1
|
Zhan M, Hong Y, Fang Z, Qiu D. Magnetic recyclable visible light-driven Bi 2WO 6/Fe 3O 4/RGO for photocatalytic degradation of Microcystin-LR: Mechanism, pathway, and influencing factors. ENVIRONMENTAL RESEARCH 2024; 252:118885. [PMID: 38614200 DOI: 10.1016/j.envres.2024.118885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Photocatalysis was an attractive strategy that had potential to tackle the Microcystin-LR (MC-LR) contamination of aquatic ecosystems. Herein, magnetic photocatalyst Fe3O4/Bi2WO6/Reduced graphene oxide composites (Bi2WO6/Fe3O4/RGO) were employed to degrade MC-LR. The removal efficiency and kinetic constant of the optimized Bi2WO6/Fe3O4/RGO (Bi2WO6/Fe3O4-40%/RGO) was 1.8 and 2.3 times stronger than the pure Bi2WO6. The improved activity of Bi2WO6/Fe3O4-40%/RGO was corresponded to the expanded visible light adsorption ability and reduction of photogenerated carrier recombination efficiency through the integration of Bi2WO6 and Fe3O4-40%/RGO. The MC-LR removal efficiency exhibited a positive tendency to the initial density of algae cells, fulvic acid, and the concentration of MC-LR decreased. The existed anions (Cl-, CO3-2, NO3-, H2PO4-) reduced MC-LR removal efficiency of Bi2WO6/Fe3O4-40%/RGO. The Bi2WO6/Fe3O4-40%/RGO could degrade 79.3% of MC-LR at pH = 7 after 180 min reaction process. The trapping experiments and ESR tests confirmed that the h+, ∙OH, and ∙O2- played a significant role in MC-LR degradation. The LC-MS/MS result revealed the intermediates and possible degradation pathways.
Collapse
Affiliation(s)
- Mingming Zhan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Zhi Fang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Qiu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Ly NH, Barceló D, Vasseghian Y, Choo J, Joo SW. Sustainable bioremediation technologies for algal toxins and their ecological significance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122878. [PMID: 37967713 DOI: 10.1016/j.envpol.2023.122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
The emergence of algal toxins in water ecosystems poses a significant ecological and human health concern. These toxins, produced by various algal species, can lead to harmful algal blooms, and have far-reaching consequences on biodiversity, food chains, and water quality. This review explores the types and sources of algal toxins, their ecological impacts, and the associated human health risks. Additionally, the review delves into the potential of bioremediation strategies to mitigate the effects of algal toxins. It discusses the role of microorganisms, enzymes, and algal-bacterial interactions in toxin removal, along with engineering approaches such as advanced oxidation processes and adsorbent utilization. Microbes and enzymes have been studied for their environmentally friendly and biocompatible properties, which make them useful for controlling or removing harmful algae and their toxins. The challenges and limitations of bioremediation are examined, along with case studies highlighting successful toxin control efforts. Finally, the review outlines future prospects, emerging technologies, and the need for continued research to effectively address the complex issue of algal toxins and their ecological significance.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona, 08034, Spain; Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
3
|
Zhan M, Hong Y, Fang Z, Qiu D. Visible light-driven photocatalytic degradation of Microcystin-LR by Bi 2WO 6/Reduced graphene oxide heterojunctions: Mechanistic insight, DFT calculation and degradation pathways. CHEMOSPHERE 2023; 321:138105. [PMID: 36764614 DOI: 10.1016/j.chemosphere.2023.138105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Developing heterostructure photocatalysts for removing Microcystin-LR (MC-LR) under visible light was of positive significance to control the risk of Microcystins and ensure the safety of water quality. Herein, the Bi2WO6/Reduced graphene oxide (RGO) nanocomposites were prepared via a simple one-spot hydrothermal method for the first time to degrade MC-LR. The optimized Bi2WO6/RGO (Bi2WO6/RGO3%) achieved a removal efficiency of 82.3% toward MC-LR, with 1.9-fold higher efficiencies than Bi2WO6, and it showed superior reusability and high stability after 5 cycles. The degradation efficiency of MC-LR demonstrated a negative trend with the initial concentration of MC-LR, fulvic acid, and initial algal density increased, while MC-LR removal rate for the presence of anions was in the order of Cl- > CO3-2 > NO3- > H2PO4-. The degradation efficiency of MC-LR could reach up to 82.3% within 180 min in the neutral condition. The active species detection experiments and EPR measurements demonstrated that the holes (h+), hydroxide radicals (∙OH), and superoxide radicals (∙O2-) participated in the degradation of MC-LR. The DFT calculations showed that 0.56 of electron transferred from Bi2WO6 to RGO, indicating RGO introduction could prevent the recombination of photoelectrons and holes and was beneficial for MC-LR degradation. Finally, the possible intermediate products and degradation pathways were also proposed by the LC-MS/MS analysis.
Collapse
Affiliation(s)
- Mingming Zhan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Zhi Fang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Qiu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Ndlovu LN, Malatjie KI, Donga C, Mishra AK, Nxumalo EN, Mishra SB. Catalytic degradation of methyl orange using beta cyclodextrin modified polyvinylidene fluoride mixed matrix membranes imbedded with in‐situ generated palladium nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.53270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lloyd N. Ndlovu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Kgolofelo I. Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Cabangani Donga
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Ajay K. Mishra
- College of Pharmaceutical and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Academy of Nanotechnology and Wastewater Innovations Johannesburg South Africa
- Department of Chemistry Durban University of Technology Durban South Africa
| | - Edward N. Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Shivani B. Mishra
- College of Pharmaceutical and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Academy of Nanotechnology and Wastewater Innovations Johannesburg South Africa
| |
Collapse
|