1
|
Jiang S, Guo T, Liu J, Liu T, Gong W. Biodegradable antimicrobial films prepared in a continuous way by melt extrusion using plant extracts as effective components. Food Chem 2025; 464:141643. [PMID: 39447263 DOI: 10.1016/j.foodchem.2024.141643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Packaging plays an important role in delaying food spoilage. However, conventional packaging films do not have antimicrobial properties. Films with antimicrobial components are receiving growing research interest. However, many of the reported studies use conventional non-degradable polymers during film preparation, posing a significant threat to the environment and sustainable development. Furthermore, conventional inorganic antibacterial agents are commonly used during film preparation, posing a risk to food safety. In this study, antibacterial compounds were extracted from diverse plants, and then biodegradable antimicrobial films were prepared in a continuous way via the melt extrusion method. Especially, films prepared using Vernicia fordii and Phyllanthus urinaria extracts showed effective antibacterial activities against common foodborne pathogens. This study is the first to prepare antibacterial films in a continuous way using natural plant extracts as the effective components, and may shed new light on future research in preparing green antibacterial films via environment-friendly approaches.
Collapse
Affiliation(s)
- Shanxue Jiang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Tongming Guo
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jinhao Liu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Tingwu Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China.
| |
Collapse
|
2
|
Liu S, Guo H, Kong Z, Han X, Gao Y, Zhang Y, Daigger GT, Zhang P, Kang J, Yu S, Li G, Song G. Performance improvement and application of copper-based nanomaterials in membrane technology for water treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122755. [PMID: 39378812 DOI: 10.1016/j.jenvman.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Membrane fouling, including organic, inorganic, and biological fouling, poses enormous challenges in membrane water treatment. Incorporation of copper-based nanomaterials in polymeric membranes is highly favored due to their exceptional antibacterial properties and capacity to improve membrane hydrophilicity. This review extensively explores the utilization of copper-based nanomaterials in membrane technology for water treatment, with a specific focus on enhancing anti-fouling performance. It elaborates on how copper-based nanomaterials improve the surface properties of membrane materials (such as porosity, hydrophilicity, surface charge, etc.) through physical and chemical processes. It summarizes the properties and potential antibacterial mechanisms of copper-based nanomaterials, primarily by disrupting microbial cell structures through the generation of reactive oxygen species (ROS). Furthermore, recent efforts to enhance the environmental sustainability, cost-effectiveness, and recyclability of copper-based nanomaterials are outlined. The attempts to offer insights for the advancement of anti-fouling practices in water treatment through the use of copper-modified polymer membranes.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Jia Kang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Shuchun Yu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Pu S, Zhang J, Shi C, Hou X, Li K, Feng J, Wu L. A multifunctional chitosan based porous membrane for pH-responsive antibacterial activity and promotion of infected wound healing. J Mater Chem B 2024; 12:7191-7202. [PMID: 38932741 DOI: 10.1039/d3tb03067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Unsatisfactory mechanical and antibacterial properties restricted the solo use of chitosan (CS) as a wound dressing. In this work, a novel CS/hydroxyapatite/ZIF-8 (CS/HAp/ZIF-8, CHZ-10) porous membrane was facilely constructed by in situ loading of ZIF-8 on CS/HAp. The advantages of the three compositions were rationally integrated, and the multifunctionality and practicality of this CS-based dressing were improved. HAp not only improved the mechanical strength and stability of CS, but also promoted cell proliferation and accelerated hemostasis with its released Ca2+. Meanwhile, ZIF-8 enhanced the antibacterial activity of CS by releasing antibacterial Zn2+ in a pH-responsive and sustainable manner, avoiding the bio-accumulation toxicity of heavy metals. Compared with CS/HAp and conventionally used gauze, CHZ-10 exhibited superior coagulation and hemolytic ability, as well as outstanding antibacterial activity against E. coli and S. aureus. Besides, both in vivo observation and histological evaluation demonstrated that CHZ-10 could not only effectively inhibit bacterial infection and reduce inflammation of the wound, but also promote its re-epithelialization, granulation, tissue formation and collagen fibre growth, leading to effectively enhanced wound-healing. This work provides a new method for the easy construction of multifunctional antibacterial dressings based on CS, showing promise for application in clinical wound care.
Collapse
Affiliation(s)
- Shan Pu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jiale Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Chaoting Shi
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ka Li
- West China School of Nursing, Sichuan University/Department of Biliary, West China Hospital, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jinhua Feng
- West China School of Nursing, Sichuan University/Department of Biliary, West China Hospital, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Lan Wu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
4
|
Thakkar N, Gajera G, Mehta D, Kothari V. Silversol ® (a Colloidal Nanosilver Formulation) Inhibits Growth of Antibiotic-Resistant Staphylococcus aureus by Disrupting Its Physiology in Multiple Ways. Pharmaceutics 2024; 16:726. [PMID: 38931848 PMCID: PMC11206351 DOI: 10.3390/pharmaceutics16060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic-resistant strains of Staphylococcus aureus are being viewed as a serious threat by various public health agencies. Identifying novel targets in this important pathogen is crucial to the development of new effective antibacterial formulations. We investigated the antibacterial effect of a colloidal nanosilver formulation, Silversol®, against an antibiotic-resistant strain of S. aureus using appropriate in vitro assays. Moreover, we deciphered the molecular mechanisms underlying this formulation's anti-S. aureus activity using whole transcriptome analysis. Lower concentrations of the test formulation exerted a bacteriostatic effect against this pathogen, and higher concentrations exerted a bactericidal effect. Silversol® at sub-lethal concentration was found to disturb multiple physiological traits of S. aureus such as growth, antibiotic susceptibility, membrane permeability, efflux, protein synthesis and export, biofilm and exopolysaccharide production, etc. Transcriptome data revealed that the genes coding for transcriptional regulators, efflux machinery, transferases, β-lactam resistance, oxidoreductases, metal homeostasis, virulence factors, and arginine biosynthesis are expressed differently under the influence of the test formulation. Genes (argG and argH) involved in arginine biosynthesis emerged among the major targets of Silversol®'s antibacterial activity against S. aureus.
Collapse
Affiliation(s)
- Nidhi Thakkar
- Institute of Science, Nirma University, Ahmedabad 382481, India; (N.T.); (G.G.)
| | - Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad 382481, India; (N.T.); (G.G.)
| | - Dilip Mehta
- Viridis BioPharma Pvt. Ltd., Mumbai 400043, India;
| | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad 382481, India; (N.T.); (G.G.)
| |
Collapse
|
5
|
Jia W, Jiang S, Wang F, Li J, Wang Z, Yao Z. Natural antibacterial membranes prepared using Schisandra chinensis extracts and polyvinyl alcohol in an environment-friendly manner. CHEMOSPHERE 2024; 346:140524. [PMID: 37923017 DOI: 10.1016/j.chemosphere.2023.140524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Foodborne pathogens can cause food spoilage and lead to food safety issues. In recent years, food packaging has received a lot of attention. Traditional packaging membranes are non-biodegradable and remain in the environment for a long time. In this study, natural antimicrobial substances were extracted from Schisandra chinensis by a green extraction process using distilled water as the solvent, and the effects of different treatment on the antimicrobial activity of the extract were compared. At the same time, four types of Schisandra chinensis antimicrobial membranes were prepared using polyvinyl alcohol (PVA) as the substrate. The whole extraction and membrane preparation process did not involve organic solvents, making the process green and environment friendly. Material characterization included inverted biological microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), tensile strength test, pore size measurement, water uptake test, etc. Among them, no extract particles were observed with the naked eye on the surfaces of MⅡ and MⅣ. MⅡ has a uniformly transparent, nearly colorless morphology and is the most tensile. MⅣ surface is flat and smooth, the microstructure is dense and uniform. At the same time, the four types of membranes were tested against common pathogenic bacteria for 12 h, and the OD600 trend revealed the excellent antimicrobial activity of the membranes against S. aureus, MRSA, E. coli, and L. monocytogenes. The membranes could also be reused at least once. This study provides a new idea for preparing natural plant-based antimicrobial membranes.
Collapse
Affiliation(s)
- Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zeru Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
6
|
Gajera G, Thakkar N, Godse C, DeSouza A, Mehta D, Kothari V. Sub-lethal concentration of a colloidal nanosilver formulation (Silversol®) triggers dysregulation of iron homeostasis and nitrogen metabolism in multidrug resistant Pseudomonas aeruginosa. BMC Microbiol 2023; 23:303. [PMID: 37872532 PMCID: PMC10591374 DOI: 10.1186/s12866-023-03062-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a notorious pathogen. Its multidrug resistant strains are listed among priority pathogens against whom discovery of novel antibacterial agents and, elucidation of new anti-pathogenicity mechanisms are urgently warranted. This study describes multiple antibacterial effects of a colloidal nano-silver formulation- Silversol® against a multi-drug resistant strain of P. aeruginosa. RESULTS Minimum inhibitory concentration (MIC) of Silversol® against P. aeruginosa was found to be 1.5 ppm; and at sub-MIC of 1 ppm, it was able to alter quorum-sensing regulated pigmentation (pyocanin 82%↓; pyoverdine 48%↑), exopolysaccharide synthesis (76%↑) and biofilm formation, susceptibility to antibiotics (streptomycin and augmentin), protein synthesis and export (65%↑), nitrogen metabolism (37%↑ nitrite accumulation), and siderophore production in this pathogen. Network analysis of the differentially expressed genes in the transcriptome of the silversol-treated bacterium identified ten genes as the potential molecular targets: norB, norD, nirS, nirF, nirM, nirQ, nosZ, nosY, narK1, and norE (all associated with nitrogen metabolism or denitrification). Three of them (norB, narK1, and norE) were also validated through RT-PCR. CONCLUSIONS Generation of nitrosative stress and disturbance of iron homeostasis were found to be the major mechanisms associated with anti-Pseudomonas activity of Silversol®.
Collapse
Affiliation(s)
- Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad, 382481, India
| | - Nidhi Thakkar
- Institute of Science, Nirma University, Ahmedabad, 382481, India
| | | | | | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad, 382481, India.
| |
Collapse
|
7
|
Ahmad M, Ahmed M. Characterization and applications of ion-exchange membranes and selective ion transport through them: a review. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
8
|
Synergistically enhancing the antibacterial and antibiofilm activities of anion exchange membrane by chemically assembling gentamicin and N-chloramine layers. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
9
|
Multifunctional Heterogeneous Ion-Exchange Membranes for Ion and Microbe Removal in Low-Salinity Water. Polymers (Basel) 2023; 15:polym15040843. [PMID: 36850126 PMCID: PMC9962874 DOI: 10.3390/polym15040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Here, multifunctional heterogeneous ion-exchange metal nanocomposite membranes were prepared for surface water desalination and bacterial inactivation under low-pressure (0.05 MPa) filtration conditions. Ultrafiltration (UF) heterogeneous ion exchange membranes (IEMs) were modified with different concentrations of AgNO3 and CuSO4 solutions using the intermatrix synthesis (IMS) technique to produce metal nanocomposite membranes. Scanning electron microscopy (SEM) images revealed that the metal nanoparticles (MNPs) (Ag and Cu) were uniformly distributed on the surface and the interior of the nanocomposite membranes. With increasing metal precursor solution concentration (0.01 to 0.05 mol·L-1), the metal content of Ag and Cu nanocomposite membranes increased from 0.020 to 0.084 mg·cm-2 and from 0.031 to 0.218 m·cm-2 respectively. Results showed that the hydrodynamic diameter diameters of Ag and Cu nanoparticles (NPs) increased from 62.42 to 121.10 nm and from 54.2 to 125.7 nm respectively, as the metal precursor concentration loaded increased. The leaching of metals from metal nanocomposite membranes was measured in a dead-end filtration system, and the highest leaching concentration levels were 8.72 ppb and 5.32 ppb for Ag and Cu, respectively. The salt rejection studies indicated that ionic selectivity was improved with increasing metal content. Bacterial filtration showed higher antibacterial activity for metal nanocomposite membranes, reaching 3.6 log bacterial inactivation.
Collapse
|
10
|
Dong S, Hua H, Wu X, Mao X, Li N, Zhang X, Wang K, Yang S. In-situ photoreduction strategy for synthesis of silver nanoparticle-loaded PVDF ultrafiltration membrane with high antibacterial performance and stability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26445-26457. [PMID: 36369440 DOI: 10.1007/s11356-022-24052-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Ultrafiltration (UF) technology using polyvinylidene fluoride (PVDF) membrane has been widely applied to water and wastewater treatment due to its low cost and simple operation process. However, PVDF-based UF membrane always encountered the issue of membrane biofouling that greatly impacted the filtration performance. In this study, we prepare a silver nanoparticle (AgNP)-loaded PVDF (Ag/PVDF) UF membrane by an in-situ photoreduction method to mitigate the membrane biofouling. Different from the previously reported method, AgNPs were synthesized in-situ by a UV photoreduction process, in which Ag+ ions were reduced to zero-valent Ag nanoparticles by the photo-induced reducing radicals. Antibacterial experiments showed that the inhibition efficiency of Ag/PVDF membrane to Escherichia coli reached up to ~ 99% after antibacterial treatment for 24 h. In comparison with the pristine PVDF membrane, Ag/PVDF membrane possessed a lower water contact angle (83.7° vs. 38.1°), and its pure water flux increased by 23.7%, and a high bovine serum albumin (BSA) rejection efficiency was maintained. In addition, the high stability of the Ag/PVDF composite membrane was confirmed by the extremely low releasing amount of Ag. This study provides a novel strategy for the preparation of metal nanoparticle-incorporated Ag/PVDF ultrafiltration composite membrane showing favorable antibacterial performance and stability.
Collapse
Affiliation(s)
- Shanshan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Helin Hua
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Xin Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xuhui Mao
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Na Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xinping Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Kun Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shengyun Yang
- Guangdong Weiqing Environmental Engineering Company, Zhongshan, 528437, China
| |
Collapse
|
11
|
Mudigonda S, Dahms HU, Hwang JS, Li WP. Combined effects of copper oxide and nickel oxide coated chitosan nanoparticles adsorbed to styrofoam resin beads on hydrothermal vent bacteria. CHEMOSPHERE 2022; 308:136338. [PMID: 36108756 DOI: 10.1016/j.chemosphere.2022.136338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are potential carriers of harmful contaminants but their combined effects are largely unknown. It needs intensive monitoring in order to achieve a better understanding of metal-oxide nanoparticles and their dispersion via microplastics such as styrofoam in the aquatic environment. In the present study, an effort was made to provide a preferable perception about the toxic effects of engineered nanoparticles (NPs), namely, copper oxide (CuO NPs), nickel oxide (NiO NPs), copper oxide/chitosan (CuO/CS NPs) and nickel oxide/chitosan (NiO/CS NPs). Characterizations of synthesized NPs included their morphology (SEM and EDX), functional groups (FT-IR) and crystallinity (XRD). Their combined toxic effect after adsorption to styrofoam (SF) was monitored using the hydrothermal vent bacterium Jeotgalicoccus huakuii as a model. This was done by determining MIC (minimum inhibitory concentration) through a resazurin assay measuring ELISA, growth, biofilm inhibition and making a live and dead assay. Results revealed that at high concentrations (60 mg/10 mL) of CuO, CuO/CS NPs and 60 mg of SF adsorbed CuO and CuO/CS NPs inhibited the growth of J. huakuii. However, NPs rather than SF inhibited the growth of bacteria. The toxicity of NPs adsorbed on plain SF was found to be less compared to NPs alone. This study revealed new dimensions regarding the positive impacts of SF at low concentrations. Synthesized NPs applied separately were found to affect the growth of bacteria substantially more than if coated to SF resin beads.
Collapse
Affiliation(s)
- Sunaina Mudigonda
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan; Research Centre for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan; Centre of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| |
Collapse
|
12
|
Tanum J, Choi M, Jeong H, Park S, Sutthiwanjampa C, Park H, Hong J. Generation of zinc ion-rich surface via in situ growth of ZIF-8 particle: Microorganism immobilization onto fabric surface for prohibit hospital-acquired infection. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 446:137054. [PMID: 35601362 PMCID: PMC9116044 DOI: 10.1016/j.cej.2022.137054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Viruses/bacteria outbreaks have motivated us to develop a fabric that will inhibit their transmission with high potency and long-term stability. By creating a metal-ion-rich surface onto polyester (PET) fabric, a method is found to inhibit hospital-acquired infections by immobilizing microorganisms on its surface. ZIF-8 and APTES are utilized to overcome the limitations associated with non-uniform distribution, weak biomolecule interaction, and ion leaching on surfaces. Modified surfaces employing APTES enhance ZIF-8 nucleation by generating a monolayer of self-assembled amine molecules. An in-situ growth approach is then used to produce evenly distributed ZIF-8 throughout it. In comparison with pristine fabric, this large amount of zinc obtained from the modification of the fabric has a higher affinity for interacting with membranes of microorganisms, leading to a 4.55-fold increase in coronavirus spike-glycoprotein immobilization. A series of binding ability stability tests on the surface demonstrate high efficiency of immobilization, >90%, of viruses and model proteins. The immobilization capacity of the modification fabric stayed unchanged after durability testing, demonstrating its durability and stability. It has also been found that this fabric surface modification approach has maintained air/vapor transmittance and air permeability levels comparable to pristine fabrics. These results strongly advocate this developed fabric has the potential for use as an outer layer of face masks or as a medical gown to prevent hospital-acquired infections.
Collapse
Affiliation(s)
- Junjira Tanum
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Ivanauskas R, Bronusiene A, Ivanauskas A, Šarkinas A, Ancutiene I. Antibacterial Activity of Copper Particles Embedded in Knitted Fabrics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7147. [PMID: 36295215 PMCID: PMC9607619 DOI: 10.3390/ma15207147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The composition and antibacterial properties of copper particles synthesized by a very simple reduction method were studied. For the preparation of particles in knitted fabrics, copper(II) sulfate was used as a precursor and ascorbic acid as a reducing natural agent. X-ray diffraction analysis showed the crystalline nature of the obtained particles. The round or oval particles and their agglomerates in knitted fabrics consisted of copper with traces of copper(I) oxide-cuprite. The element maps and energy dispersive X-ray spectra showed a high content of copper in the samples. The samples of wool and cotton knitted fabrics with copper particles had excellent antibacterial activity against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) bacterial strains. The maximum zones of inhibition were 19.3 mm for S. aureus and 18.3 mm for E. coli using wool knitted fabric and 14.7 mm and 15.3 mm using cotton knitted fabric, respectively. The obtained results showed that the modified wool and cotton fabrics are suitable for use as inserts in reusable masks due to their noticeable and long-term activity against pathogenic bacteria.
Collapse
Affiliation(s)
- Remigijus Ivanauskas
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| | - Asta Bronusiene
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| | - Algimantas Ivanauskas
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| | - Antanas Šarkinas
- Food Institute, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| | - Ingrida Ancutiene
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
14
|
Jiang S, Li Q, Jia W, Wang F, Cao X, Shen X, Yao Z. Expanding the application of ion exchange resins for the preparation of antimicrobial membranes to control foodborne pathogens. CHEMOSPHERE 2022; 295:133963. [PMID: 35167836 DOI: 10.1016/j.chemosphere.2022.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Although ion exchange resins (IERs) have been extensively adopted in water treatment, there are no reports on the application thereof for synthesizing antibacterial materials against pathogenic bacteria. The present study is the first in which the ion exchange characteristic of IERs was utilized to introduce silver ions that possess efficient antibacterial properties. The resulting antibacterial materials were incorporated into polylactic acid (PLA) and/or polybutylene adipate terephthalate (PBAT) to prepare antibacterial membranes. XPS spectra revealed the occurrence of in-situ reduction of silver ions to metallic silver, which was preferable since the stability of silver in the materials was improved. EDS mapping analysis indicated that the distribution of silver was consistent with the distribution of sulfur in the membranes, verifying the ion exchange methodology proposed in the present study. To investigate the antibacterial performance of the prepared membranes, zone of inhibition tests and bacteria-killing tests were performed. The results revealed that neither bare polymeric membranes of PLA and PBAT nor IER-incorporated polymeric membranes exhibited noticeable antibacterial activities. In comparison, the antibacterial membranes demonstrated effective and sustainable antibacterial activities against pathogenic bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The prepared antibacterial membranes exhibited potential in food-related applications such as food packaging to delay food spoilage due to microbial growth.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
15
|
Tu C, Lu H, Zhou T, Zhang W, Deng L, Cao W, Yang Z, Wang Z, Wu X, Ding J, Xu F, Gao C. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 2022; 286:121597. [DOI: 10.1016/j.biomaterials.2022.121597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
|
16
|
A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorg Chem Appl 2022; 2022:7557825. [PMID: 35287316 PMCID: PMC8917952 DOI: 10.1155/2022/7557825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background. Food nanopackaging helps maintain food quality against physical, chemical, and storage instability factors. Copper oxide nanoparticles (CuONPs) can improve biopolymers’ mechanical features and barrier properties. This will lead to antimicrobial and antioxidant activities in food packaging to extend the shelf life. Scope and Approach. Edible coatings based on carbohydrate biopolymers have improved the quality of packaging. Several studies have addressed the role of carbohydrate biopolymers and incorporated nanoparticles to enhance food packets’ quality as active nanopackaging. Combined with nanoparticles, these biopolymers create film coatings with an excellent barrier property against transmissions of gases such as O2 and CO2. Key Findings and Conclusions. This review describes the CuO-biopolymer composites, including chitosan, agar, cellulose, carboxymethylcellulose, cellulose nanowhiskers, carrageenan, alginate, starch, and polylactic acid, as food packaging films. Here, we reviewed different fabrication techniques of CuO biocomposites and the impact of CuONPs on the physical, mechanical, barrier, thermal stability, antioxidant, and antimicrobial properties of carbohydrate-based films.
Collapse
|
17
|
Jiang S, Li Q, Wang F, Wang Z, Cao X, Shen X, Yao Z. Highly effective and sustainable antibacterial membranes synthesized using biodegradable polymers. CHEMOSPHERE 2022; 291:133106. [PMID: 34848235 DOI: 10.1016/j.chemosphere.2021.133106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
In order to reduce foodborne diseases caused by bacterial infections, antibacterial membranes have received increasing research interests in recent years. In this study, highly effective antibacterial membranes were prepared using biodegradable polymers, including polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), and carboxymethyl cellulose (CMC). The cation exchange property of CMC was utilized to introduce silver to prepare antibacterial materials. The presence of silver in the membranes was confirmed by EDS mapping, and the reduction of silver ions to metallic silver was confirmed by the Ag3d XPS spectrum which displayed peaks at 374.46 eV and 368.45 eV, revealing that the oxidation state of silver changed to zero. Two common pathogenic bacteria, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), were used to investigate the antibacterial performance of the prepared membranes. Zone of inhibition and bacteria-killing tests revealed that the antibacterial membranes were efficient in inhibiting the growth of bacteria (diameters of inhibition zone ranged from 16 mm to 19 mm for fresh membranes) and capable of killing 100% of bacteria under suitable conditions. Furthermore, after 6 cycles of continuous zone of inhibition tests, the membranes still showed noticeable antibacterial activities, which disclosed the sustainable antibacterial properties of the membranes.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zeru Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
18
|
Siekierka A, Smolińska-Kempisty K, Wolska J. Enhanced Specific Mechanism of Separation by Polymeric Membrane Modification-A Short Review. MEMBRANES 2021; 11:membranes11120942. [PMID: 34940443 PMCID: PMC8705657 DOI: 10.3390/membranes11120942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022]
Abstract
Membrane technologies have found a significant application in separation processes in an exceeding range of industrial fields. The crucial part that is decided regarding the efficiency and effectivity of separation is the type of membrane. The membranes deal with separation problems, working under the various mechanisms of transportation of selected species. This review compares significant types of entrapped matter (ions, compounds, and particles) within membrane technology. The ion-exchange membranes, molecularly imprinted membranes, smart membranes, and adsorptive membranes are investigated. Here, we focus on the selective separation through the above types of membranes and detect their preparation methods. Firstly, the explanation of transportation and preparation of each type of membrane evaluated is provided. Next, the working and application phenomena are evaluated. Finally, the review discusses the membrane modification methods and briefly provides differences in the properties that occurred depending on the type of materials used and the modification protocol.
Collapse
Affiliation(s)
- Anna Siekierka
- Correspondence: (A.S.); (K.S.-K.); (J.W.); Tel.: +48-71-320-36-55 (A.S.); +48-71-320-59-29 (K.S.-K.); +48-71-320-23-83 (J.W.)
| | - Katarzyna Smolińska-Kempisty
- Correspondence: (A.S.); (K.S.-K.); (J.W.); Tel.: +48-71-320-36-55 (A.S.); +48-71-320-59-29 (K.S.-K.); +48-71-320-23-83 (J.W.)
| | - Joanna Wolska
- Correspondence: (A.S.); (K.S.-K.); (J.W.); Tel.: +48-71-320-36-55 (A.S.); +48-71-320-59-29 (K.S.-K.); +48-71-320-23-83 (J.W.)
| |
Collapse
|