1
|
Guo S, Qiao Y, Wang C, Zhang Y, Yang T, Wu H. Enzyme/pH-sensitive nanoparticles based on poly(β-L-malic acid) for drug delivery with enhanced endocytosis. J Mater Chem B 2024; 12:11696-11707. [PMID: 39428822 DOI: 10.1039/d4tb01681e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Nanoparticles (NPs) derived from branched copolymers of poly (β-L-malic acid) (PMLA) have been extensively investigated for drug delivery due to their high density of pendant carboxyl groups. This abundant functional group availability enhances their potential as effective drug delivery systems; however, the strong negative charge of PMLA poses a challenge in its uptake by cancer cells due to electrostatic repulsion. In this study, we developed novel enzyme- and pH-sensitive nanoparticles (EP-NPs) based on PMLA, demonstrating tumor-specific behavior and selective activation within tumor tissues. To enhance the cellular internalization of the nanoparticles, we incorporated transactivator of transcription (TAT). In summary, long-chain polyethylene glycol (PEG) was conjugated to PMLA to confer specificity to the TAT peptide. This was achieved using a tetrapeptide linker: alanine-alanine-asparagine-leucine (AANL), which serves as a substrate for legumain. Legumain is a highly conserved cysteine protease primarily found in lysosomes and blood vessels, initially discovered in legumes. It is markedly overexpressed in numerous solid tumors, as well as in endothelial cells and tumor-associated macrophages. The release of doxorubicin in tumor cells was sustained due to the low pH (5.0-5.5) and degradation of PMLA. The PEG modification optimized the particle size and shielded the nanoparticles from plasma proteins and detection by the reticuloendothelial system, thereby prolonging their long circulation time. Once the nanoparticles reached the tumor microenvironment, the AANL was cleaved by legumain, exposing the TAT peptide on the surface, which enhances cellular internalization. Both in vitro and in vivo efficacy studies demonstrated that these EP-NPs significantly inhibited tumor growth while exhibiting negligible systemic toxicity, thereby suggesting that the developed enzyme/pH-sensitive PMLA-based nanoparticle holds great promise as an anti-tumor drug delivery system.
Collapse
Affiliation(s)
- Songyan Guo
- Department of Scientific Research, Shaanxi Provincial People's Hospital, Youyi West Street No. 256, Xi'an 710068, People's Republic of China.
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, 169 West Changle Street, Xi'an 710032, People's Republic of China.
| | - Youbei Qiao
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, 169 West Changle Street, Xi'an 710032, People's Republic of China.
| | - Chaoli Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, 169 West Changle Street, Xi'an 710032, People's Republic of China.
| | - Yuming Zhang
- Department of Scientific Research, Shaanxi Provincial People's Hospital, Youyi West Street No. 256, Xi'an 710068, People's Republic of China.
| | - Tiehong Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, 169 West Changle Street, Xi'an 710032, People's Republic of China.
| | - Hong Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, 169 West Changle Street, Xi'an 710032, People's Republic of China.
| |
Collapse
|
2
|
Sahu M, Ganguly M, Sharma P. Recent applications of coinage metal nanoparticles passivated with salicylaldehyde and salicylaldehyde-based Schiff bases. NANOSCALE ADVANCES 2024:d4na00427b. [PMID: 39148500 PMCID: PMC11322903 DOI: 10.1039/d4na00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Salicylaldehyde (SD) and its derivatives are effective precursors for generating coinage metal (gold, silver, and copper) nanoparticles (NPs). These NPs have a variety of potential environmental applications, such as in water purification and sensing, and those arising from their antibacterial activity. The use of SD and its derivatives for synthesizing coinage NPs is attractive due to several factors. First, SD is a relatively inexpensive and readily available starting material. Second, the synthetic procedures are typically simple and can be carried out under mild conditions. Finally, the resulting NPs can be tailored to have specific properties, such as size, shape, and surface functionality, by varying the reaction conditions. In an alkaline solution, the phenolate form of SD was converted to its quinone form, while ionic coinage metal salts were converted to zero-valent nanoparticles. The capping in situ produced quinone of coinage metal nanoparticles generated metal-enhanced fluorescence under suitable experimental conditions. The formation of iminic bonds during the formation of Schiff bases altered the properties (especially metal-enhanced fluorescence) and applications.
Collapse
Affiliation(s)
- Mamta Sahu
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| |
Collapse
|
3
|
Mulu M, Tefera M, Guadie A, Basavaiah K. Biosynthesis, characterization and study of the application of silver nanoparticle for 4-nitrophenol reduction, and antimicrobial activities. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00838. [PMID: 38590717 PMCID: PMC10999826 DOI: 10.1016/j.btre.2024.e00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Silver nanoparticles (AgNPs) were synthesized from Vigna unguiculata (L) Walp extracted leaves, and characterized. The UV-Visible spectrum showed a peak between 411 and 415 nm at the Plasmon absorbance of the AgNPs. TEM showed that the size of AgNPs ranged from 5 to 13 nm. It was spherical with an average size of 11.08 nm. The size of AgNPs was 7 ± 6 nm and disperse in water. The AgNPs effectively reduced 4-Nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4. The AgNPs exhibited a strong antioxidant and antibacterial activity against Gram-negative bacteria: Escherichia coli (E. coli) and Klebsiella pneumonia and Gram-positive: Bacillus pumilus and Staphylococcus aureus. The average zones of inhibition of AgNPs were: 29 mm for Staphylococcus aureus, 23 mm for Bacillus pumilus, 17 mm for Klebsiella pneumonia and 15 mm for Escherichia coli (E. coli). Thus, AgNPs has exhibted good antibacterial activity compared to antibiotics drug and 4-NP reduction.
Collapse
Affiliation(s)
- Mengistu Mulu
- Department of Chemistry, College of natural and computational sciences, University of Gondar, Ethiopia
- Department of Inorganic and analytical Chemistry, Andhra University, India
| | - Molla Tefera
- Department of Chemistry, College of natural and computational sciences, University of Gondar, Ethiopia
| | - Atnafu Guadie
- Department of Chemistry, College of natural and computational sciences, University of Gondar, Ethiopia
| | - K. Basavaiah
- Department of Inorganic and analytical Chemistry, Andhra University, India
| |
Collapse
|
4
|
Yang X, Niu Y, Fan Y, Zheng T, Fan J. Green synthesis of Poria cocos polysaccharides-silver nanoparticles and their applications in food packaging. Int J Biol Macromol 2024; 269:131928. [PMID: 38688339 DOI: 10.1016/j.ijbiomac.2024.131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
To reduce pollution caused by traditional plastic packaging and preparation of silver nanoparticles (AgNPs), this work aims to develop biological macromolecular packaging films with green synthesized AgNPs. In this study, a novel P. cocos polysaccharide (PCP) with a unique monosaccharide composition was extracted from Poria cocos (Schw.) Wolf. Then, this polysaccharide containing 24.68 % rhamnose was used as a stabilizer for the green synthesis of PCP-AgNPs for the first time. PCP-AgNPs exhibited excellent antibacterial activity against P. aeruginosa, E. coli, and S. aureus, with the highest antibacterial activity against E. coli (inhibition zone diameter = 11.14 ± 0.79 mm). Subsequently, PCP-AgNPs/chitosan (CS) film was successfully prepared by incorporating PCP-AgNPs into the CS film solution. Several experiments demonstrated that the addition of this nanomaterial promoted the formation of noncovalent interactions between CS and PCP-AgNPs, resulting in a more regular and denser film. Compared to the CS film and control group, the PCP-AgNPs/CS film significantly maintained the quality indexes of strawberries. Therefore, this composite film successfully extended the shelf life of strawberries. Regarding safety, these packaging films were not cytotoxic toward RAW264.7 cells. In conclusion, the environmentally friendly PCP-AgNPs/CS film has the potential to replace some traditional food packaging materials.
Collapse
Affiliation(s)
- Xiaoqian Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Niu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yingrun Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
5
|
Sahu M, Ganguly M, Sharma P. Highly fluorescent quinone-capped silver hydrosol for environmental remediation and sensing applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123981. [PMID: 38340445 DOI: 10.1016/j.saa.2024.123981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
A metal-enhanced fluorescence was achieved from in situ-generated Ag0 nanoparticles in the proximity of 2-hydroxy benzaldehyde (2HB). Such nanoparticles eliminated methyl blue (MB) dye from water exclusively in the presence of Zn2+ and were proven to be an efficient adsorbent for environmental remediation (maximum uptake capacity 1065 mg·g-1). Ag was zero valent in the absorbent, while Zn2+ was in Zn(OH)2 form. Fe3+ brought back MB in the aqueous medium due to the strong interaction of MB with Fe3+ and the regeneration of blue color helped to design a selective and sensitive Fe3+ sensing platform colorimetrically (linear detection range 10-4-10-6 M; linear detection limit 10-6 M). The silver nanoparticle-induced metal-enhanced fluorescence was quenched efficiently with MB. Pb2+ restored the quenched fluorescence by removing MB from the proximity of the metalized surface of silver, and Pb2+ sensing was performed fluorometrically (linear detection range; 10-5-5 × 10-8 M limit of detection 5 × 10-8 M). Iron and lead were also estimated in a variety of natural water sources, including rainfall, drinking water from taps, and water from the Ganga River via spiking method.
Collapse
Affiliation(s)
- Mamta Sahu
- Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India.
| | - Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| |
Collapse
|
6
|
Impedimetric sensor for iron (III) detection based on small molecule (E)-2-((phenylimino)methyl) phenol-modified platinum electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Xiao N, Weng W, Tang D, Tan W, Zhang L, Deng Z, Chi X, Ku J, Zhong S. Extending Ag Nanoparticles as Colorimetric Sensor to Industrial Zinc Electrolyte for Cobalt Ion Detection. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020592. [PMID: 36677660 PMCID: PMC9861045 DOI: 10.3390/molecules28020592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
The direct and rapid determination of trace cobalt ion (Co2+) in the electrolyte of zinc smelting plants is urgently needed but is impeded by the severe interference of extremely high-concentration zinc ions in the solution. Herein, colorimetric detection of Co2+ by the polyvinylpyrrolidone functionalized silver nanoparticles (PVP-AgNPs) is realized in solutions with the Zn/Co ratio being high, up to (0.8-5) × 104, which is located within the ratio range in industrial solution. The high concentration of Zn2+ induces a strong attenuation of Co2+-related signals in ultraviolet-visible (UV-vis) extinction spectra; nevertheless, a good linear range for detecting 1-6 mg/L Co2+ in 50 g/L Zn2+ solution is still acquired. The strong anti-interference toward other metal ions and the mechanism understanding for trace Co2+ detection in such a high-concentration Zn2+ solution are also revealed by systematic analysis techniques. The results extend the AgNPs as colorimetric sensors to industrial solutions, providing a new strategy for detecting trace-metal ions in industrial plants.
Collapse
Affiliation(s)
- Ni Xiao
- School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wei Weng
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High Value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China
| | - Ding Tang
- Zijin Mining Group Co., Ltd., Shanghang, Longyan 364200, China
| | - Wen Tan
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
| | - Liye Zhang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
| | - Zheyuan Deng
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
| | - Xiaopeng Chi
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High Value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China
| | - Jiangang Ku
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
| | - Shuiping Zhong
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High Value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China
- Zijin Mining Group Co., Ltd., Shanghang, Longyan 364200, China
- Correspondence: ; Tel.: +86-15280385768
| |
Collapse
|
8
|
Catalytic reduction of nitrophenols using Gnetum montanum extract capped silver nanoparticles. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Wang M, Shu T, Ge X, Hu J, Liang Y. Millimeter‐Sized Hierarchical Porous Titanosilicate Supported Ultrafine Ag Nanoparticles as Highly Efficient Catalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202202260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Minghui Wang
- Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 PR China
| | - Ting Shu
- Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 PR China
| | - Xinfeng Ge
- Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 PR China
| | - Jun Hu
- Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 PR China
| | - Yunxiao Liang
- Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 PR China
| |
Collapse
|
10
|
Rajkumar G, Sundar R. Sonochemical-assisted eco-friendly synthesis of silver nanoparticles (AgNPs) using avocado seed extract: Naked-eye selective colorimetric recognition of Hg2+ ions in aqueous medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Efficient reduction of organic pollutants by novel magnetic Bi2S3/NiCo2O4 MOF- derived composite: Exprimental and DFT investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Huynh BA, Doan VD, Nguyen VC, Nguyen AT, Le VT. Highly sensitive and selective colorimetric detection of Pb(ii) ions using Michelia tonkinensis seed extract capped gold nanoparticles. RSC Adv 2022; 12:27116-27124. [PMID: 36276021 PMCID: PMC9501858 DOI: 10.1039/d2ra04981c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, gold nanoparticles (AuNPs) were synthesized via a green and environmentally-friendly approach and applied as a colorimetric probe for detecting Pb2+ ions in aqueous solution. Instead of toxic chemicals, Michelia tonkinensis (MT) seed extract was used for reducing Au3+ and stabilizing the formed AuNPs. The synthesis conditions, including temperature, reaction time, and Au3+ ion concentration, were optimized at 90 °C, 40 min, and 1.25 mM, respectively. The physicochemical properties of the produced MT-AuNPs were assessed by means of transmission electron microscopy, X-ray diffraction, field emission scanning electron microscopy, dynamic light scattering, and Fourier-transform infrared spectroscopy. The characterization results revealed that the MT-AuNPs exhibited a spherical shape with a size of about 15 nm capped by an organic layer. The colorimetric assay based on MT-AuNPs showed excellent sensitivity and selectivity toward Pb2+ ions with the limit of detection value of 0.03 μM and the limit of quantification of 0.09 μM in the linear range of 50-500 μM. The recoveries of inter-day and intra-day tests were 97.84-102.08% and 98.78-102.34%, respectively. The MT-AuNPs probe also demonstrated good and reproducible recoveries (98.71-101.01%) in analyzing Pb2+ in drinking water samples, indicating satisfactory practicability and operability of the proposed method.
Collapse
Affiliation(s)
- Bao An Huynh
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Van Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Anh-Tien Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education 280 An Duong Vuong Ho Chi Minh City 700000 Vietnam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University 03 Quang Trung Danang City 550000 Vietnam
- The Faculty of Natural Sciences, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam
| |
Collapse
|
13
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
14
|
Nguyen THA, Le TTV, Huynh BA, Nguyen NV, Le VT, Doan VD, Tran VA, Nguyen AT, Cao XT, Vasseghian Y. Novel biogenic gold nanoparticles stabilized on poly(styrene-co-maleic anhydride) as an effective material for reduction of nitrophenols and colorimetric detection of Pb(II). ENVIRONMENTAL RESEARCH 2022; 212:113281. [PMID: 35461847 DOI: 10.1016/j.envres.2022.113281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Biogenic gold nanoparticles (AuNPs) have been extensively studied for the catalytic conversion of nitrophenols (NP) into aminophenols and the colorimetric quantification of heavy metal ions in aqueous solutions. However, the high self-agglomeration ability of colloidal nanoparticles is one of the major obstacles hindering their application. In the present study, we offered novel biogenic AuNPs synthesized by a green approach using Cistanche deserticola (CD) extract as a bioreducing agent and stabilized on poly(styrene-co-maleic anhydride) (PSMA). The prepared Au@PSMA nanoparticles were characterized by various techniques (HR-TEM, SEAD, FE-SEM, DLS, TGA, XRD, and FTIR) and studied for two applications: the catalytic reduction of 3-NP by NaBH4 and the sensing detection of Pb2+ ions. The optimal conditions for the synthesis of AuNPs were investigated and established at 60 °C, 20 min, pH of 9, and 0.5 mM Au3+. Morphological studies showed that AuNPs synthesized by CD extract were mostly spherical with a mean diameter of 25 nm, while the size of polymer-integrated AuNPs was more than two-fold larger. Since PSMA acted as a matrix keeping the nanoparticles from coagulation and maintaining the optimal surface area, AuNPs integrated with PSMA showed higher catalytic efficiency with a faster reaction rate and lower activation energy than conventional nanoparticles. Au@PSMA could completely reduce 3-NP within 10 min with a rate constant of 0.127 min-1 and activation energy of 9.96 kJ/mol. The presence of PSMA also improved the stability and recyclability of AuNPs. Used as a sensor, Au@PSMA exhibited excellent sensitivity and selectivity for Pb2+ ions with a limit of detection of 0.03 μM in the linear range of 0-100 μM. The study results suggested that Au@PSMA could be used as a promising catalyst for the reduction of NP and the colorimetric sensor for detection of Pb2+ ions in aqueous environmental samples.
Collapse
Affiliation(s)
- Thi Hong Anh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Ho Chi Minh City, 70000, Viet Nam
| | - Thi Tuong Vy Le
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Bao An Huynh
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Ngoc Vy Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam; The Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam.
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam.
| | - Vy Anh Tran
- Department of Chemical and Biochemical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, 13120, Republic of Korea.
| | - Anh-Tien Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong, Ho Chi Minh City, 70000, Viet Nam
| | - Xuan Thang Cao
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
15
|
Asad S, Anwar N, Shah M, Anwar Z, Arif M, Rauf M, Ali K, Shah M, Murad W, Albadrani GM, Altyar AE, Abdel-Daim MM. Biological Synthesis of Silver Nanoparticles by Amaryllis vittata (L.) Herit: From Antimicrobial to Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5478. [PMID: 36013613 PMCID: PMC9410328 DOI: 10.3390/ma15165478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The current study sought to synthesize silver nanoparticles (AgNPs) from Amaryllis vittata (L.) leaf and bulb extracts in order to determine their biological significance and use the toxic plants for human health benefits. The formation of silver nanoparticles was detected by a change in color from whitish to brown for bulb-AgNPs and from light green to dark brown for leaf-AgNPs. For the optimization of silver nanoparticles, various experimental physicochemical parameters such as pH, temperature, and salt were determined. UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-ray dispersion spectroscopy, scanning electron microscopy, and energy dispersion spectroscopy analysis were used to characterize nanoparticles. Despite the fact that flavonoids in plant extracts were implicated in the reduction and capping procedure, the prepared nanoparticles demonstrated maximum absorbency between 400 and 500 nm. SEM analysis confirmed the preparation of monodispersed spherical crystalline particles with fcc structure. The bioinspired nanoparticles were found to show effective insecticidal activity against Tribolium castaneum and phytotoxic activity against Lemna aequincotialis. In comparison to plant extracts alone, the tested fabricated nanoparticles showed significant potential to scavenge free radicals and relieve pain. Antibacterial testing against human pathogenic strains, i.e., Escherichia coli and Pseudomonas aureginosa, and antifungal testing against Aspergillus niger revealed the significant potential for microbe resistance using AgNPs. As a result of the findings, the tested silver nanoparticles demonstrated promising potential for developing new and effective pharmacological and agricultural medications. Furthermore, the effects of biogenic AgNPs on an in vitro culture of Solanum tuberosum L. plants were investigated, and the findings indicated that bulb-AgNPs and leaf-AgNPs produced biomass and induced antioxidants via their active constituents. As a result, bulb-AgNPs and leaf-AgNPs may be recommended for use in Solanum tuberosum L. tissue culture for biomass fabrication and metabolic induction.
Collapse
Affiliation(s)
- Sehrish Asad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Natasha Anwar
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Zeeshan Anwar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Kazim Ali
- National Institute for Genomics and Advanced Biotechnology, NARC, Islamabad 44000, Pakistan
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
16
|
Ashrafzadeh Afshar E, Taher MA, Karimi-Maleh H, Karaman C, Joo SW, Vasseghian Y. Magnetic nanoparticles based on cerium MOF supported on the MWCNT as a fluorescence quenching sensor for determination of 6-mercaptopurine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119230. [PMID: 35395348 DOI: 10.1016/j.envpol.2022.119230] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new magnetic nanocomposite was developed as an efficient and fast-response fluorescence quenching sensor for determination of anticancer drug 6-mercaptopurine (6-MP). For this purpose, the needle-shape fluorescence metal-organic framework of cerium (Ce-MOF) were successfully synthesized on the surface of multiwalled carbon nanotubes using 1,3,5-benzenetricarboxylic acid ligand via a facile solvothermal assisted route and magnetized. The accuracy of the proposed synthesis was confirmed using the FT-IR, FE-SEM, XRD, and VSM methods. The obtained product as presented the fluorescence emission in 331 nm by excitation of 293 nm in excitation/emission slit widths of 10.0 nm. The operation of suggested method is based on quenching the fluorescence signal in accordance with increasing the 6-MP concentration. The proposed assay effectively detected the trace amount of 6-MP in the linear range of 1.0 × 10-6 to 7 × 10-5 M. The limit of detection and limit of quantification were obtained as 8.6 × 10-7 and 2.86 × 10-6 M, respectively. The analyte molecule was determined in real samples with satisfactory recoveries between 98.75 and 105.33.
Collapse
Affiliation(s)
- Elham Ashrafzadeh Afshar
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran; Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
17
|
Li C, Ding S, Zhang J, Wu J, Yue Y, Qian G. Ball milling transformed electroplating sludges with different components to spinels for stable electrocatalytic ammonia production under ambient conditions. CHEMOSPHERE 2022; 296:134060. [PMID: 35189185 DOI: 10.1016/j.chemosphere.2022.134060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Electroplating sludge is classified as hazardous waste, but it is also a potential raw resource since it contains plenty of transition metals. However, the component of electroplating sludge is unstable, which hinders recycling. This work investigates the possibility to synthesize spinels with stable catalytic performances by different electroplating sludges. The obtained catalysts are used in electrocatalytic N2 reduction to produce ammonia. As a result, CuCr2O4, ZnCr2O4, and NiCr2O4 spinels are successfully synthesized by a ball-milling and calcination method. These spinels result in ammonia yields of 7.30-8.86 μg h-1 mg-1cat. Among the three spinels, CuCr2O4 shows the highest yield of 8.86 μg h-1 mg-1cat at -0.9 V. Its faradaic efficiency reaches 0.57%. In addition, no by-product N2H4 is detected, indicating a high selectivity. The catalytic process is carried out by both distal and alternating pathways, in which metal doping and oxygen vacancy function as binding sites for N2 adsorption and reduction. Above results indicate that electroplating sludges with unstable components are feasible to produce spinels for stable electrocatalytic ammonia production under ambient temperature. This is in favor of high-value-added utilization of hazardous waste, and devotes to circular economy.
Collapse
Affiliation(s)
- Chengyan Li
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Suyan Ding
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China.
| | - Jianzhong Wu
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China
| | - Yang Yue
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China.
| |
Collapse
|
18
|
Rhouati A, Berkani M, Vasseghian Y, Golzadeh N. MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review. CHEMOSPHERE 2022; 291:132921. [PMID: 34798114 DOI: 10.1016/j.chemosphere.2021.132921] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 05/28/2023]
Abstract
Since the discovery of MXenes at Drexel University in the United States in 2011, there has been extensive research regarding various applications of MXenes including environmental remediation. MXenes with a general formula of Mn+1XnTx are a class of two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with unique chemical and physical characteristics as nanomaterials. MXenes feature characteristics such as high conductivity, hydrophobicity, and large specific surface areas that are attracting attention from researchers in many fields including environmental water engineering such as desalination and wastewater treatment as well as designing and building efficient sensors to detect hazardous pollutants in water. In this study, we review recent developments in MXene-based nanocomposites for electrochemical (bio) sensing with a particular focus on the detection of hazardous pollutants, such as organic components, pesticides, nitrite, and heavy metals. Integration of these 2D materials in electrochemical enzyme-based and affinity-based biosensors for environmental pollutants is also discussed. In addition, a summary of the key challenges and future remarks are presented. Although this field is relatively new, future research on biosensors of MXene-based nanocomposites need to exploit the remarkable properties of these 2D materials.
Collapse
Affiliation(s)
- Amina Rhouati
- Laboratoire Bioengineering, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, And Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Arikan K, Burhan H, Sahin E, Sen F. A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support. CHEMOSPHERE 2022; 291:132718. [PMID: 34756949 DOI: 10.1016/j.chemosphere.2021.132718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
In this study, a glucose sensor modified with activated carbon supported gold-nickel (AuNi@AC) metal nanoparticles was prepared for the early diagnosis of diabetes. Electrochemical tests were carried out by determining the optimum working conditions of the prepared glucose sensor. The characterization analyses of the designed glucose sensor were performed by Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. It was determined that the average particle size of the nanoparticles in the AuNi alloy structure was 2.03 ± 0.37 nm. The determined detection limit of the AuNi@AC nanosensor was calculated as 0.41 μM as a result of the high linear range provided up to 1.7 mM. In addition, the sensitivity of AuNi@AC nanosensor to glucose, which has a high sensitivity value of 1955 μA mM-1 cm-2, was determined.
Collapse
Affiliation(s)
- Kubilay Arikan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Hakan Burhan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Elif Sahin
- Department of Chemistry, Faculty of Sciences, Dokuz Eylul University, Buca, İzmir, Turkey.
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
20
|
Laourari I, Lakhdari N, Belgherbi O, Medjili C, Berkani M, Vasseghian Y, Golzadeh N, Lakhdari D. Antimicrobial and antifungal properties of NiCu-PANI/PVA quaternary nanocomposite synthesized by chemical oxidative polymerization of polyaniline. CHEMOSPHERE 2022; 291:132696. [PMID: 34718011 DOI: 10.1016/j.chemosphere.2021.132696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Increasing antimicrobial resistance has led to use of novel technologies such as nanomaterials and nanocomposites that have shown effective antimicrobial and/or antifungal activities against several gram-positive and gram-negative bacteria. There have been limited studies on antimicrobial properties of the combined polymer nanocomposites with transitional bimetallic nanoparticles such as nickel (Ni) and copper (Cu). Thus, the main objective of this study was to synthesis, characterize and investigate the antibacterial and antifungal properties of NiCu-PANI/PVA nanocomposite. The nanocomposite films with different amount of Ni and Cu salts were synthesized by chemical oxidative polymerization of polyaniline using HCl as oxidant and PVA as a stabilizer. Optical, chemical composition, and morphological characteristics as well as thermal stability were evaluated using UV-Visible, FTIR, SEM-EDX, and TGA analyses. Antimicrobial properties were then determined using the disc diffusion assay against gram-negative bacteria (i.e., Escherichia coli ATCC 25922, Klebsiella pneumonia ATCC 700603, Proteus sp.,) and gram-positive bacteria (i.e., Staphylococcus aureus ATCC 2593). Fungal plant pathogens including Aspergillus niger and Fusarium oxysporum f. sp. pisi were also evaluated for determination of antifungal activity of NiCu-PANI/PVA films. Among the synthesized films, Ni65Cu35-PANI/PVA showed excellent antibacterial activity against all the bacteria strains examined in this study. The diameters of inhibition zones for Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, Proteus sp., and Staphylococcus aureus ATCC 2593 were 23, 23, 17, and 18 mm, respectively indicating good antibacterial activities. Additionally, NiCu-PANI/PVA, particularly the films with higher Cu intake, showed better antifungal activity against Fusarium oxysporum f. sp. pisi. However, NiCu-PANI/PVA was ineffective against Aspergillus niger.
Collapse
Affiliation(s)
- Ines Laourari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Chahinaz Medjili
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, and Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| | - Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria.
| |
Collapse
|
21
|
Sree VG, Sohn JI, Im H. Pre-Anodized Graphite Pencil Electrode Coated with a Poly(Thionine) Film for Simultaneous Sensing of 3-Nitrophenol and 4-Nitrophenol in Environmental Water Samples. SENSORS 2022; 22:s22031151. [PMID: 35161895 PMCID: PMC8838205 DOI: 10.3390/s22031151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023]
Abstract
A very simple, as well as sensitive and selective, sensing protocol was developed on a pre-anodized graphite pencil electrode surface coated using poly(thionine) (APGE/PTH). The poly(thionine) coated graphite pencil was then used for simultaneous sensing of 3-nitrophenol (3-NP) and 4-nitrophenol (4-NP). The poly(thionine) coated electrode exhibited an enhanced electrocatalytic property towards nitrophenol (3-NP and 4-NP) reduction. Redox peak potential and current of both nitrophenols were found well resolved and their simultaneous analysis was studied. Under optimized experimental conditions, APGE/PTH showed a long linear concentration range from 20 to 230 nM and 15 nM to 280 nM with a calculated limit of detection (LOD) of 4.5 and 4 nM and a sensitivity of 22.45 µA/nM and 27.12 µA/nM for 3-NP and 4-NP, respectively. Real sample analysis using the prepared sensor was tested with different environmental water samples and the sensors exhibited excellent recovery results in the range from 98.16 to 103.43%. Finally, the sensor exposed an promising selectivity, stability, and reproducibility towards sensing of 3-NP and 4-NP.
Collapse
|
22
|
Taşçı T, Küçükyıldız G, Hepyalçın S, Ciğeroğlu Z, Şahin S, Vasseghian Y. Boron removal from aqueous solutions by chitosan/functionalized-SWCNT-COOH: Development of optimization study using response surface methodology and simulated annealing. CHEMOSPHERE 2022; 288:132554. [PMID: 34648780 DOI: 10.1016/j.chemosphere.2021.132554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Boron contamination in water resources (especially drinking waters and agricultural land) is a major problem for the ecosystem. In this study, a novel synthesized chitosan/functionalized-SWCNT-COOH was prepared to separate boron (as boric acid) from aqueous solutions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis revealed that SWCNT was dispersed in chitosan homogenously. Moreover, this study has related to the constrained optimization problem with an engineering approach. Response surface method (RSM) with face-centered central composite design (FCCCD) was chosen for maximizing the adsorption capacity as well as determining optimal independent factors such as pH, adsorbent dose, and concentration of boric acid. The optimized response (adsorption capacity) was reached 62.16 mg g-1 under the optimal conditions (98.77 mg L-1 of boric acid concentration, pH of 5.46 and 76 min). The present study has indicated that the synthesized material can be used as an adsorbent for eliminating boric acid from aqueous solutions depending on its high adsorbent capacity to remove boron and has better performance than existing adsorbents. Furthermore, simulated annealing (SA) optimization technique was used to compare the findings of RSM. Moreover, the selected optimization techniques were compared with error functions. The optimal conditions derived from SA were 91.17 mg L-1 of boric acid concentration, pH of 5.86, and 76.17 min. The optimal adsorption capacity of SA was found to be 62.06 mg g-1. These results revealed that the predictions of the two models are very close to each other.
Collapse
Affiliation(s)
- Tolga Taşçı
- Uşak University, Engineering Faculty, Department of Chemical Engineering, Uşak, 64300, Turkey
| | - Gürkan Küçükyıldız
- Uşak University, Engineering Faculty, Department of Electrical and Electronics Engineering, Uşak, 64300, Turkey
| | - Selin Hepyalçın
- Uşak University, Engineering Faculty, Department of Chemical Engineering, Uşak, 64300, Turkey
| | - Zeynep Ciğeroğlu
- Uşak University, Engineering Faculty, Department of Chemical Engineering, Uşak, 64300, Turkey.
| | - Selin Şahin
- Istanbul University-Cerrahpaşa, Engineering Faculty, Department of Chemical Engineering, Istanbul, Turkey
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
23
|
Xu X, Fu M, Yang M, Hu B, Yang J, Gui W, Guo J. NaYF 4:Yb 3+(58%),Tm 3+@NaYF 4@Au nanocomposite for 4-nitrophenol ultrasensitive quantitative detection and highly efficient catalytic reduction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NaYF4:Yb3+(58%),Tm3+@NaYF4@Au composite nanomaterials were designed and synthesized through condition optimization for the quantitative detection and catalytic reduction of 4-NP.
Collapse
Affiliation(s)
- Xia Xu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Meirong Fu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Bing Hu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Jitao Yang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Wenjun Gui
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Jinxiu Guo
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| |
Collapse
|