Further discussions in this work summarized the recent advancement in biohydrogen production from microalgae such as genetic engineering, microalgae-bacteria consortium, electro-bio-hydrogenation, and nanomaterials for developing enzyme stability and hydrolytic efficiency. More importantly, this review provided a summary of current limitations and future perspectives on the sustainable production of biohydrogen from microalgae.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan, ROC; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan, ROC
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
26
|
Zheng Y, Zhang Q, Zhang Z, Jing Y, Hu J, He C, Lu C. A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. BIORESOURCE TECHNOLOGY 2022; 347:126595. [PMID: 34953992 DOI: 10.1016/j.biortech.2021.126595] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Hydrogen has become a research highlight by virtue of its clean energy production technology and high energy content. The technology of biohydrogen production from biological waste via fermentation has lower costs, provides environment-friendly methods regarding energy balance, and creates a pathway for sustainable utilization of massive agricultural waste. However, biohydrogen production is generally limited by lower productivity. Many studies have been conducted aimed at improving biohydrogen production efficiency. Hence, this review is intended to describe improving routes for biohydrogen production from agricultural waste and highlights recent advances in these approaches. In addition, the critical factors affecting biohydrogen production, including the pretreatment method, substrate resource, fermentation conditions, and bioreactor design, were also comprehensively discussed along with challenges and future prospects.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Jianjun Hu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China.
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| |
Collapse
|
27
|
Liu R, Chen X, Zhang K, Han Y, Tong Y, Wang J, Xiao B, Liu J. Effect of mixing ratio and total solids content on temperature-phased anaerobic codigestion of rice straw and pig manure: Biohythane production and microbial structure. BIORESOURCE TECHNOLOGY 2022; 344:126173. [PMID: 34728354 DOI: 10.1016/j.biortech.2021.126173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Long-term semi-continuous experiments were carried out under three feedstock conditions to study the effects of mixing ratio and total solids (TS) content on temperature-phased anaerobic codigestion of rice straw (RS) and pig manure (PM). The results showed that biohythane only produced from the mixture with 6% TS content and its average content were 12.83 ± 1.19% (hydrogen) and 23.68 ± 1.12% (methane). Increasing mixture TS content and decreasing its RS ratio increased biohythane production and organic matter removal by creating a suitable process pH and increasing the anaerobic reaction rates. The highest biohythane production of the mixture reached 73.09 ± 3.03 ml/g VS (hydrogen) and 235.81 ± 9.30 ml/g VS (methane) at a mixing ratio of 5:1 and TS content of 6%. A variety of hydrogen-producing bacteria were found in the thermophilic reactor and Clostridium_sensu_stricto_1 played an important role. Butyric acid fermentation is the main hydrogen-producing pathway. Methanobacterium and Methanosaeta were dominant archaea in the mesophilic reactor.
Collapse
Affiliation(s)
- Rongzhan Liu
- College of Textile and Clothing, Qingdao University, Qingdao 266071, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiangyu Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ke Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yeqi Tong
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Juan Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Benyi Xiao
- College of Textile and Clothing, Qingdao University, Qingdao 266071, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
28
|
Zhang C, Liu Y, Zhang W, Sun L, Baeyens J. Modification of wheat straw to improve the caproate production in a cell immobilized system. BIORESOURCE TECHNOLOGY 2021; 342:125984. [PMID: 34563819 DOI: 10.1016/j.biortech.2021.125984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Wheat straw is a favorable cell carrier in the caproate fermentation system, yet its smooth surface limits the biofilm formation. In this study, the modification of wheat straw was conducted using three different chemical methods and the influence of its modified surface on the caproate fermentation was investigated. Results showed that the sodium hydroxide was the optimum reagent for modification of wheat straw, where both the external and internal surfaces were effectively modified, resulting in 34.4% increased specific surface area. The highest caproate production of 21.1 g/L was obtained in fed-batch fermentation, which was ascribed to the formation of a thick biofilm on the modified carrier. Moreover, the crystallinity index of the carrier increased during the fed-batch fermentation, implying that the modified wheat straw was a stable matrix for cell immobilization. This study provides an effective way for efficient caproate production through modification of wheat straw.
Collapse
Affiliation(s)
- Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China; Jiangsu Key Laboratory for Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China.
| | - Yan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Wenhui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Ling Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jan Baeyens
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|