1
|
Seregin IV, Kozhevnikova AD. The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants. Int J Mol Sci 2024; 25:9542. [PMID: 39273488 PMCID: PMC11394999 DOI: 10.3390/ijms25179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Low-molecular-weight organic acids (LMWOAs) are essential O-containing metal-binding ligands involved in maintaining metal homeostasis, various metabolic processes, and plant responses to biotic and abiotic stress. Malate, citrate, and oxalate play a crucial role in metal detoxification and transport throughout the plant. This review provides a comparative analysis of the accumulation of LMWOAs in excluders, which store metals mainly in roots, and hyperaccumulators, which accumulate metals mainly in shoots. Modern concepts of the mechanisms of LMWOA secretion by the roots of excluders and hyperaccumulators are summarized, and the formation of various metal complexes with LMWOAs in the vacuole and conducting tissues, playing an important role in the mechanisms of metal detoxification and transport, is discussed. Molecular mechanisms of transport of LMWOAs and their complexes with metals across cell membranes are reviewed. It is discussed whether different endogenous levels of LMWOAs in plants determine their metal tolerance. While playing an important role in maintaining metal homeostasis, LMWOAs apparently make a minor contribution to the mechanisms of metal hyperaccumulation, which is associated mainly with root exudates increasing metal bioavailability and enhanced xylem loading of LMWOAs. The studies of metal-binding compounds may also contribute to the development of approaches used in biofortification, phytoremediation, and phytomining.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| |
Collapse
|
2
|
Zou L, Jiang O, Zhang S, Duan G, Gustave W, An X, Tang X. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils. ENVIRONMENTAL RESEARCH 2024; 249:118421. [PMID: 38325790 DOI: 10.1016/j.envres.2024.118421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Root exudate is a major source of soil organic matter and can significantly affect arsenic (As) migration and transformation in paddy soils. Citric acid is the main component of rice root exudate, however, the impacts and rules of citric acid on As bioavailability and rhizobacteria in different soils remains unclear. This study investigated the effects of citric acid on As transformation and microbial community in ten different paddy soils by flooded soil culture experiments. The results showed that citric acid addition increased total As and arsenate (As(V)) in the soil porewater by up to 41-fold and 65-fold, respectively, after 2-h incubation. As(V) was the main As species in soil porewater within 10 days with the addition of citric acid. Non-specifically sorbed As of soils, total Fe and total As were the main environmental factors affecting the soil microbial communities. High-throughput sequencing analysis demonstrated that citric acid addition significantly altered the soil microbial community structure, shifting the Proteobacteria-related reducing bacteria to Firmicutes-related reducing bacteria in different paddy soils. The relative abundance of Firmicutes was promoted by 174-196%. Clostridium-related bacteria belonging to Firmicutes became the dominant genera, which is believed to regulate As release through the reductive dissolution of iron oxides or the direct reduction of As(V) to arsenite (As(III)). However, citric acid addition significantly decreased the relative abundance of Geobacter and Anaeromyxobacter, which are also typical active As(V)- and ferric-reducing bacteria. Real-time quantitative polymerase chain reaction (qPCR) also revealed that the addition of citric acid significantly decreased the relative abundances of Geobacter in the different soils by 8-28 times while the relative abundances of Clostridium increased by 2-5 times. These results provide significant insight on As transformation in different types of rice rhizospheric soils and guidance for the application of rice varieties with low citric acid exuding to restrict As accumulation.
Collapse
Affiliation(s)
- Lina Zou
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, and Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ouyuan Jiang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, and Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu Zhang
- CSCEC 8th Division Environmental Technology Co., Ltd, Shanghai 200131, China.
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau, Bahamas.
| | - Xia An
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China.
| | - Xianjin Tang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, and Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Liu Y, Huang W, Wang Y, Wen Q, Zhou J, Wu S, Liu H, Chen G, Qiu R. Effects of naturally aged microplastics on the distribution and bioavailability of arsenic in soil aggregates and its accumulation in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169964. [PMID: 38211862 DOI: 10.1016/j.scitotenv.2024.169964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Naturally aged microplastics (NAMPs) and arsenic (As) have been reported to coexist in and threaten potentially to soil-plant ecosystem. The research explored the combined toxic effects of NAMPs and As to lettuce (Lactuca sativa L.) growth, and the distribution, accumulation and bioavailability of As in soil aggregates. The As contaminated soil with low, medium and high concentrations (L-As, M-As, H-As) were treated with or without NAMPs, and a total of six treatments. The results displayed that, in comparison to separate treatments of L-As and M-As, the presence of NAMPs increased the total biomass of lettuce grown at these two As concentrations by 68.9 % and 55.4 %, respectively. Simultaneous exposure of NAMPs and L-As or M-As led to a decrease in As content in shoot (0.45-2.17 mg kg-1) and root (5.68-14.66 mg kg-1) of lettuce, indicating an antagonistic effect between them. In contrast, co-exposure to H-As and NAMPs showed synergistic toxicity, and the leaf chlorophyll and nutritional quality of lettuce were also reduced. NAMPs altered the ratio of different soil aggregate fractions and the distribution of bioavailable As within them, which influenced the absorption of As by lettuce. In conclusion, these direct observations assist us in enhancing the comprehend of the As migration and enrichment characteristics in soil-plant system under the influence of NAMPs.
Collapse
Affiliation(s)
- Yanwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weigang Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujue Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qian Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Juanjuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shengze Wu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Hui Liu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Zhang Y, Zhan J, Ma C, Liu W, Huang H, Yu H, Christie P, Li T, Wu L. Root-associated bacterial microbiome shaped by root selective effects benefits phytostabilization by Athyrium wardii (Hook.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115739. [PMID: 38016191 DOI: 10.1016/j.ecoenv.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The root-associated microbiome assembly substantially promotes (hyper)accumulator plant growth and metal accumulation and is influenced by multiple factors, especially host species and environmental stress. Athyrium wardii (Hook.) is a phytostabilizer that grows in lead (Pb)-zinc (Zn) mine tailings and shows high root Pb accumulation. However, there remains little information on the assembly of the root-associated microbiome of A. wardii and its role in phytostabilization. A field study investigated the structural and functional variation in the root-associated bacterial microbiome of Athyrium wardii (Hook.) exposed to different levels of contamination in Pb-Zn mine tailings. The root compartment dominated the variation in the root-associated bacterial microbiome but the levels of contaminants showed less impact. Bacterial co-occurrence was enhanced in the rhizosphere soil and rhizoplane but tended to be much simpler in the endosphere in terms of network complexity and connectivity. This indicates that the microbial community assembly of A. wardii was non-random and shaped by root selective effects. Proteobacteria, Chloroflexi, Actinobacteria, Cyanobacteria, and Acidobacteriota were generally the dominant bacterial phyla. The genera Crossiella and Bradyrhizobium were enriched in the rhizosphere and cyanobacterial genera were enriched in the endosphere, demonstrating substantial advantages to plant survival and adaptation in the harsh mine environment. Functional categories involved in amino acid and carbohydrate metabolism were abundant in the rhizosphere soil, thus contributing to metal solubility and bioavailability in the rhizosphere. Membrane transporters, especially ATP-binding cassette transporters, were enriched in the endosphere, indicating a potential role in metal tolerance and transportation in A. wardii. The study shows substantial variation in the structure and function of microbiomes colonizing different compartments, with the rhizosphere and endophytic microbiota potentially involved in plant metal tolerance and accumulation during phytostabilization.
Collapse
Affiliation(s)
- Yunhong Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, China
| | - Juan Zhan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chuang Ma
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wuxing Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, China.
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Mei K, Liu J, Xue L, Xu J, Jiang W, Tan Z, Li A, Qu J, Yan C. Stimulation of oxalate root exudate in arsenic speciation and fluctuation with phosphate and iron in anoxic mangrove sediment. MARINE POLLUTION BULLETIN 2023; 189:114823. [PMID: 36931154 DOI: 10.1016/j.marpolbul.2023.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Mutual transformations of rhizospheric arsenic (As) in pollution-prone mangrove sediments affected by root exudate oxalate were simulated. This study focuses on the effect of oxalate on As release, mobilization, and phase speciation associated with P and Fe was examined under anoxic conditions in time-dependent changes. Results showed that oxalate addition significantly facilitated As-Fe-P release from As-contaminated mangrove sediments. Sediment As formed the adsorptive and the carbonate-binding fractionations, facilitating the re-adsorption processes. Solution As and As5+ correlated with NaOH-P positively but with NaHCO3-P and HCl-P negatively. Dominant Fe3+ (>84 %) from the amorphous Fe regulated suspension changes and then time-dependent co-precipitation with As and P. Sediment P formed strong complexes with Fe oxides and could be substituted for As via STEM analysis. Oxalate ligand exchange, competitive adsorption of oxalate, and Fe-reduced dissolution are confirmed to involve, allowing for an insight As/P/Fe mobilization and fate in mangrove wetland.
Collapse
Affiliation(s)
- Kang Mei
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Liyang Xue
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jicong Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Wanlin Jiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Zhiwen Tan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Anran Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jinyi Qu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Jia H, Ye J, Wu Y, Zhang M, Peng W, Wang H, Tang D. Evaluation and characterization of biochar on the biogeochemical behavior of polycyclic aromatic hydrocarbons in mangrove wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161039. [PMID: 36549525 DOI: 10.1016/j.scitotenv.2022.161039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
As the inter-tidal regions between land and ocean, mangrove ecosystems have high polycyclic aromatic hydrocarbons (PAHs) content, and the over accumulation of PAHs in mangrove wetland poses a serious ecological risk to the health of plant and living creatures. Comparison to the agricultural sources -biochar, biochar produced from wetland plant has lower O/C (molar ratio), larger N contents, higher stability and more benefits. However, whether the rhizosphere action occurs in biochar- amended sediment and how to influence the biogeochemical behavior of PAH have rarely been reported. In this context, a leaching procedure and pot experiment (60-d) were performed on migration and transformation of PAH at the sediment, and toxicity and their bioavailability in plant affected by the presence of Kandelia obovate-derived biochar in Southeast China. Root exudates amendments significantly increased the cumulative leaching-loss of pyrene by 36-51 % with or without biochar amendment via continuous diffusion and partition process, and biochar amendments decreased the bioavailability of pyrene (16.8-25.8 %) probably due to a faster pyrene sorption on inter-phase transport against desorption. The regression analysis indicated a significant relationship (p < 0.05) between leachate pH and pyrene concentrations. Notably, the bioaccumulation of pyrene on K. obovate parts had significant negative correlation (p < 0.05) to biochar. The activities of four key antioxidizes (phenylalanine ammonia-lyase, dismutases, peroxidases and catalases) were significantly decreased with the application of biochar. Moreover, biochar plays a positive role in cytochrome C release and phosphatidylserine secretion, and a combined biochar-rhizosphere approach can improve the stress tolerance and resistance of K. obovate with an enhanced synergetic effect, which could be a feasible remediation strategy for alleviating the mangrove sediment contaminated by PAH.
Collapse
Affiliation(s)
- Hui Jia
- Institute of Environment and Ecology, School of Emergency Management, Jiangsu University, Jiangsu University, Zhenjiang 212013, China; School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinhui Ye
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Yifan Wu
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Mengqi Zhang
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Weihua Peng
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - He Wang
- Xuzhou Medical University, Affiliated Hospital, Xuzhou 221004, China.
| | - Dehao Tang
- Guangzhou Marine Geological Survey, China Geology Survey, Guangzhou 511458, China.
| |
Collapse
|
7
|
Xiao W, Zhang Q, Zhao S, Chen D, Gao N, Huang M, Ye X. Citric acid secretion from rice roots contributes to reduction and immobilization of Cr(VI) by driving microbial sulfur and iron cycle in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158832. [PMID: 36122705 DOI: 10.1016/j.scitotenv.2022.158832] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Root exudates released by plants can promote microbial growth and activity, thereby affecting the transformation and availability of soil pollutants. However, the effects of the root exudates of rice plants on chromium (Cr) transformation in paddy soils and the underlying mechanisms are yet to be elucidated properly. The present study investigated how rice root exudates interact with rhizosphere microorganisms to influence the transformation of Cr and explored the key components in root exudates that affect Cr(VI) reduction. The results showed that the addition of root exudate and citric acid markedly decreased soil pH and increased dissolved organic carbon content that created favorable conditions and provided sufficient electron donors for Cr(VI) reduction, thereby greatly facilitating the reduction of Cr(VI) and the transformation of HOAc-extractable Cr into more stable oxidizable and residual Cr. Additionally, Desulfovibrio-related sulfate-reducing bacteria, Thiobacillus-related sulfide-oxidizing bacteria, and Geobacter-related Fe(III)-reducing bacteria were enriched with the addition of root exudate and citric acid. Among them, sulfate would be reduced by Desulfovibrio to sulfide, which would be further utilized by Thiobacillus to reduce Cr(VI), thereby enabling the continuous reduction of Cr(VI); simultaneously, Geobacter would sustain the reduction of Cr(VI) by reducing Fe(III) to Fe(II). Furthermore, based on the high-level secretion of citric acid in response to Cr(VI) exposure and the similar effects of root exudates and citric acid on Cr(VI) reduction, it is proposed that citric acid is the key component in rice root exudates that affects Cr(VI) reduction. These results suggest that root exudates (citric acid as the key component) contribute to the reduction and immobilization of Cr(VI) by driving microbial S and Fe cycles, with Desulfovibrio, Thiobacillus, and Geobacter being the keystone genera. The study provides a novel insight into the Fe/S/Cr co-transformation processes with microbial involvement, and the artificial root exudate mixtures designed to reduce Cr(VI).
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
8
|
Xu G, Lin X, Yu Y. Different effects and mechanisms of polystyrene micro- and nano-plastics on the uptake of heavy metals (Cu, Zn, Pb and Cd) by lettuce (Lactuca sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120656. [PMID: 36379290 DOI: 10.1016/j.envpol.2022.120656] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals are widely distributed in soil ecosystems, posing a potential threat to soil biota. Micro- and nano-plastics (MNPs) can impact the accumulation of heavy metals in plants through changing soil microbial community and cause injury to plants. In this work, two concentrations (100 and 1000 mg/kg) polystyrene microplastics (PS-MPs) and nanoplastics (PS-NPs) were adopted to explore the effects and mechanisms of MNPs on the uptake of Cu, Zn, Pb and Cd in lettuce (Lactuca sativa L.). MPs increased the uptake of heavy metals in lettuce by increasing the relative abundance of the key metal-activation bacteria in rhizospheric soil. At the end of experiment, the contents of Cu, Zn, Pb and Cd in NP treatments were significantly (p < 0.05) higher than that of MPs, particularly in 1000 mg/kg of NPs, with concentrations of 52.6, 174, 10.3, and 33.2 mg/kg, respectively. Biomarkers and gene expression reveled that 1000 mg/kg of NPs caused more severe injuries to lettuce plant at the end. Moreover, metabolomic analysis demonstrated that NPs disturbed the metabolism of ATP-binding cassette transporter (ABC transporter) and plant hormone signal transduction of lettuce root, causing increased uptake of heavy metals by lettuce. This work reveals that MPs may increase accumulation of heavy metals by altering the rhizosphere microorganisms, whereas NPs increase accumulation of heavy metals by causing more severe injuries to lettuce plant.
Collapse
Affiliation(s)
- Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xiaolong Lin
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
9
|
Yan Z, Meng H, Zhang Q, Bi Y, Gao X, Lei Y. Effects of cadmium and flooding on the formation of iron plaques, the rhizosphere bacterial community structure, and root exudates in Kandelia obovata seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158190. [PMID: 35995174 DOI: 10.1016/j.scitotenv.2022.158190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In the rhizosphere, plant root exudates (REs) serve as a bridge between plant and soil functional microorganisms, which play a key role in the redox cycle of iron (Fe). This study examined the effects of periodic flooding and cadmium (Cd) on plant REs, the rhizosphere bacterial community structure, and the formation of root Fe plaques in the typical mangrove plant Kandelia obovata, as well as the relationship between REs and Fe redox cycling bacteria. Based on two-way analysis of variance, flooding and Cd had a considerable effect on the REs of K. obovata. DOC, NH4+-N, NO3--N, dissolved inorganic phosphorus, acetic acid, and malonic acid concentrations in REs of K. obovata increased considerably with the increase of Cd concentration under 5 and 10 h flooding conditions. Fe plaque development in the plant root was stimulated by flooding and Cd, although flooding was more effective. After Cd treatment, the ways in which Fe-oxidizing bacteria (FeOB) and Fe-reducing bacteria (FeRB) were enriched in the rhizosphere and rhizoplane of plants were different. Thiobacillus and Sideroxydans (dominant FeOB) were more abundant in the plant rhizosphere, whereas Acinetobacter (dominant FeRB) was more abundant in the rhizoplane. Cd considerably decreased the relative abundance of unclassified_f_Gallionellaceae in the rhizosphere and rhizoplane but dramatically enhanced the relative abundance of Thiobacillus, Shewanella, and unclassified_f_Geobacteraceae. Unclassified_f_Geobacteraceae and Thiobacillus exhibited substantial positive correlations with citric acid and DOC in REs in the rhizosphere and rhizoplane but strong negative correlations with Sideroxydans. The findings indicate that Cd and flooding treatments may play a role in the production and breakdown of Fe plaque in K. obovata roots by affecting the relative abundance of Fe redox cycling bacteria in the rhizosphere and rhizoplane.
Collapse
Affiliation(s)
- Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.
| | - Huijie Meng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Qiqiong Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Yuxin Bi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Xiaoqing Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Ying Lei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
10
|
Leng Z, Wu Y, Li J, Nie Z, Jia H, Yan C, Hong H, Wang X, Du D. Phenolic root exudates enhance Avicennia marina tolerance to cadmium under the mediation of functional bacteria in mangrove sediments. MARINE POLLUTION BULLETIN 2022; 185:114227. [PMID: 36270055 DOI: 10.1016/j.marpolbul.2022.114227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This study was carried out to demonstrate the mechanism of phenolic root exudates affecting microbial-mediated cadmium (Cd) speciation transformation thus enhancing the Avicennia marina tolerance to Cd. A rhizo-box experiment was conducted including eight treatments with four Cd levels (0, 1, 2, and 4 mg Cd kg-1) and two phenol levels (0, 15 mg kg-1). The results showed that the addition of phenols increased the pH, reduced the number of iron-reducing bacteria (IRB) and sulfur-oxidizing bacteria (SOB) in the rhizosphere sediments, meanwhile promoted the transformation of Cd to low activity speciation. Furthermore, the sulfate accumulation and synthesis of flavonoid phenols in plants were also enhanced. The results indicated that phenolic root exudates inhibit functional bacteria-mediated Fe and S cycles and promote the immobilization of Cd in the sediments. In conclusion, the mitigation of Cd phytotoxicity induced by phenolic root exudates enhanced the Cd tolerance of A. marina.
Collapse
Affiliation(s)
- Zhanrui Leng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yueming Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Li
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environment Protection Institution, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Ziying Nie
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Jia
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chongling Yan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Hualong Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Daolin Du
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Huang R, Wu Z, Zhao X, Li F, Wang W, Guo Y, Li Z, Wu J. Pfaffia glomerata is a hyperaccumulator candidate: Cd and Zn tolerance, absorption, transfer, and distribution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114196. [PMID: 36252514 DOI: 10.1016/j.ecoenv.2022.114196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Pfaffia glomerata is a candidate for phytoremediation due to its high biomass and high bioaccumulation efficiency of multiple heavy metals. It is essential to further evaluate its tolerance, absorption, transfer, and distribution to multiple heavy metals. In the current study, we evaluated the tolerance, absorption, transfer, and distribution of P. glomerata in a Cd/Pb/Cu/Zn combined-contaminated environment by two hydroponic experiments. The results demonstrated that P. glomerata was not affected by Cd/Pb/Cu/Zn exposure, except for the 50 μM Cd/Pb/Cu/Zn treatment, which significantly decreased the stem biomass. In a single Cd, Pb, Cu, and Zn exposure, the root of P. glomerata absorbed Cd/Pb/Cu/Zn in the order of Cd > Zn > Pb > Cu. Almost all Pb and Cu accumulated in the plant roots and were hardly transferred to the aboveground parts. Therefore, the order of total Cd/Pb/Cu/Zn extraction of a single plant in multiple Cd/Pb/Cu/Zn exposures at the same concentration was Cd > Zn > Pb > Cu. The bioconcentration factor (BCF) of Cd and Zn in roots, stems, and leaves increased with the concentration of Cd and Zn in the solution, and was > 1. In contrast with Cd and Zn, the BCFs of Cu and Pb in the stems and leaves were < 1. The element distribution of Pb, Cu, Zn, and Mn in the stem of P. glomerata was dispersed, indicating that the stem of P. glomerata does not have a detoxification mechanism for distributing metals to the area of low biological activity. The total amount of tartaric acid, critic acid, and DOC secreted by P. glomerata roots decreased with the increase in Cd/Pb/Cu/Zn exposure. However, further investigation is needed to unravel the interaction between the LMWOAs secreted by the root of P. glomerata and heavy metals.
Collapse
Affiliation(s)
- Rong Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Zhimin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Xinlin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Feng Li
- Xiaoliang Research Station for Tropical Coastal Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, China
| | - Weidong Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Yuan Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China.
| | - Zhian Li
- Xiaoliang Research Station for Tropical Coastal Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jingtao Wu
- Xiaoliang Research Station for Tropical Coastal Ecosystems, and the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
12
|
Yin Y, Luo X, Guan X, Zhao J, Tan Y, Shi X, Luo M, Han X. Arsenic Release from Soil Induced by Microorganisms and Environmental Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084512. [PMID: 35457378 PMCID: PMC9027750 DOI: 10.3390/ijerph19084512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022]
Abstract
In rhizospheric soil, arsenic can be activated by both biological and abiotic reactions with plant exudates or phosphates, but little is known about the relative contributions of these two pathways. The effects of microorganisms, low-molecular-weight organic acid salts (LMWOASs), and phosphates on the migration of As in unrestored and nano zero-valent iron (nZVI)-restored soil were studied in batch experiments. The results show that As released by microbial action accounted for 17.73%, 7.04%, 92.40%, 92.55%, and 96.68% of the total As released in unrestored soil with citrate, phytate, malate, lactate, and acetate, respectively. It was only suppressed in unrestored soil with oxalate. In restored soil, As was still released in the presence of oxalate, citrate, and phytate, but the magnitude of As release was inhibited by microorganisms. The application of excess nZVI can completely inhibited As release processes induced by phosphate in the presence of microorganisms. Microbial iron reduction is a possible mechanism of arsenic release induced by microorganisms. Microorganisms and most environmental factors promoted As release in unrestored soil, but the phenomenon was suppressed in restored soil. This study helps to provide an effective strategy for reducing the secondary release of As from soils due to replanting after restoration.
Collapse
Affiliation(s)
- Yitong Yin
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Ximing Luo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China
- Correspondence:
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jiawei Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Yuan Tan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Xiaonan Shi
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Mingtao Luo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Xiangcai Han
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
- Yantai Coastal Zone China Geological Survey, Yantai 264000, China
| |
Collapse
|
13
|
Phytoextraction and Antioxidant Defense of Mangrove Seedling (Kandelia obovata) to Inorganic Arsenate Exposure. WATER 2022. [DOI: 10.3390/w14040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Increasing arsenic (As) pollution is posing potential endangerment to mangrove wetland ecosystems. Mangrove phytoextraction, translocation, and responses to As exposure must be urgently addressed. In this study, the growth and physiological response of Kandelia obovata seedlings were examined after addition of 25−200 mg kg−1 As under sediment culture conditions. Results showed that the seedling morphological variations were not significant below 100 mg kg−1 compared to the control group, indicating superoxide dismutase, peroxidase, and catalase synergetic interaction to resist the As exposure. High As concentrations (150–200 mg kg−1) inhibited the seedling growth accompanied by a significant increase in malondialdehyde content and decrease in activities of antioxidant enzymes. Toxicity symptoms and mortality appeared in 200 mg kg−1 As, presumably because the plant reached the limit of As tolerance. Besides, As accumulated mainly in roots, accounting for 87.04–97.85% of the total As, and the bioaccumulation factor (BCF) was >100%. However, the BCF and translocation factor (TF) in stems and leaves were below unity, illustrating a weak capacity of transferring As to aerial parts of the seedlings. Overall, K. obovata is a potential remediated species in polluted coastal wetlands due to high phytoextraction capacity and high tolerance to As exposure.
Collapse
|