1
|
Fan L, Wang J, Wang C, Zhang X, Li Q, Wang H, Liu Y, Zhao YH, Zang S. Photolysis of dinotefuran and nitenpyram in water and ice phase: Influence mechanism of temperature over photolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116895. [PMID: 39151370 DOI: 10.1016/j.ecoenv.2024.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Neonicotinoids are widely used pesticides around the world, but the photolysis of neonicotinoids in cold agricultural region are still in blank. This paper aimed to study the influence of cold temperature over photolysis of neonicotinoids. To this end, the photolysis rates and photoproducts of dinotefuran and nitenpyram in water, ice and freeze-thawing condition were determined. Coupled with quantum chemistry calculation, the influence mechanisms of temperature and medium were investigated. The results showed the photolysis rates of neonicotinoids in water condition slightly declined with the lowered temperature due to the photolysis reactions were endothermic reactions. However, the photolysis rates increased by 89.8 %, 59.2 %, 49.4 % and 9.5 % for dinotefuran and nitenpyram in ice and thawing condition, respectively. This phenomenon was posed by the concentration-enhancing effect and change of photo-chemical properties of neonicotinoids in ice condition, which included lowered bond cleavage energy, lowered first excited singlet state energy and expanded light absorption range. The photolysis pathways of the two neonicotinoids did not change in different medium, but the concentration of carboxyl products was relatively higher than that of water condition due to the more amounts of reactive oxygen species in ice medium, which might increase the secondary pollution risk after ice-off in spring due to the higher ecotoxicity to nontarget organism of these photoproducts. The influence of cold temperature and medium change should be considered for the environmental fate and risk assessment of neonicotinoids in cold agricultural region.
Collapse
Affiliation(s)
- Lingyun Fan
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Chen Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Xujia Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| | - Qi Li
- School of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Hanxi Wang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| | - Yi Liu
- State Grid Jilin Electric Power Research Institute, Changchun 130021, China.
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Cai Y, Li X, Feng M, Chovelon JM, Lu J, Chen J, Ji Y. Photochemical degradation of bisphenol S and its tetrahalogenated derivatives in water. WATER RESEARCH 2024; 262:122131. [PMID: 39067277 DOI: 10.1016/j.watres.2024.122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Bisphenol S (BPS), a widely used plasticizer, is known to have potential endocrine disrupting effects to organisms. Its tetrahalogenated derivatives, tetrachlorobisphenol S (TCBPS) and tetrabromobisphenol S (TBBPS), are flame retardants exhibiting high neurodevelopmental toxicity and cytotoxicity. Halogen substitution has been shown to significantly affect the optical and photochemical properties of organic compounds. In this study, we conducted a comparative investigation into the photochemical behaviors of BPS, TCBPS, and TBBPS in aqueous solutions under both laboratory UV and natural sunlight irradiation. Spectroscopic titration results indicated that the pKa of TCBPS (4.16) and TBBPS (4.13) are approximately 3.7 units smaller than that of BPS (7.85), indicating that the halogenated derivatives are mainly present as the phenolate anions under circumneutral conditions. The halogen substituents also cause a significant bathochromic shift in the absorption spectra of TCBPS and TBBPS compared to BPS, leading to the enhanced absorption of sunlight. Meanwhile, TCBPS and TBBPS showed higher quantum yields than BPS, attributed to the "heavy atom" effect of halogen substituents. GCSOLAR modeling predicted half-lives for BPS, TCBPS, and TBBPS in surface water in Nanjing (32°2'7.3''N, 118°50'21''E) under noon sunlight in clear mid-autumn days as 810.2, 3.4, and 0.7 min, respectively. Toxicity evaluation suggest potential ecological risks of BPS/TCBPS/TBBPS and their photoproducts to aquatic organisms. Our findings highlight direct photolysis as an important mechanism accounting for the attenuation of tetrahalogenated bisphenols in both sunlit surface waters and UV based water treatment processes.engineered (e.g., UV disinfection) and natural aquatic environments (e.g., surface fresh waters).
Collapse
Affiliation(s)
- Yan Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoci Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jing Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
On-site selective capture of nitrophenols in waters based on tri-channel in-tip microextraction apparatus using molecularly imprinted monolith as adsorbent. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Wang L, Xu H, Lu J, Chovelon JM, Ji Y. Aquatic photolysis of the pharmaceutical ambroxol: The role of 2,4-dibromoaniline chromophore and heavy atom effect of bromine. WATER RESEARCH 2022; 226:119275. [PMID: 36288664 DOI: 10.1016/j.watres.2022.119275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
As one of the most effective expectorant class drugs, ambroxol (AMB) has been frequently used to treat acute and chronic bronchitis. Extensive use and human excretion result in the widespread occurrence of AMB in wastewater. Herein, we reported the photolysis of AMB in aqueous solution upon 254 nm ultraviolet radiation (UV254). Spectroscopic characterization showed that 2,4-dibromoaniline (DBA) moiety is the core chromophore of AMB. Quantum yield of DBA changed little at pH 4.0 - 9.0; however, AMB showed higher quantum yield at pH > 8.0. Both DBA and AMB have high photoreactivity, which can be attributed to the "heavy atom" effect of bromine substituents. The photolysis of AMB occurred through photoreduction, photoionization, photonucleophilic substitution, side-chain cleavage, and coupling reactions. Both AMB and DBA underwent debromination with yields reaching 80% under 3200 mJ cm-2 UV fluence. Photo-debromination occurred preferentially at the para-position. The presence of natural organic matter inhibited the photodegradation, mainly due to the light-screening effect. The photolysis of AMB was slightly enhanced in the presence of NO3- likely due to radical-induced oxidation. Bioluminescence inhibition assay revealed that photoproducts were not toxic. The results show that UV254 radiation with fluences relevant to advanced oxidation processes was effective for the abatement of AMB in wastewater. However, UV254 treatment of wastewater containing higher concentrations (˃ μg L-1) of AMB should be done with caution because the released Br- can be converted to toxic brominated disinfection byproducts and bromate in subsequent oxidation process.
Collapse
Affiliation(s)
- Lixiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jean-Marc Chovelon
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|