1
|
Xin Y, Wang Y, Jiang Z, Deng B, Jiang ZJ. Advances in the Removal of Organic Pollutants from Water by Photocatalytic Activation of Persulfate: Photocatalyst Modification Strategy and Reaction Mechanism. CHEMSUSCHEM 2024; 17:e202400254. [PMID: 38743510 DOI: 10.1002/cssc.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Environmental pollution caused by persistent organic pollutants has imposed big threats to the health of human and ecological systems. The development of efficient methods to effectively degrade and remove these persistent organic pollutants is therefore of paramount importance. Photocatalytic persulfate-based advanced oxidation technologies (PS-AOTs), which depend on the highly reactive SO4 - radicals generated by the activation of PS to degrade persistent organic pollutants, have shown great promise. This work discusses the application and modification strategies of common photocatalysts in photocatalytic PS-AOTs, and compares the degradation performance of different catalysts for pollutants. Furthermore, essential elements impacting photocatalytic PS-AOTs are discussed, including the water matrix, reaction process mechanism, pollutant degradation pathway, singlet oxygen generation, and potential PS hazards. Finally, the existing issues and future challenges of photocatalytic PS-AOTs are summarized and prospected to encourage their practical application. In particular, by providing new insights into the PS-AOTs, this review sheds light on the opportunities and challenges for the development of photocatalysts with advanced features for the PS-AOTs, which will be of great interests to promote better fundamental understanding of the PS-AOTs and their practical applications.
Collapse
Affiliation(s)
- Yue Xin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Zhongqing Jiang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Binglu Deng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Ma X, Liu X, Shang X, Zhao Y, Zhang Z, Lin C, He M, Ouyang W. Efficient roxarsone degradation by low-dose peroxymonosulfate with the activation of recycling iron-base composite material: Critical role of electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134087. [PMID: 38518697 DOI: 10.1016/j.jhazmat.2024.134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Pollutant degradation via electron transfer based on advanced oxidation processes (AOPs) provides an economical and energy-efficient method for pollution control. In this study, an iron-rich waste, heating pad waste (HPW), was recycled as a raw material, and a strong magnetic catalyst (Fe-HPW) was synthesized at high temperature (900 °C). Results showed that in the constructed Fe-HPW/PMS system, effective roxarsone (ROX) degradation and TOC removal (72.54%) were achieved at a low-dose of oxidant (PMS, 0.05 mM) and catalyst (Fe-HPW, 0.05 g L-1), the ratio of PMS to ROX was only 2.5:1. In addition, the released inorganic arsenic was effectively removed from the solution. The analysis of the experimental results showed that ROX was effectively degraded by forming PMS/catalyst surface complexes (Fe-HPW-PMS*) to mediate electron transfer in the Fe-HPW/PMS system. Besides, this system performed effective ROX degradation over a wide pH range (pH=3-9) and showed high resistance to different water parameters. Overall, this study not only provides a new direction for the recycling application of HPW but also re-emphasizes the neglected nonradical pathway in advanced oxidation processes.
Collapse
Affiliation(s)
- Xiaoyu Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875.
| | - Xiao Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
3
|
Brillas E, Oliver R. Development of persulfate-based advanced oxidation processes to remove synthetic azo dyes from aqueous matrices. CHEMOSPHERE 2024; 355:141766. [PMID: 38527631 DOI: 10.1016/j.chemosphere.2024.141766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Azo dyes are largely used in many industries and discharged in large volumes of their effluents into the aquatic environment giving rise to non-esthetic pollution and health-risk problems. Due to the high stability of azo dyes in ambient conditions, they cannot be abated in conventional wastewater treatment plants. Over the last fifteen years, the decontamination of dyeing effluents by persulfate (PS)-based advanced oxidation processes (AOPs) has received a great attention. In these methods, PS is activated to be decomposed into sulfate radical anion (SO4•-), which is further partially hydrolyzed to hydroxyl radical (•OH). Superoxide ion (O2•-) and singlet oxygen (1O2) can also be produced as oxidants. This review summarizes the results reported for the discoloration and mineralization of synthetic and real waters contaminated with azo dyes covering up to November 2023. PS activation with iron, non-iron transition metals, and carbonaceous materials catalysts, heat, UVC light, photocatalysis, photodegradation with iron, electrochemical and related processes, microwaves, ozonation, ultrasounds, and other processes is detailed and analyzed. The principles and characteristics of each method are explained with special attention to the operating variables, the different oxidizing species generated yielding radical and non-radical mechanisms, the addition of inorganic anions and natural organic matter, the aqueous matrix, and the by-products identified. Finally, the overall loss of toxicity or partial detoxification of treated azo dye solutions during the PS-based AOPs is discussed.
Collapse
Affiliation(s)
- Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcclona, Spain.
| | - Ramon Oliver
- Departament d'Enginyeria Químia, Universitat Politècnica de Catalunya, Avinguda Eduard Maristany16, edifici I, segona planta, Barcelona, Spain.
| |
Collapse
|
4
|
Wang Y, Yu W, Zhang R, He X, Hou J, Li X. Confined Co@NCNTs as highly efficient catalysts for activating peroxymonosulfate: free radical and non-radical co-catalytic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20149-20158. [PMID: 38372922 DOI: 10.1007/s11356-024-32416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
A series of transition metal (Co, Ni, Fe) nanoparticles were confined in N-doped carbon nanotubes (NCNTs) prepared (Co@NCNTs, Ni@NCNTs, and Fe@NCNTs) by the polymerization method. The structure and composition of catalysts were well characterized. The catalytic activity of catalysts for activating peroxymonosulfate (PMS) was conducted via acid orange 7 (AO7) degradation. Among the catalysts, Co@NCNTs performed the best catalytic activity. Additionally, Co@NCNTs performed good catalytic activity in pH values of 2.39-10.98. Cl- and SO42- played a promoting roles in AO7 degradation. NO3- presented a weak effect on the catalytic performance of Co@NCNTs, while HCO3- and CO32- significantly suppressed the catalytic performance of Co@NCNTs. Both non-radical (1O2 and electron transfer) and free-radical (·OH and SO4·-) pathways were detected in the Co@NCNTs/PMS system. Notably, 1O2 was identified to be the main active specie in this study. The catalytic activity of Co@NCNTs gradually decreased after cycle reuse of Co@NCNTs. Finally, the toxicity of the AO7 degradation solution in the study was evaluated by Chlorella pyrenoidosa.
Collapse
Affiliation(s)
- Yuan Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Wenyue Yu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Rongfa Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xiudan He
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
5
|
He Z, Yang H, Wong NH, Ernawati L, Sunarso J, Huang Z, Xia Y, Wang Y, Su J, Fu X, Wu M. Construction of Cu 7 S 4 @CuCo 2 O 4 Yolk-Shell Microspheres Composite and Elucidation of Its Enhanced Photocatalytic Activity, Mechanism, and Pathway for Carbamazepine Degradation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207370. [PMID: 36765447 DOI: 10.1002/smll.202207370] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/18/2023] [Indexed: 05/04/2023]
Abstract
Water pollution caused by the massive use of medicines has caused significant environmental problems. This work first reports the synthesis and characterization of the Cu7 S4 /CuCo2 O4 (CS/CCO) yolk-shell microspheres via hydrothermal and annealing methods, and then investigates their photocatalytic performance in removing organic water pollutants. The 10-CS/CCO composite with yolk-shell microspheres exhibits the highest photodegradation rate of carbamazepine (CBZ), reaching 96.3% within 2 h. The 10-CS/CCO also demonstrates more than two times higher photodegradation rates than the pure (Cu7 S4 ) CS and (CuCo2 O4 ) CCO. This outstanding photocatalytic performance can be attributed to the unique yolk-shell structure and the Z-scheme charge transfer pathway, reducing multiple reflections of the acting light. These factors enhance the light absorption efficiency and efficiently transfer photoexcited charge carriers. In-depth, photocatalytic degradation pathways of CBZ are systematically evaluated via the identification of degradation intermediates with Fukui index calculation. The insights gained from this work can serve as a guideline for developing low-cost and efficient Z-scheme photocatalyst composites with the yolk-shell structure.
Collapse
Affiliation(s)
- Zuming He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
- Huaide School, Changzhou University, Jingjiang, 214500, P. R. China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
| | - Ngie Hing Wong
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching, Sarawak, 93350, Malaysia
| | - Lusi Ernawati
- Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan, 76127, Indonesia
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching, Sarawak, 93350, Malaysia
| | - Zhengyi Huang
- Huaide School, Changzhou University, Jingjiang, 214500, P. R. China
| | - Yongmei Xia
- School of Materials and Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China
| | - Yong Wang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Jiangbin Su
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaofei Fu
- School of Materials and Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China
| | - Mi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
| |
Collapse
|
6
|
Nguyen LTT, Nguyen HTT, Nguyen LTH, Duong ATT, Nguyen HQ, Ngo VTM, Vu NV, Nguyen DTC, Tran TV. Efficient and recyclable Nd 3+-doped CoFe 2O 4 for boosted visible light-driven photocatalytic degradation of Rhodamine B dye. RSC Adv 2023; 13:10650-10656. [PMID: 37056968 PMCID: PMC10089080 DOI: 10.1039/d3ra00971h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
Rare earth metal doping spinel ferrites offer excellent electronic, magnetic, and photocatalytic properties, but they have not been well explored for environmental mitigation. Herein, we report the facile fabrication of novel CoNd x Fe2-x O4 (x = 0-0.05) photocatalysts based on Nd3+ incorporated into CoFe2O4 for the degradation of Rhodamine B under visible light irradiation. The Nd3+ dopant considerably increased the specific surface area (35 m2 g-1) and enhanced the degradation performance (94.7%) of CoNd x Fe2-x O4 catalysts. Nd3+-doped CoFe2O4 played a role in the formation of radicals, including ˙OH, h+, and ˙O2 -. With high recyclability and performance, CoNd0.05Fe1.95O4 nanoparticles can be efficient and reusable photocatalysts for degrading organic dyes, including Rhodamine B from wastewaters.
Collapse
Affiliation(s)
- Loan T T Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education Thai Nguyen 240000 Vietnam
| | - Hang T T Nguyen
- Faculty of Automotive and Power Machinery Engineering, Thai Nguyen University of Technology Thai Nguyen 24000 Vietnam
| | - Lan T H Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education Thai Nguyen 240000 Vietnam
| | - Anh T T Duong
- Faculty of Chemistry, Thai Nguyen University of Education Thai Nguyen 240000 Vietnam
| | - Hai Q Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education Thai Nguyen 240000 Vietnam
| | - Viet T M Ngo
- Faculty of Chemistry, Thai Nguyen University of Education Thai Nguyen 240000 Vietnam
| | - Nhuong V Vu
- Faculty of Chemistry, Thai Nguyen University of Education Thai Nguyen 240000 Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam (+84)-028-39-404-759 (+84)-028-3941-1211
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam (+84)-028-39-404-759 (+84)-028-3941-1211
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| |
Collapse
|
7
|
Xu Y, Gao L, Yang J, Yang Q, Peng W, Ding Z. Effective and Efficient Porous CeO 2 Adsorbent for Acid Orange 7 Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2650. [PMID: 37048943 PMCID: PMC10095680 DOI: 10.3390/ma16072650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A porous CeO2 was synthesized following the addition of guanidine carbonate to a Ce3+ aqueous solution, the subsequent addition of hydrogen peroxide and a final hydrothermal treatment. The optimal experimental parameters for the synthesis of porous CeO2, including the amounts of guanidine carbonate and hydrogen peroxide and the hydrothermal conditions, were determined by taking the adsorption efficiency of acid orange 7 (AO7) dye as the evaluation. A template-free hydrothermal strategy could avoid the use of soft or hard templates and the subsequent tedious procedures of eliminating templates, which aligned with the goals of energy conservation and emission reduction. Moreover, both the guanidine carbonate and hydrogen peroxide used in this work were accessible and eco-friendly raw materials. The porous CeO2 possessed rapid adsorption capacities for AO7 dye. When the initial concentration of AO7 was less than 130 mg/L, removal efficiencies greater than 90.0% were obtained, achieving a maximum value of 97.5% at [AO7] = 100 mg/L and [CeO2] = 2.0 g/L in the first 10 min of contact. Moreover, the adsorption-desorption equilibrium between the porous CeO2 adsorbent and the AO7 molecule was basically established within the first 30 min. The saturated adsorption amount of AO7 dye was 90.3 mg/g based on a Langmuir linear fitting of the experimental data. Moreover, the porous CeO2 could be recycled using a NaOH aqueous solution, and the adsorption efficiency of AO7 dye still remained above 92.5% after five cycles. This study provided an alternative porous adsorbent for the purification of dye wastewater, and a template-free hydrothermal strategy was developed to enable the design of CeO2-based catalysts or catalyst carriers.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyuan Yang
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Qingxiu Yang
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Wanxin Peng
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Zhao Ding
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Lei Y, Wu H, Ma J, Cheng H, Komarneni S. Activation of Na 2S 2O 8 by α-Fe 2O 3/CuS composite oxides for the degradation of Orange II under visible light irradiation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05426k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Layered α-Fe2O3/CuS nanoflowers with abundant active sites were synthesized by a hydrothermal method.
Collapse
Affiliation(s)
- Yu Lei
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Huiqi Wu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Jianfeng Ma
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi, 545006, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|